Υδρογνώμων - λογισμικό ανοιχτού κώδικα για την ανάλυση υδρολογικών δεδομένων

S. Kozanis, A. Christofides, N. Mamassis, A. Efstratiadis, and D. Koutsoyiannis, Hydrognomon – open source software for the analysis of hydrological data, European Geosciences Union General Assembly 2010, Geophysical Research Abstracts, Vol. 12, Vienna, 12419, doi:10.13140/RG.2.2.21350.83527, European Geosciences Union, 2010.

[Υδρογνώμων - λογισμικό ανοιχτού κώδικα για την ανάλυση υδρολογικών δεδομένων]



Ο Υδρογνώμων είναι ένα εργαλείο λογισμικού για την επεξεργασία υδρολογικών δεδομένων. Πρόκειται για μια εφαρμογή ανοιχτού κώδικα που τρέχει σε περιβάλλον Microsoft Windows και αποτελεί τμήμα του πλαισίου openmeteo.org. Τα δεδομένα εισάγονται μέσω τυποποιημένων αρχείων κειμένου, λογιστικών φύλλων ή μέσω πληκτρολόγησης. Στις τυπικές επεξεργασίες υδρολογικών δεδομένων περιλαμβάνονται τεχνικές συνάθροισης και κανονικοποίησης χρονικού βήματος, παρεμβολής, ανάλυσης παλινδρόμησης και συμπλήρωσης ελλειπουσών τιμών, έλεγχοι εγκυρότητας, φίλτρα δεδομένων, οπτικοποίηση χρονοσειρών σε πίνακες και διαγράμματα, κτλ. Υποστηρίζονται διάφορα χρονικά βήματα, από τη λεπτή κλίμακα λεπτού ως την κλίμακα δεκαετίας. Επιπλέον, υποστηρίζονται ειδικές περιπτώσεις ακανόνιστων χρονικών βημάτων και ολισθήσεων. Το πρόγραμμα περιλαμβάνει ακόμη συνήθεις υδρολογικές εφαρμογές, όπως μοντέλα εξατμοδιαπνοής, αναλύσεις δεδομένων στάθμης-παροχής, ελέγχους ομογένειας, επιφανειακή ολοκλήρωση σημειακών χρονοσειρών, επεξεργασίες υδρομετρικών δειγμάτων, καθώς και αδιαμέριστα υδρολογικά μοντέλα, με δυνατότητες αυτόματης βαθμονόμησης. Η έμφαση εδώ δίνεται στη στατιστική συνιστώσα του Υδρογνώμονα, που παρέχει εργαλεία για διερεύνηση δεδομένων, προσαρμογή συναρτήσεων κατανομής, στατιστικές προγνώσεις, προσομοίωση Monte-Carlo, προσδιορισμό ορίων εμπιστοσύνης, ανάλυση ακραίων τιμών και κατασκευή όμβριων καμπυλών (σχέσεις έντασης-διάρκειας-συχνότητας βροχής). Ο Υδρογνώμων είναι διαθέσιμος για ανάκτηση στη διεύθυνση http://hydrognomon.org/.

PDF Πλήρες κείμενο:

Βλέπε επίσης: http://dx.doi.org/10.13140/RG.2.2.21350.83527

Εργασίες μας που αναφέρονται σ' αυτή την εργασία:

1. A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, A parametric model for potential evapotranspiration estimation based on a simplified formulation of the Penman-Monteith equation, Evapotranspiration - An Overview, edited by S. Alexandris, 143–165, doi:10.5772/52927, InTech, 2013.
2. A. Tegos, N. Malamos, and D. Koutsoyiannis, A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman-Monteith formula, Journal of Hydrology, 524, 708–717, doi:10.1016/j.jhydrol.2015.03.024, 2015.
3. A. Tegos, H. Tyralis, D. Koutsoyiannis, and K. H. Hamed, An R function for the estimation of trend signifcance under the scaling hypothesis- application in PET parametric annual time series, Open Water Journal, 4 (1), 66–71, 6, 2017.
4. E. Dodangeh, K. Shahedi, K. Solaimani, and P. Kossieris, Usability of the BLRP model for hydrological applications in arid and semi-arid regions with limited precipitation data, Modeling Earth Systems and Environment, 2017.
5. N. Malamos, D. Koulouris, I. L. Tsirogiannis, and D. Koutsoyiannis, Evaluation of BOLAM fine grid weather forecasts with emphasis on hydrological applications, Hydrology, 10 (8), 162, doi:10.3390/hydrology10080162, 2023.

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

1. #Sebastianelli, S., M. Giglioni, C. Mineo, and S. Magnald, On the hydrologic-hydraulic revaluation of large dams, International Conference of Numerical Analysis and Applied Mathematics 2015 (ICNAAM 2015), 1738, 430003-1–430003-4, doi:10.1063/1.4952216, 2016.
2. #Mineo, C., S. Sebastianelli, L. Marinucci, and F. Russo, Assessment of the watershed DEM mesh size influence on a large dam design hydrograph, AIP Conference Proceedings, 1738, 430003, 2016.
3. Tsitroulis, I., K. Voudouris, A. Vasileiou, C. Mattas, M. Sapountzis, and F. Maris, Flood hazard assessment and delimitation of the likely flood hazard zones of the upper part in Gallikos river basin, Bulletin of the Geological Society of Greece, 50(2), 995-1005, doi:10.12681/bgsg.11804, 2016.
4. López J. J., O. Delgado, and M. A. Campo, Determination of the IDF curves in Igueldo-San Sebastián. Comparison of different methods, Ingeniería del Agua, 22(4), 209-223, doi:10.4995/Ia.2018.9480, 2018.
5. Nyaupane, N., B. Thakur, A. Kalra, and S. Ahmad, Evaluating future flood scenarios using CMIP5 climate projections, Water, 10, 1866, doi:10.3390/w10121866, 2018.
6. Vargas, M. M., S. Beskow, T. L. Caldeira, L. de Lima Corrêa, and Z. Almeida da Cunha, SYHDA – System of Hydrological Data Acquisition and Analysis, Brazilian Journal of Water Resources, 24, e11, doi:10.1590/2318-0331.241920180152, 2019.
7. Houessou-Dossou, E. A. Y., J. M. Gathenya, M. Njuguna, and Z. A. Gariy, Flood frequency analysis using participatory GIS and rainfall data for two stations in Narok Town, Kenya, Hydrology, 6(4), 90, doi:10.3390/hydrology6040090, 2019.
8. López Díez, A., P. Máyer Suárez, J. Díaz Pacheco, and P. Dorta Antequera, Rainfall and flooding in coastal tourist areas of the Canary Islands (Spain), Atmosphere, 10(12), 809, doi:10.3390/atmos10120809, 2019.
9. Pamirbek, M., X. Chen, S. Aher, A. Salamat, P. Deshmukh, and C. Temirbek, Analysis of discharge variability in the Naryn river basin, Kyrgyzstan, Hydrospatial Analysis, 3(2), 90-106, doi:10.21523/gcj3.19030204, 2019.
10. Tadesse, M., Spatial and temporal variability analysis and mapping of reference evapotranspiration for Jimma Zone, Southwestern Ethiopia, International Journal of Natural Resource Ecology and Management, 6(3), 108-115, doi:10.11648/j.ijnrem.20210603.12, 2021.
11. Hayder, A. M., and M. Al-Mukhtar, Modelling the IDF curves using the temporal stochastic disaggregation BLRP model for precipitation data in Najaf City, Arabian Journal of Geosciences, 14, 1957, doi:10.1007/s12517-021-08314-6, 2021.
12. Bekri, E. S., P. Economou, P. C. Yannopoulos, and A. C. Demetracopoulos, Reassessing existing reservoir supply capacity and management resilience under climate change and sediment deposition, Water, 13(13), 1819, doi:10.3390/w13131819, 2021.
13. #Ridzuan, N. A. M., N. M. Noor, N. A. A. A. Rahim, I. A. M. Jafri, and D. Gyeorgy, Spatio-temporal variation of particulate matter (PM10) during high particulate event (HPE) in Malaysia, In: Mohamed Noor N., Sam S.T., Abdul Kadir A. (eds.), Proceedings of the 3rd International Conference on Green Environmental Engineering and Technology, Lecture Notes in Civil Engineering, 214, Springer, Singapore, doi:10.1007/978-981-16-7920-9_6, 2022.
14. Tegos, A., A. Ziogas, V. Bellos, and A. Tzimas, Forensic hydrology: a complete reconstruction of an extreme flood event in data-scarce area, Hydrology, 9(5), 93, doi:10.3390/hydrology9050093, 2022.
15. Nikas-Nasioulis, I., M. M. Bertsiou, and E. Baltas, Investigation of energy, water, and electromobility through the development of a hybrid renewable energy system on the island of Kos, WSEAS Transactions on Environment and Development, 18, 543-554, doi:10.37394/232015.2022.18.53, 2022.
16. Vangelis, H., I. Zotou, I. M. Kourtis, V. Bellos, and V. A. Tsihrintzis, Relationship of rainfall and flood return periods through hydrologic and hydraulic modeling, Water, 14(22), 3618, doi:10.3390/w14223618, 2022.
17. Reyes Flores, C. A., H. Ferreira Albuquerque Cunha, and A. Cavalcanti da Cunha, Hydrometeorological characterization and estimation of landfill leachate generation in the Eastern Amazon/Brazil, PeerJ, 11, e14686, doi:10.7717/peerj.14686, 2023.
18. Vargas, M. M., S. Beskow, M. M. de Moura, Z. A. da Cunha, T. L. C. Beskow, and J. P. de Morais da Silveira, GAM-IDF: a web tool for fitting IDF equations from daily rainfall data, International Journal of Hydrology Science and Technology, 16(1), 37-60, doi:10.1504/IJHST.2023.131882, 2023.
19. Carrasco, G. A., L. Villegas, J. Fernandez, J. Vallejos, and C. Idrogo, Assessment of parameters of the generalized extreme value distribution in rainfall of the Peruvian North, Revista Politécnica, 52(2), 99-112, doi:10.33333/rp.vol52n2.10, 2023.
20. Arinaitwe, M., and J. Okedi, IoT-based data and analytic hierarchy process to map groundwater recharge with stormwater, Water Science and Technology, wst2024017, doi:10.2166/wst.2024.017, 2024.

Κατηγορίες: Λογισμικό