Knowable moments for high-order stochastic characterization and modelling of hydrological processes

D. Koutsoyiannis, Knowable moments for high-order stochastic characterization and modelling of hydrological processes, Hydrological Sciences Journal, 64 (1), 19–33, doi:10.1080/02626667.2018.1556794, 2019.

[doc_id=1930]

[English]

Classical moments, raw or central, express important theoretical properties of probability distributions but can hardly be estimated from typical hydrological samples for orders beyond two. L-moments are better estimated, but they all are of first order in terms of the process of interest; while they are effective in inferring the marginal distribution of stochastic processes, they cannot characterize even secondorder dependence of processes (autocovariance, climacogram, power spectrum) and thus they cannot help in stochastic modelling. Picking from both categories, we introduce knowable (K-) moments, which combine advantages of both classical and L-moments, and enable reliable estimation from samples and effective description of high-order statistics, useful for marginal and joint distributions of stochastic processes. Further, we extend recent stochastic tools by introducing the K-climacogram and the K-climacospectrum, which enable characterization, in terms of univariate functions, of high-order properties of stochastic processes, as well as preservation thereof in simulations.

Full text is only available to the NTUA network due to copyright restrictions

PDF Additional material:

Remarks:

Free e-prints: https://www.tandfonline.com/eprint/vqPitmiKgeNpgbHXxHHR/full?target=10.1080/02626667.2018.1556794

Our works referenced by this work:

1. D. Koutsoyiannis, A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series, Water Resources Research, 36 (6), 1519–1533, doi:10.1029/2000WR900044, 2000.
2. D. Koutsoyiannis, Coupling stochastic models of different time scales, Water Resources Research, 37 (2), 379–391, doi:10.1029/2000WR900200, 2001.
3. D. Koutsoyiannis, A random walk on water, Hydrology and Earth System Sciences, 14, 585–601, doi:10.5194/hess-14-585-2010, 2010.
4. D. Koutsoyiannis, A. Paschalis, and N. Theodoratos, Two-dimensional Hurst-Kolmogorov process and its application to rainfall fields, Journal of Hydrology, 398 (1-2), 91–100, doi:10.1016/j.jhydrol.2010.12.012, 2011.
5. F. Lombardo, E. Volpi, and D. Koutsoyiannis, Rainfall downscaling in time: Theoretical and empirical comparison between multifractal and Hurst-Kolmogorov discrete random cascades, Hydrological Sciences Journal, 57 (6), 1052–1066, 2012.
6. D. Koutsoyiannis, Hydrology and Change, Hydrological Sciences Journal, 58 (6), 1177–1197, doi:10.1080/02626667.2013.804626, 2013.
7. A. Montanari, G. Young, H. H. G. Savenije, D. Hughes, T. Wagener, L. L. Ren, D. Koutsoyiannis, C. Cudennec, E. Toth, S. Grimaldi, G. Blöschl, M. Sivapalan, K. Beven, H. Gupta, M. Hipsey, B. Schaefli, B. Arheimer, E. Boegh, S. J. Schymanski, G. Di Baldassarre, B. Yu, P. Hubert, Y. Huang, A. Schumann, D. Post, V. Srinivasan, C. Harman, S. Thompson, M. Rogger, A. Viglione, H. McMillan, G. Characklis, Z. Pang, and V. Belyaev, “Panta Rhei – Everything Flows”, Change in Hydrology and Society – The IAHS Scientific Decade 2013-2022, Hydrological Sciences Journal, 58 (6), 1256–1275, doi:10.1080/02626667.2013.809088, 2013.
8. F. Lombardo, E. Volpi, D. Koutsoyiannis, and S.M. Papalexiou, Just two moments! A cautionary note against use of high-order moments in multifractal models in hydrology, Hydrology and Earth System Sciences, 18, 243–255, doi:10.5194/hess-18-243-2014, 2014.
9. A. Montanari, and D. Koutsoyiannis, Modeling and mitigating natural hazards: Stationarity is immortal!, Water Resources Research, 50 (12), 9748–9756, doi:10.1002/2014WR016092, 2014.
10. D. Koutsoyiannis, and A. Montanari, Negligent killing of scientific concepts: the stationarity case, Hydrological Sciences Journal, 60 (7-8), 1174–1183, doi:10.1080/02626667.2014.959959, 2015.
11. P. Dimitriadis, and D. Koutsoyiannis, Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes, Stochastic Environmental Research & Risk Assessment, 29 (6), 1649–1669, doi:10.1007/s00477-015-1023-7, 2015.
12. D. Koutsoyiannis, Generic and parsimonious stochastic modelling for hydrology and beyond, Hydrological Sciences Journal, 61 (2), 225–244, doi:10.1080/02626667.2015.1016950, 2016.
13. Y. Markonis, and D. Koutsoyiannis, Scale-dependence of persistence in precipitation records, Nature Climate Change, 6, 399–401, doi:10.1038/nclimate2894, 2016.
14. F. Lombardo, E. Volpi, D. Koutsoyiannis, and F. Serinaldi, A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall, Water Resources Research, 53 (6), 4586–4605, doi:10.1002/2017WR020529, 2017.
15. D. Koutsoyiannis, Entropy production in stochastics, Entropy, 19 (11), 581, doi:10.3390/e19110581, 2017.
16. T. Iliopoulou, S.M. Papalexiou, Y. Markonis, and D. Koutsoyiannis, Revisiting long-range dependence in annual precipitation, Journal of Hydrology, 556, 891–900, doi:10.1016/j.jhydrol.2016.04.015, 2018.
17. P. Dimitriadis, and D. Koutsoyiannis, Stochastic synthesis approximating any process dependence and distribution, Stochastic Environmental Research & Risk Assessment, 32 (6), 1493–1515, doi:10.1007/s00477-018-1540-2, 2018.
18. D. Koutsoyiannis, P. Dimitriadis, F. Lombardo, and S. Stevens, From fractals to stochastics: Seeking theoretical consistency in analysis of geophysical data, Advances in Nonlinear Geosciences, edited by A.A. Tsonis, 237–278, doi:10.1007/978-3-319-58895-7_14, Springer, 2018.

Our works that reference this work:

1. D. Koutsoyiannis, Time’s arrow in stochastic characterization and simulation of atmospheric and hydrological processes, Hydrological Sciences Journal, 64 (9), 1013–1037, doi:10.1080/02626667.2019.1600700, 2019.
2. T. Iliopoulou, and D. Koutsoyiannis, Revealing hidden persistence in maximum rainfall records, Hydrological Sciences Journal, 64 (14), 1673–1689, doi:10.1080/02626667.2019.1657578, 2019.
3. D. Koutsoyiannis, Simple stochastic simulation of time irreversible and reversible processes, Hydrological Sciences Journal, 65 (4), 536–551, doi:10.1080/02626667.2019.1705302, 2020.
4. A. Efstratiadis, I. Tsoukalas, and D. Koutsoyiannis, Generalized storage-reliability-yield framework for hydroelectric reservoirs, Hydrological Sciences Journal, 66 (4), 580–599, doi:10.1080/02626667.2021.1886299, 2021.
5. P. Dimitriadis, D. Koutsoyiannis, T. Iliopoulou, and P. Papanicolaou, A global-scale investigation of stochastic similarities in marginal distribution and dependence structure of key hydrological-cycle processes, Hydrology, 8 (2), 59, doi:10.3390/hydrology8020059, 2021.
6. D. Koutsoyiannis, and P. Dimitriadis, Towards generic simulation for demanding stochastic processes, Sci, 3, 34, doi:10.3390/sci3030034, 2021.
7. D. Koutsoyiannis, and A. Montanari, Bluecat: A local uncertainty estimator for deterministic simulations and predictions, Water Resources Research, 58 (1), e2021WR031215, doi:10.1029/2021WR031215, 2022.
8. D. Koutsoyiannis, Stochastics of Hydroclimatic Extremes - A Cool Look at Risk, Edition 3, ISBN: 978-618-85370-0-2, 391 pages, doi:10.57713/kallipos-1, Kallipos Open Academic Editions, Athens, 2023.

Works that cite this document: View on Google Scholar or ResearchGate

Tagged under: Most recent works, Stochastics