HyetosR: Υπολογιστικό πακέτο σε περιβάλλον R για τον μονοδιάστατο στοχαστικό επιμερισμό της βροχόπτωσης σε λεπτές χρονικές κλίμακες

P. Kossieris, D. Koutsoyiannis, C. Onof, H. Tyralis, and A. Efstratiadis, HyetosR: An R package for temporal stochastic simulation of rainfall at fine time scales, European Geosciences Union General Assembly 2012, Geophysical Research Abstracts, Vol. 14, Vienna, 11718, European Geosciences Union, 2012.

[HyetosR: Υπολογιστικό πακέτο σε περιβάλλον R για τον μονοδιάστατο στοχαστικό επιμερισμό της βροχόπτωσης σε λεπτές χρονικές κλίμακες]

[doc_id=1200]

[Αγγλικά]

Αναπτύχθηκε ένα πλήρες υπολογιστικό πακέτο, σε περιβάλλον προγραμματισμού R, για τον μονοδιάστατη στοχαστική προσομοίωση της βροχόπτωσης σε λεπτές χρονικές κλίμακες. Αυτό περιλαμβάνει διάφορες συναρτήσεις για σειριακή προσομοίωση ή επιμερισμό. Συγκεκριμένα, χρησιμοποιεί το μοντέλο ορθογωνικών παλμών Bartlett-Lewis για τη γέννηση της βροχής και καθιερωμένες τεχνικές επιμερισμού, οι οποίες ανάγουν τις τιμές της λεπτής κλίμακας (ωριαία) ώστε να λαμβάνεται η απαιτούμενη τιμή στην αδρομερέστερη κλίμακα (ημερήσια), χωρίς να επηρεάζεται η στοχαστική δομή που επιβάλλεται από το μοντέλο. Επιπλέον, ενσωματώνεται ένα επαναληπτικό σχήμα που βελτιώνει την επίδοση του μοντέλου Bartlett-Lewis, χωρίς σημαντική αύξηση του υπολογιστικού χρόνου. Τέλος, το πακέτο περιλαμβάνει μια εμπλουτισμένη έκδοση της εξελικτικής μεθόδου βελτιστοποίησης ανόπτησης-απλόκου, για την εκτίμηση των παραμέτρων Bartlett-Lewis. Εισάγονται πολλαπλά κριτήρια βαθμονόμησης, έτσι ώστε να αναπαράγονται τα στατιστικά χαρακτηριστικά της βροχής σε διάφορες χρονικής κλίμακες. Η αναβαθμισμένη έκδοση του πρωτότυπου προγράμματος Υετός (Koutsoyiannis, D., and Onof C., A computer program for temporal stochastic disaggregation using adjusting procedures, European Geophysical Society, 2000) λειτουργεί σε διάφορα επίπεδα και συνδυασμούς αυτών (που εξαρτώνται από τη διαθεσιμότητα των δεδομένων), με πολλαπλές επιλογές και γραφικές δυνατότητες. Το πακέτο, με την ονομασία HyetosR, είναι ελεύθερα διαθέσιμο στην εργαλειοθήκη CRAN.

PDF Πλήρες κείμενο:

Σημείωση:

Ιστοσελίδα λογισμικού: http://itia.ntua.gr/el/softinfo/3/

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

1. #Montesarchio, V., F. Napolitano, E. Ridolfi and L. Ubertini, A comparison of two rainfall disaggregation models, In Numerical Analysis and Applied Mathematics ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, Vol. 1479, 1796-1799, 2012.
2. #Villani, V., L. Cattaneo, A. L. Zollo, and P. Mercogliano, Climate data processing with GIS support: Description of bias correction and temporal downscaling tools implemented in Clime software, Euro-Mediterranean Center on Climate Change (RMCC) Research Papers, RP0262, 2015.
3. Förster, K., F. Hanzer, B. Winter, T. Marke, and U. Strasser, An open-source MEteoroLOgical observation time series DISaggregation Tool (MELODIST v0.1.1), Geoscientific Model Development, 9, 2315-2333, doi:10.5194/gmd-9-2315-2016, 2016.
4. Devkota, S., N. M. Shakya, K. Sudmeier-Rieux, M. Jaboyedoff, C. J. Van Westen, B. G. Mcadoo, and A. Adhikari, Development of monsoonal rainfall intensity-duration-frequency (IDF) relationship and empirical model for data-scarce situations: The case of the Central-Western Hills (Panchase Region) of Nepal, Hydrology, 5(2), 27, doi:10.3390/hydrology5020027, 2018.
5. Cordeiro, M. R. C., J. A. Vanrobaeys, and H. F. Wilson, Long-term weather, streamflow, and water chemistry datasets for hydrological modelling applications at the upper La Salle River watershed in Manitoba, Canada, 6(1), 41-57, Geoscience Data Journal, doi:10.1002/gdj3.67, 2019.
6. #Thomson, H., and L. Chandler, Tailings storage facility landform evolution modelling, Proceedings of the 13th International Conference on Mine Closure, A. B. Fourie & M. Tibbett (eds.), Australian Centre for Geomechanics, Perth, 385-396, 2019.
7. Sun, Y., D. Wendi, D. E., Kim, and S.-Y. Liong, Deriving intensity–duration–frequency (IDF) curves using downscaled in situ rainfall assimilated with remote sensing data, Geoscience Letters, 6(17), doi:10.1186/s40562-019-0147-x, 2019.
8. Oruc, S., I. Yücel, and A. Yılmaz, Investigation of the effect of climate change on extreme precipitation: Capital Ankara case, Teknik Dergi, 33(2), doi:10.18400/tekderg.714980, 2021.
9. Hayder, A. M., and M. Al-Mukhtar, Modelling the IDF curves using the temporal stochastic disaggregation BLRP model for precipitation data in Najaf City, Arabian Journal of Geosciences, 14, 1957, doi:10.1007/s12517-021-08314-6, 2021.
10. Diez-Sierra, J., S. Navas, and M. del Jesus, Neoprene: An open-source Python library for spatial rainfall generation based on the Neyman-Scott process, doi:10.2139/ssrn.4092195, 2022.
11. Cordeiro, M. R. C., K. Liang, H. F. Wilson, J. Vanrobaeys, D. A. Lobb, X. Fang, and J. W. Pomeroy, Simulating the hydrological impacts of land use conversion from annual crop to perennial forage in the Canadian Prairies using the Cold Regions Hydrological Modelling platform, Hydrology and Earth System Sciences, 26, 5917-5931, doi:10.5194/hess-26-5917-2022, 2022.

Κατηγορίες: Εργασίες φοιτητών