Flood design recipes vs. reality: can predictions for ungauged basins be trusted?

A. Efstratiadis, A. D. Koussis, D. Koutsoyiannis, and N. Mamassis, Flood design recipes vs. reality: can predictions for ungauged basins be trusted?, Natural Hazards and Earth System Sciences, 14, 1417–1428, doi:10.5194/nhess-14-1417-2014, 2014.



Despite the great scientific and technological advances in flood hydrology, everyday engineering practices still follow simplistic approaches that are easy to formally implement in ungauged areas. In general, these "recipes" have been developed many decades ago, based on field data from typically few experimental catchments. However, many of them have been neither updated nor validated across all hydroclimatic and geomorphological conditions. This has an obvious impact on the quality and reliability of hydrological studies, and, consequently, on the safety and cost of the related flood protection works. Preliminary results, based on historical flood data from Cyprus and Greece, indicate that a substantial revision of many aspects of flood engineering procedures is required, including the regionalization formulas as well as the modelling concepts themselves. In order to provide a consistent design framework and to ensure realistic predictions of the flood risk (a key issue of the 2007/60/EU Directive) in ungauged basins, it is necessary to rethink the current engineering practices. In this vein, the collection of reliable hydrological data would be essential for re-evaluating the existing "recipes", taking into account local peculiarities, and for updating the modelling methodologies as needed.

PDF Full text (207 KB)

PDF Additional material:

See also: http://www.nat-hazards-earth-syst-sci.net/14/1417/2014/

Our works referenced by this work:

1. D. Koutsoyiannis, and Th. Xanthopoulos, Engineering Hydrology, Edition 3, 418 pages, doi:10.13140/RG.2.1.4856.0888, National Technical University of Athens, Athens, 1999.
2. D. Koutsoyiannis, and G. Baloutsos, Analysis of a long record of annual maximum rainfall in Athens, Greece, and design rainfall inferences, Natural Hazards, 22 (1), 29–48, doi:10.1023/A:1008001312219, 2000.
3. D. Koutsoyiannis, Statistics of extremes and estimation of extreme rainfall, 1, Theoretical investigation, Hydrological Sciences Journal, 49 (4), 575–590, doi:10.1623/hysj.49.4.575.54430, 2004.
4. D. Koutsoyiannis, Statistics of extremes and estimation of extreme rainfall, 2, Empirical investigation of long rainfall records, Hydrological Sciences Journal, 49 (4), 591–610, doi:10.1623/hysj.49.4.591.54424, 2004.
5. D. Veneziano, and A. Langousis, The areal reduction factor: A multifractal analysis, Water Resources Research, 41, doi:10.1029/2004WR003765, 2005.
6. D. Koutsoyiannis, C. Makropoulos, A. Langousis, S. Baki, A. Efstratiadis, A. Christofides, G. Karavokiros, and N. Mamassis, Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability, Hydrology and Earth System Sciences, 13, 247–257, doi:10.5194/hess-13-247-2009, 2009.
7. E. Galiouna, A. Efstratiadis, N. Mamassis, and K. Aristeidou, Investigation of extreme flows in Cyprus: empirical formulas and regionalization approaches for peak flow estimation, European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, 2077, European Geosciences Union, 2011.
8. S.M. Papalexiou, and D. Koutsoyiannis, Entropy based derivation of probability distributions: A case study to daily rainfall, Advances in Water Resources, 45, 51–57, doi:10.1016/j.advwatres.2011.11.007, 2012.
9. H. Tyralis, D. Koutsoyiannis, and S. Kozanis, An algorithm to construct Monte Carlo confidence intervals for an arbitrary function of probability distribution parameters, Computational Statistics, 28 (4), 1501–1527, doi:10.1007/s00180-012-0364-7, 2013.
10. A. Efstratiadis, A. D. Koussis, S. Lykoudis, A. Koukouvinos, A. Christofides, G. Karavokiros, N. Kappos, N. Mamassis, and D. Koutsoyiannis, Hydrometeorological network for flood monitoring and modeling, Proceedings of First International Conference on Remote Sensing and Geoinformation of Environment, Paphos, Cyprus, 8795, 10-1–10-10, doi:10.1117/12.2028621, Society of Photo-Optical Instrumentation Engineers (SPIE), 2013.
11. E. Michailidi, T. Mastrotheodoros, A. Efstratiadis, A. Koukouvinos, and D. Koutsoyiannis, Flood modelling in river basins with highly variable runoff, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.30847.00167, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.
12. D. Koutsoyiannis, Reconciling hydrology with engineering, Hydrology Research, 45 (1), 2–22, doi:10.2166/nh.2013.092, 2014.

Our works that reference this work:

1. P. Dimitriadis, A. Tegos, A. Oikonomou, V. Pagana, A. Koukouvinos, N. Mamassis, D. Koutsoyiannis, and A. Efstratiadis, Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping, Journal of Hydrology, 534, 478–492, doi:10.1016/j.jhydrol.2016.01.020, 2016.
2. E. Savvidou, A. Efstratiadis, A. D. Koussis, A. Koukouvinos, and D. Skarlatos, A curve number approach to formulate hydrological response units within distributed hydrological modelling, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-627, 2016.
3. K. Papoulakos, G. Pollakis, Y. Moustakis, A. Markopoulos, T. Iliopoulou, P. Dimitriadis, D. Koutsoyiannis, and A. Efstratiadis, Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability, Energy Procedia, 125, 405–414, doi:10.1016/j.egypro.2017.08.078, 2017.
4. P. Dimitriadis, A. Tegos, A. Petsiou, V. Pagana, I. Apostolopoulos, E. Vassilopoulos, M. Gini, A. D. Koussis, N. Mamassis, D. Koutsoyiannis, and P. Papanicolaou, Flood Directive implementation in Greece: Experiences and future improvements, 10th World Congress on Water Resources and Environment "Panta Rhei", Athens, European Water Resources Association, 2017.
5. E. Savvidou, A. Efstratiadis, A. D. Koussis, A. Koukouvinos, and D. Skarlatos, The curve number concept as a driver for delineating hydrological response units, Water, 10 (2), 194, doi:10.3390/w10020194, 2018.
6. E. Michailidi, S. Antoniadi, A. Koukouvinos, B. Bacchi, and A. Efstratiadis, Timing the time of concentration: shedding light on a paradox, Hydrological Sciences Journal, 63 (5), 721–740, doi:10.1080/02626667.2018.1450985, 2018.
7. G. Papaioannou, A. Efstratiadis, L. Vasiliades, A. Loukas, S.M. Papalexiou, A. Koukouvinos, I. Tsoukalas, and P. Kossieris, An operational method for Floods Directive implementation in ungauged urban areas, Hydrology, 5 (2), 24, doi:10.3390/hydrology5020024, 2018.
8. T. Iliopoulou, D. Koutsoyiannis, and A. Montanari, Characterizing and modeling seasonality in extreme rainfall, Water Resources Research, 54 (9), 6242–6258, doi:10.1029/2018WR023360, 2018.
9. G. Papaioannou, L. Vasiliades, A. Loukas, A. Alamanos, A. Efstratiadis, A. Koukouvinos, I. Tsoukalas, and P. Kossieris, A flood inundation modelling approach for urban and rural areas in lake and large-scale river basins, Water, 13 (9), 1264, doi:10.3390/w13091264, 2021.
10. A. Efstratiadis, P. Dimas, G. Pouliasis, I. Tsoukalas, P. Kossieris, V. Bellos, G.-K. Sakki, C. Makropoulos, and S. Michas, Revisiting flood hazard assessment practices under a hybrid stochastic simulation framework, Water, 14 (3), 457, doi:10.3390/w14030457, 2022.
11. E. Dimitriou, A. Efstratiadis, I. Zotou, A. Papadopoulos, T. Iliopoulou, G.-K. Sakki, K. Mazi, E. Rozos, A. Koukouvinos, A. D. Koussis, N. Mamassis, and D. Koutsoyiannis, Post-analysis of Daniel extreme flood event in Thessaly, Central Greece: Practical lessons and the value of state-of-the-art water monitoring networks, Water, 16 (7), 980, doi:10.3390/w16070980, 2024.

Works that cite this document: View on Google Scholar or ResearchGate

Other works that reference this work (this list might be obsolete):

1. van Emmerik, T. H. M., G. Mulder, D. Eilander, M. Piet, and H. Savenije, Predicting the ungauged basin: Model validation and realism assessment, Frontiers in Earth Sciences, 3:62, doi:10.3389/feart.2015.00062, 2015.
2. Biondi, D., and L. Da Luca, Process-based design flood estimation in ungauged basins by conditioning model parameters on regional hydrological signatures, Natural Hazards, 79(2), 1015-1038, doi:10.1007/s11069-015-1889-1, 2015.
3. Yannopoulos, S., E. Eleftheriadou, S. Mpouri, and I. Giannopoulou, Implementing the requirements of the European Flood Directive: the case of ungauged and poorly gauged watersheds, Environmental Processes, 2(1), 191-207, doi:10.1007/s40710-015-0094-2, 2015.
4. Wałęga, A., and A. Rutkowska, Usefulness of the modified NRCS-CN method for the assessment of direct runoff in a mountain catchment, Acta Geophysica, 63(5), 1423–1446, doi:10.1515/acgeo-2015-0043, 2015.
5. Walega, A., B. Michalec, A. Cupak, and M. Grzebinoga, Comparison of SCS-CN determination methodologies in a heterogeneous catchment, Journal of Mountain Science, 12(5), 1084-1094, doi:10.1007/s11629-015-3592-9, 2015.
6. Awadallah, A.G., H. Saad, A. Elmoustafa, and A. Hassan, Reliability assessment of water structures subject to data scarcity using the SCS-CN model, Hydrological Sciences Journal, 61(4), 696-710, doi:10.1080/02626667.2015.1027709, 2016.
7. Merheb, M., R. Moussa, C. Abdallah, F. Colin, C. Perrin, and N. Baghdadi, Hydrological response characteristics of Mediterranean catchments at different time scales: a meta-analysis, Hydrological Sciences Journal, 61(14), 2520-2539, doi:10.1080/02626667.2016.1140174, 2016.
8. Kjeldsen, T., H. Kim, C. Jang, and H. Lee, Evidence and implications of nonlinear flood response in a small mountainous watershed, Journal of Hydrologic Engineering, 21(8), 04016024, doi:10.1061/(ASCE)HE.1943-5584.0001343, 2016.
9. Taghvaye Salimi, E., A. Nohegar, A. Malekian, M. Hoseini, and A. Holisaz, Estimating time of concentration in large watersheds, Paddy and Water Environment, 15(1), 123-132, doi:10.1007/s10333-016-0534-2, 2017.
10. Biondi, D., and D. L. De Luca, Rainfall-runoff model parameter conditioning on regional hydrological signatures: application to ungauged basins in southern Italy, Hydrology Research, 48(3) 714-725, doi:10.2166/nh.2016.097, 2017.
11. Attakora-Amaniampong, E., E. Owusu-Sekyere, and D. Aboagye, Urban floods and residential rental values nexus in Kumasi, Ghana, Ghana Journal of Development Studies, 13(2), 176-194, 2016.
12. #Destro, E., E. I. Nikolopoulos, J. D. Creutin, and M. Borga, Floods, Environmental Hazards Methodologies for Risk Assessment and Management, Dalezios, N. R. (editor), Chapter 4, IWA Publishing, 2017.
13. van Noordwijk, M., L. Tanika, L., and B. Lusiana, Flood risk reduction and flow buffering as ecosystem services – Part 1: Theory on flow persistence, flashiness and base flow, Hydrology and Earth System Sciences, 21, 2321-2340, doi:10.5194/hess-21-2321-2017, 2017.
14. Verma, S., R. K. Verma, S. K. Mishra, A. Singh, and G. K. Jayaraj, A revisit of NRCS-CN inspired models coupled with RS and GIS for runoff estimation, Hydrological Sciences Journal, 62(12), 1891-1930, doi:10.1080/02626667.2017.1334166, 2017.
15. De Luca, D. L., and D. Biondi, Bivariate return period for design hyetograph and relationship with T-year design flood peak, Water, 9, 673, doi:10.3390/w9090673, 2017.
16. #Danııl E., S. Michas, and G. Aerakis, Hydrologic issues in demarcation studies of watercourses in Greece, 15th International Conference on Environmental Science and Technology, CEST2017_00869, Rhodes, 2017.
17. Wałęga, A., A. Cupak, D. M. Amatya, and E. Drożdżal, Comparison of direct outflow calculated by modified SCS-CN methods for mountainous and highland catchments in Upper Vistula basin, Poland and Lowland catchment in South Carolina, U.S.A., Acta Sci. Pol. Formatio Circumiectus, 16(1), 187–207, doi:10.15576/ASP.FC/2017.16.1.187, 2017.
18. #Walker, N. J., K. N. Iipinge, J. D. S. Cullis, D. Scott, J. Mfune, P. Wolski, and C. Jack, Integrating climate change information into long term planning and design for critical water related infrastructure in Windhoek and other African cities, 18th WaterNet/WARFSA/GWP-SA Symposium, Swakopmund, Namibia, 2017.
19. Garrote, J., A. Díez-Herrero, J. M. Bodoque, M. A. Perucha, P. L. Mayer, and M. Génova, Flood hazard management in public mountain recreation areas vs. ungauged fluvial basins: Case study of the Caldera de Taburiente National Park, Canary Islands (Spain), Geosciences, 8(1), 6, doi:10.3390/geosciences8010006, 2018.
20. Petroselli, A., and S. Grimaldi, Design hydrograph estimation in small and fully ungauged basins: a preliminary assessment of the EBA4SUB framework, Journal of Flood Risk Management, 11(51), S197–S210, doi:10.1111/jfr3.12193, 2018.
21. Zin, W., A. Kawasaki, W. Takeuchi, Z. M. L. T. San, K. Z. Htun, T. H. Aye, and S. Win, Flood hazard assessment of Bago river basin, Myanmar, Journal of Disaster Research, 13(1), 14-21, doi:10.20965/jdr.2018.p0014, 2018.
22. Alipour, M. H., and K. M. Kibler, A framework for streamflow prediction in the world’s most severely data-limited regions: test of applicability and performance in a poorly-gauged region of China, Journal of Hydrology, 557, 41-54, doi:10.1016/j.jhydrol.2017.12.019, 2018.
23. Hdeib, R., C. Abdallah, F. Colin, L. Brocca, and R. Moussa, Constraining coupled hydrological-hydraulic flood model by past storm events and post-event measurements in data-sparse regions, Journal of Hydrology, 565, 160-175, doi:10.1016/j.jhydrol.2018.08.008, 2018.
24. Petroselli, A., M. Vojtek, and J. Vojteková, Flood mapping in small ungauged basins: A comparison of different approaches for two case studies in Slovakia, Hydrology Research, 50(1), 379-392, doi:10.2166/nh.2018.040, 2018.
25. Gericke, O. J., Catchment response time and design rainfall: the key input parameters for design flood estimation in ungauged catchments, Journal of the South African Institution of Civil Engineering, 60(4), 51-67, doi:10.17159/2309-8775/2018/v60n4a6, 2018.
26. #Trifonova, T. A., D. V. Trifonov, S. I. Abrakhin, V. N. Koneshov, A. V. Nikolaev, and S. M. Arakelian, New verification of the groundwater and tectonic processes possible impact on a series of recent catastrophic floods and debris flows (2011-2017), Debris Flows: Disasters, Risk, Forecast, Protection – Proceedings of the 5th International Conference, S. S. Chernomorets and G. V. Gavardashvili (editors), 606-618, Tbilisi, Georgia, 2018.
27. Papaioannou, G., A. Loukas, and L. Vasiliades, Flood risk management methodology for lakes and adjacent areas: The lake Pamvotida paradigm, Proceedings, 7, 21, doi:10.3390/ECWS-3-05825, 2019.
28. Jiang, X., L., Yang, and H. Tatano, Assessing spatial flood risk from multiple flood sources in a small river basin: A method based on multivariate design rainfall, Water, 11(5), 1031, doi:10.3390/w11051031, 2019.
29. Sarchani, S., and I. Tsanis, Analysis of a flash flood in a small basin in Crete, Water, 11(11), 2253, doi:10.3390/w11112253, 2019.
30. Walega, A., and T. Salata, Influence of land cover data sources on estimation of direct runoff according to SCS-CN and modified SME methods, Catena, 172, 232-242, doi:10.1016/j.catena.2018.08.032, 2019.
31. Pinho, J. L. S., L. Vieira, J. M. P. Vieira, S. Venâncio, N. E. Simões, J. A. Sá Marques, and F. S. Santos, Assessing causes and associated water levels for an urban flood using hydroinformatic tools, Journal of Hydroinformatics, 22(1), 61-76, doi:10.2166/hydro.2019.019, 2020.
32. Wanniarachchi, S. S., and N. T. S. Wijesekera, Challenges in field approximations of regional scale hydrology, Journal of Hydrology: Regional Studies, 27, 100647, doi:10.1016/j.ejrh.2019.100647, 2020.
33. Fortesa, J., J. Latron, J. García-Comendador, M. Tomàs-Burguera, J. Company, A. Calsamiglia, and J. Estrany, Multiple temporal scales assessment in the hydrological response of small Mediterranean-climate catchments, Water, 12(1), 299, doi:10.3390/w12010299, 2020.
34. Trifonova, T., D. Trifonov, D. Bukharov, S. Abrakhin, M. Arakelian, and S. Arakelian, Global and regional aspects for genesis of catastrophic floods: The problems of forecasting and estimation for mass and water balance (surface water and groundwater contribution), IntechOpen, doi:10.5772/intechopen.91623, 2020.
35. Kastridis, A., C. Kirkenidis, and M. Sapountzis, An integrated approach of flash flood analysis in ungauged Mediterranean watersheds using post‐flood surveys and Unmanned Aerial Vehicles (UAVs), Hydrological Processes, 34(25), 4920-4939, doi:10.1002/hyp.13913, 2020.
36. Bertini, C., L. Buonora, E. Ridolfi, F. Russo, and F. Napolitano, On the use of satellite rainfall data to design a dam in an ungauged site, Water, 12(11), 3028, doi:10.3390/w12113028, 2020.
37. Ramadan, A. N. A., D. Nurmayadi, A. Sadili, R. R. Solihin, and Z. Sumardi, Pataruman watershed Curve Number determination study based on Indonesia land map unit, Media Komunikasi Teknik Sipil, 26(2), 258-266, doi:10.14710/mkts.v26i2.26563, 2020.
38. Bournas, A., and E. Baltas, Comparative analysis of rain gauge and radar precipitation estimates towards rainfall-runoff modelling in a peri-urban basin in Attica, Greece, Hydrology, 8(1), 29, doi:10.3390/hydrology8010029, 2021.
39. Devkota, N., and N. M. Shakya, Development of rainfall-runoff model for extreme storm events in the Bagmati River Basin, Nepal, Journal of Engineering Issues and Solutions, 1(1), 158-173, doi:10.3126/joeis.v1i1.36835, 2021.
40. Almedeij, J., Modified NRCS abstraction method for flood hydrograph generation, Journal of Irrigation and Drainage Engineering, 47(10), 04021042-1, doi:10.1061/(ASCE)IR.1943-4774.0001609, 2021.
41. Zahraei, A., R. Baghbani, and A. Linhoss, Applying a graphical method in evaluation of empirical methods for estimating time of concentration in an arid region, Water, 13(19), 2624, doi:10.3390/w13192624, 2021.
42. Salazar-Galán, S., R. García-Bartual, J. L. Salinas, and F. Francés, A process-based flood frequency analysis within a trivariate statistical framework. Application to a semi-arid Mediterranean case study, Journal of Hydrology, 603, Part C, 127081, doi:10.1016/j.jhydrol.2021.127081, 2021.
43. Kastridis, A., G. Theodosiou, and G. Fotiadis, Investigation of flood management and mitigation measures in ungauged NATURA protected watersheds, Hydrology, 8(4), 170, doi:10.3390/hydrology8040170, 2021.
44. Coser, M. C., M. S. Mendes, J. A. T. Reis, and A. S. F. Mendonça, Periodic autoregressive models in flow regulating reservoirs design, Journal of Applied Water Engineering and Research, 10(4), 278-295, doi:10.1080/23249676.2021.1980124, 2022.
45. Lapides, D., A. Sytsma, G. O'Neil, D. Djokic, M. Nichols, and S. Thompson, Arc Hydro hillslope and Critical Duration: New tools for hillslope-scale runoff analysis, Environmental Modelling & Software, 153, 105408, doi:10.1016/j.envsoft.2022.105408, 2022.
46. Tegos, A., A. Ziogas, V. Bellos, and A. Tzimas, Forensic hydrology: a complete reconstruction of an extreme flood event in data-scarce area, Hydrology, 9(5), 93, doi:10.3390/hydrology9050093, 2022.
47. Singh, N., and T. Devi, Regionalization methods in ungauged catchments for flow prediction: review and its recent developments, Arabian Journal of Geosciences, 15(11), 1019, doi:10.1007/s12517-022-10287-z, 2022.
48. Liu, Y., and D. B. Wright, A storm-centered multivariate modeling of extreme precipitation frequency based on atmospheric water balance, Hydrology and Earth System Sciences, 26, 5241-5267, doi:10.5194/hess-26-5241-2022, 2022.
49. Al-Amri, N. S., H. A. Ewea, and M. M. Elfeki, Stochastic rational method for estimation of flood peak uncertainty in arid basins: Comparison between Monte Carlo and first order second moment methods with a case study in southwest Saudi Arabia, Sustainability, 15(6), 4719, doi:10.3390/su15064719, 2023.
50. Acuña, P., and A. Pizarro, Can continuous simulation be used as an alternative for flood regionalisation? A large sample example from Chile, Journal of Hydrology, 626(A), 130118, doi:10.1016/j.jhydrol.2023.130118, 2023.
51. Evangelista, J., R. Woods, and P. Claps, Dimensional analysis of literature formulas to estimate the characteristic flood response time in ungauged basins: a velocity-based approach, Journal of Hydrology, 627(B), 130409, doi:10.1016/j.jhydrol.2023.130409, 2023.
52. Moccia, B., L. Buonora, and C. Bertini, On the influence of sample size and recentness for the definition of design rainfall, AIP Conference Proceedings, 3094(1), 500047, doi:10.1063/5.0210571, 2024.

Tagged under: Floods, Hydrological models