Υδρολογική μοντελοποίηση χρονικά μεταβαλλόμενων λεκανών: Όψεις της αλλαγής και η αξία της πληροφορίας

A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Hydrological modelling of temporally-varying catchments: Facets of change and the value of information, Hydrological Sciences Journal, 60 (7-8), 1438–1461, doi:10.1080/02626667.2014.982123, 2015.

[Υδρολογική μοντελοποίηση χρονικά μεταβαλλόμενων λεκανών: Όψεις της αλλαγής και η αξία της πληροφορίας]

[doc_id=1508]

[Αγγλικά]

Οι λεκάνες απορροής είναι εξ ορισμού μεταβαλλόμενα συστήματα: οι αλλαγές τους είναι εμφανείς σε κάθε χρονική κλίμακα, σε όρους μεταβαλλόμενων μετεωρολογικών εισόδων και χαρακτηριστικών της λεκάνης, ως αποτέλεσμα των εγγενώς αβέβαιων φυσικών διεργασιών και των ανθρωπογενών επεμβάσεων, αντίστοιχα. Στο επιχειρησιακό πλαίσιο, ο απόλυτος στόχος της υδρολογικής μοντελοποίησης είναι η πρόβλεψη των αποκρίσεων της λεκάνης κάτω από συνθήκες που είναι είτε ίδιες ή διαφορετικές από το παρελθόν. Δεδομένου ότι οι μελέτες διαχείρισης υδατικών πόρων προϋποθέτουν ότι οι ανθρωπογενείς συνέπειες θεωρούνται γνωστές και ότι προσομοιώνεται μια μακρά υδρολογική περίοδος, η συνδυασμένη χρήση στοχαστικών μοντέλων, για τη γέννηση των δεδομένων εισόδου, και ντετερμινιστικών μοντέλων, που αναπαριστούν, μεταξύ άλλων, τις επεμβάσεις του ανθρώπου σε τροποποιημένες λεκάνες, έχει αποδειχθεί ότι αποτελεί μια ισχυρή προσέγγιση που παρέχει ρεαλιστικές και στατιστικά συνεπείς προσομοιώσεις (σε όρους παραγωγής ροπών και συσχετίσεων, σε πολλαπλές χρονικές κλίμακες, και της μακροπρόθεσμης εμμονής). Το προτεινόμενο πλαίσιο εξετάζεται στη λεκάνη Ferson Creek, στις ΗΠΑ, η οποία εμφανίζει σημαντική αύξηση της αστικοποίησης στη διάρκεια των τελευταίων 30 ετών. Οι εναλλακτικές ντετερμινιστικές μοντελοποιήσεις περιλαμβάνουν ένα αδιαμέριστο μοντέλο υδατικού ισοζυγίου με μια χρονικά μεταβαλλόμενη παράμετρο και ένα ημι-κατανεμημένο σχήμα που βασίζεται στην έννοια των μονάδων υδρολογικής απόκρισης. Οι είσοδοι και τα σφάλματα του μοντέλου αναπαρίστανται μέσω γραμμικών και μη γραμμικών, αντίστοιχα, στοχαστικών μοντέλων. Το προκύπτον μη γραμμικό στοχαστικό πλαίσιο μεγιστοποιεί την αξιοποίηση της υπάρχουσας πληροφορίας, εκμεταλλευόμενο το πρωτόκολλο βαθμονόμησης που χρησιμοποιεί αυτός ο τόμος.

Το πλήρες κείμενο διατίθεται μόνο στο δίκτυο του ΕΜΠ λόγω νομικών περιορισμών

PDF Συμπληρωματικό υλικό:

Βλέπε επίσης: http://dx.doi.org/10.1080/02626667.2014.982123

Εργασίες μας στις οποίες αναφέρεται αυτή η εργασία:

1. D. Koutsoyiannis, Optimal decomposition of covariance matrices for multivariate stochastic models in hydrology, Water Resources Research, 35 (4), 1219–1229, doi:10.1029/1998WR900093, 1999.
2. D. Koutsoyiannis, A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series, Water Resources Research, 36 (6), 1519–1533, doi:10.1029/2000WR900044, 2000.
3. D. Koutsoyiannis, Coupling stochastic models of different time scales, Water Resources Research, 37 (2), 379–391, doi:10.1029/2000WR900200, 2001.
4. A. Efstratiadis, and D. Koutsoyiannis, An evolutionary annealing-simplex algorithm for global optimisation of water resource systems, Proceedings of the Fifth International Conference on Hydroinformatics, Cardiff, UK, 1423–1428, doi:10.13140/RG.2.1.1038.6162, International Water Association, 2002.
5. D. Koutsoyiannis, C. Onof, and H. S. Wheater, Multivariate rainfall disaggregation at a fine timescale, Water Resources Research, 39 (7), 1173, doi:10.1029/2002WR001600, 2003.
6. E. Rozos, A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Calibration of a semi-distributed model for conjunctive simulation of surface and groundwater flows, Hydrological Sciences Journal, 49 (5), 819–842, doi:10.1623/hysj.49.5.819.55130, 2004.
7. A. Efstratiadis, I. Nalbantis, A. Koukouvinos, E. Rozos, and D. Koutsoyiannis, HYDROGEIOS: A semi-distributed GIS-based hydrological model for modified river basins, Hydrology and Earth System Sciences, 12, 989–1006, doi:10.5194/hess-12-989-2008, 2008.
8. A. Efstratiadis, and D. Koutsoyiannis, One decade of multiobjective calibration approaches in hydrological modelling: a review, Hydrological Sciences Journal, 55 (1), 58–78, doi:10.1080/02626660903526292, 2010.
9. D. Koutsoyiannis, Hurst-Kolmogorov dynamics and uncertainty, Journal of the American Water Resources Association, 47 (3), 481–495, doi:10.1111/j.1752-1688.2011.00543.x, 2011.
10. I. Nalbantis, A. Efstratiadis, E. Rozos, M. Kopsiafti, and D. Koutsoyiannis, Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems, Hydrology and Earth System Sciences, 15, 743–758, doi:10.5194/hess-15-743-2011, 2011.
11. A. Efstratiadis, New insights on model evaluation inspired by the stochastic simulation paradigm, European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, 1852, European Geosciences Union, 2011.
12. A. Montanari, and D. Koutsoyiannis, A blueprint for process-based modeling of uncertain hydrological systems, Water Resources Research, 48, W09555, doi:10.1029/2011WR011412, 2012.
13. D. Koutsoyiannis, Hydrology and Change, Hydrological Sciences Journal, 58 (6), 1177–1197, doi:10.1080/02626667.2013.804626, 2013.
14. A. Montanari, G. Young, H. H. G. Savenije, D. Hughes, T. Wagener, L. L. Ren, D. Koutsoyiannis, C. Cudennec, E. Toth, S. Grimaldi, G. Blöschl, M. Sivapalan, K. Beven, H. Gupta, M. Hipsey, B. Schaefli, B. Arheimer, E. Boegh, S. J. Schymanski, G. Di Baldassarre, B. Yu, P. Hubert, Y. Huang, A. Schumann, D. Post, V. Srinivasan, C. Harman, S. Thompson, M. Rogger, A. Viglione, H. McMillan, G. Characklis, Z. Pang, and V. Belyaev, “Panta Rhei – Everything Flows”, Change in Hydrology and Society – The IAHS Scientific Decade 2013-2022, Hydrological Sciences Journal, 58 (6), 1256–1275, doi:10.1080/02626667.2013.809088, 2013.
15. D. Koutsoyiannis, Entropy: from thermodynamics to hydrology, Entropy, 16 (3), 1287–1314, doi:10.3390/e16031287, 2014.
16. A. Efstratiadis, Y. Dialynas, S. Kozanis, and D. Koutsoyiannis, A multivariate stochastic model for the generation of synthetic time series at multiple time scales reproducing long-term persistence, Environmental Modelling and Software, 62, 139–152, doi:10.1016/j.envsoft.2014.08.017, 2014.
17. A. Sikorska, A. Montanari, and D. Koutsoyiannis, Estimating the uncertainty of hydrological predictions through data-driven resampling techniques, Journal of Hydrologic Engineering (ASCE), 20 (1), doi:10.1061/(ASCE)HE.1943-5584.0000926, 2015.

Εργασίες μας που αναφέρονται σ' αυτή την εργασία:

1. A. Efstratiadis, Y. Dialynas, S. Kozanis, and D. Koutsoyiannis, A multivariate stochastic model for the generation of synthetic time series at multiple time scales reproducing long-term persistence, Environmental Modelling and Software, 62, 139–152, doi:10.1016/j.envsoft.2014.08.017, 2014.
2. I. Tsoukalas, P. Kossieris, A. Efstratiadis, and C. Makropoulos, Surrogate-enhanced evolutionary annealing simplex algorithm for effective and efficient optimization of water resources problems on a budget, Environmental Modelling and Software, 77, 122–142, doi:10.1016/j.envsoft.2015.12.008, 2016.
3. K. Papoulakos, G. Pollakis, Y. Moustakis, A. Markopoulos, T. Iliopoulou, P. Dimitriadis, D. Koutsoyiannis, and A. Efstratiadis, Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability, Energy Procedia, 125, 405–414, doi:10.1016/j.egypro.2017.08.078, 2017.
4. P. Kossieris, C. Makropoulos, C. Onof, and D. Koutsoyiannis, A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures, Journal of Hydrology, 556, 980–992, doi:10.1016/j.jhydrol.2016.07.015, 2018.

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

1. Thirel, G., V. Andréassian, and C. Perrin, On the need to test hydrological models under changing conditions, Hydrological Sciences Journal, 60(7-8), 1165-1173, doi:10.1080/02626667.2015.1050027, 2015.
2. Biao, I. E., S. Gaba, A. E. Alamou, and A. Afouda, Influence of the uncertainties related to the random component of rainfall inflow in the Ouémé River Basin (Benin, West Africa), International Journal of Current Engineering and Technology, 5(3), 1618-1629, 2015.
3. #Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers using radial basis function metamodels, Proceedings of 9th World Congress EWRA “Water Resources Management in a Changing World: Challenges and Opportunities”, Istanbul, 2015.
4. Christelis, V., and A. Mantoglou, Coastal aquifer management based on the joint use of density-dependent and sharp interface models, Water Resources Management, 30(2), 861-876, doi:10.1007/s11269-015-1195-4, 2016.
5. McMillan, H., A. Montanari, C. Cudennec, H. Savenjie, H. Kreibich, T. Krüger, J. Liu, A. Meija, A. van Loon, H. Aksoy, G. Di Baldassarre, Y. Huang, D. Mazvimavi, M. Rogger, S. Bellie, T. Bibikova, A. Castellarin, Y. Chen, D. Finger, A. Gelfan, D. Hannah, A. Hoekstra, H. Li, S. Maskey, T. Mathevet, A. Mijic, A. Pedrozo Acuña, M. J. Polo, V. Rosales, P. Smith, A. Viglione, V. Srinivasan, E. Toth, R. van Nooyen, and J. Xia, Panta Rhei 2013-2015: Global perspectives on hydrology, society and change, Hydrological Sciences Journal, 61(7), 1174-1191, doi:10.1080/02626667.2016.1159308, 2016.
6. Biao, I. E., A. E. Alamou, and A. Afouda, Improving rainfall–runoff modelling through the control of uncertainties under increasing climate variability in the Ouémé River basin (Benin, West Africa), Hydrological Sciences Journal, 61(16), 2902-2915, doi:10.1080/02626667.2016.1164315, 2016.
7. Pathiraja, S., L. Marshall, A. Sharma, and H. Moradkhani, Detecting non-stationary hydrologic model parameters in a paired catchment system using data assimilation, Advances in Water Resources, 94, 103–119, doi:10.1016/j.advwatres.2016.04.021, 2016.
8. Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers assisted by adaptive metamodelling methods and radial basis functions, Water Resources Management, 30(15), 5845–5859, doi:10.1007/s11269-016-1337-3, 2016.
9. Seibert, J., and I. van Meerveld, Hydrological change modeling: Challenges and opportunities, Hydrological Processes, 30(26), 4966–4971, doi:10.1002/hyp.10999, 2016.
10. Ceola, S., A. Montanari, T. Krueger, F. Dyer, H. Kreibich, I. Westerberg, G. Carr, C. Cudennec, A. Elshorbagy, H. Savenije, P. van der Zaag, D. Rosbjerg, H. Aksoy, F. Viola, G. Petrucci, K. MacLeod, B. Croke, D. Ganora, L. Hermans, M. J. Polo, Z. Xu, M. Borga, J. Helmschrot, E. Toth, R., A. Castellarin, A. Hurford, M. Brilly, A. Viglione, G. Blöschl, M. Sivapalan, A. Domeneghetti, A. Marinelli, and G. Di Baldassarre, Adaptation of water resources systems to changing society and environment: a statement by the International Association of Hydrological Sciences, Hydrological Sciences Journal, 61(16), 2803-2817, doi:10.1080/02626667.2016.1230674, 2016.
11. #Christelis, V., V. Bellos, and G. Tsakiris, Employing surrogate modelling for the calibration of a 2D flood simulation model, Sustainable Hydraulics in the Era of Global Change: Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016), A. S. Erpicum, M. Pirotton, B. Dewals, P. Archambeau (editors), CRC Press, 2016.
12. Nauditt, A., C. Birkel, C. Soulsby, and L. Ribbe, Conceptual modelling to assess the influence of hydroclimatic variability on runoff processes in data scarce semi-arid Andean catchments, Hydrological Sciences Journal, 62(4), 515-532, doi:10.1080/02626667.2016.1240870, 2017.
13. Sophocleous C., and I. Nalbantis, Effect of land use change on flood extent in the inflow stream of lake Paralimni, Cyprus, European Water, 60, 147-153, 2017.
14. Tegos, M., I. Nalbantis, and A. Tegos, Environmental flow assessment through integrated approaches, European Water, 60, 167-173, 2017.
15. Pathiraja, S., D. Anghileri, P. Burlando, A. Sharma, L. Marshall, and H. Moradkhani, Insights on the impact of systematic model errors on data assimilation performance in changing catchments, Advances in Water Resources, 113, 202-222, doi:10.1016/j.advwatres.2017.12.006, 2018.
16. Salas, J. D., J. Obeysekera, and R. M. Vogel, Techniques for assessing water infrastructure for nonstationary extreme events: a review, Hydrological Sciences Journal, 63(3), 325-352, doi:10.1080/02626667.2018.1426858, 2018.
17. Pathiraja, S., D. Anghileri, P. Burlando, A. Sharma, L. Marshall, and H. Moradkhani, Time varying parameter models for catchments with land use change: the importance of model structure, Hydrology and Earth System Sciences, 22, 2903-2919, doi:10.5194/hess-2017-382, 2018.
18. Varouchakis, E. A., K. Yetilmezsoy, and G. P. Karatzas, A decision-making framework for sustainable management of groundwater resources under uncertainty: combination of Bayesian risk approach and statistical tools, Water Policy, wp2019128, doi:10.2166/wp.2019.128, 2019.
19. Sadegh, M., A. AghaKouchak, A. Flores, I. Mallakpour, and M. R. Nikoo, A multi-model nonstationary rainfall-runoff modeling framework: analysis and toolbox, Water Resources Management, doi:10.1007/s11269-019-02283-y, 2019.

Κατηγορίες: Ντετερμινισμός και στοχαστικότητα, Υδρολογικά μοντέλα, Στοχαστική, Αβεβαιότητα