Στοχαστικό περιοδικό μοντέλο αυτοπαλινδρόμησης για κάθε κατανομή (SPARTA): Μοντελοποίηση και προσομοίωση κυκλοστάσιμων διεργασιών με αυθαίρετες περιθώριες κατανομές

I. Tsoukalas, A. Efstratiadis, and C. Makropoulos, Stochastic periodic autoregressive to anything (SPARTA): Modelling and simulation of cyclostationary processes with arbitrary marginal distributions, Water Resources Research, 54 (1), 161–185, WRCR23047, doi:10.1002/2017WR021394, 2018.

[Στοχαστικό περιοδικό μοντέλο αυτοπαλινδρόμησης για κάθε κατανομή (SPARTA): Μοντελοποίηση και προσομοίωση κυκλοστάσιμων διεργασιών με αυθαίρετες περιθώριες κατανομές]

[doc_id=1746]

[Αγγλικά]

Τα στοχαστικά μοντέλα στην υδρολογία παραδοσιακά αποσκοπούν στο να αναπαράξουν τα εμπειρικά στατιστικά χαρακτηριστικά των παρατηρημένων δεδομένων παρά κάποιο συγκεκριμένο μοντέλο κατανομής, το οποίο επιχειρεί να περιγράψει τη συνήθως μη γκαουσιανή στατιστική συμπεριφορά των αντίστοιχων διεργασιών. Το μοντέλο SPARTA (Stochastic Periodic AutoRegressive To Anything) παρέχει μια εναλλακτική και πρωτότυπη προσέγγιση, η οποία επιτρέπει τη ρητή περιγραφή κάθε διεργασίας ενδιαφέροντος μέσω οποιουδήποτε μοντέλου κατανομής, ενώ ταυτόχρονα δημιουργεί πρότυπα εξάρτησης που δεν μπορούν να απεικονιστούν πλήρως μέσω των τυπικών γραμμικών στοχαστικών σχημάτων. Ακρογωνιαίος λίθος της προτεινόμενης προσέγγισης είναι το μοντέλο από κοινού κατανομής Nataf, που σχετίζεται με τη γκαουσιανή copula, και συνδυάζεται με περιοδικές γκουασιανές ανελίξεις αυτοπαλινδρόμησης. Προκειμένου να αποκτήσουμε την επιθυμητή στοχαστική δομή, αναπτύξαμε επίσης έναν υπολογιστικά απλό και αποδοτικό αλγόριθμο, βασισμένο σε μια υβριδική διαδικασία Monte-Carlo, που χρησιμοποιείται για να προσεγγίσει τους απαιτούμενους ισοδύναμους συντελεστές συσχέτισης. Τα θεωρητικά και πρακτικά πλεονεκτήματα της προτεινόμενης μεθόδου, αντιπαραβαλλόμενα με τα αποτελέσματα ευρέως χρησιμοποιούμενων στοχαστικών μοντέλων, αναδεικνύονται μέσω πραγματικών και υποθετικών εφαρμογών στοχαστικής προσομοίωσης, που αφορούν τόσο σε μονομεταβλητές όσο και πολυμεταβλητές χρονοσειρές.

Το πλήρες κείμενο διατίθεται μόνο στο δίκτυο του ΕΜΠ λόγω νομικών περιορισμών

PDF Συμπληρωματικό υλικό:

Εργασίες μας στις οποίες αναφέρεται αυτή η εργασία:

1. D. Koutsoyiannis, and A. Manetas, Simple disaggregation by accurate adjusting procedures, Water Resources Research, 32 (7), 2105–2117, doi:10.1029/96WR00488, 1996.
2. D. Koutsoyiannis, Optimal decomposition of covariance matrices for multivariate stochastic models in hydrology, Water Resources Research, 35 (4), 1219–1229, doi:10.1029/1998WR900093, 1999.
3. D. Koutsoyiannis, A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series, Water Resources Research, 36 (6), 1519–1533, doi:10.1029/2000WR900044, 2000.
4. D. Koutsoyiannis, G. Karavokiros, A. Efstratiadis, N. Mamassis, A. Koukouvinos, and A. Christofides, A decision support system for the management of the water resource system of Athens, Physics and Chemistry of the Earth, 28 (14-15), 599–609, doi:10.1016/S1474-7065(03)00106-2, 2003.
5. D. Koutsoyiannis, Uncertainty, entropy, scaling and hydrological stochastics, 1, Marginal distributional properties of hydrological processes and state scaling, Hydrological Sciences Journal, 50 (3), 381–404, doi:10.1623/hysj.50.3.381.65031, 2005.
6. D. Koutsoyiannis, H. Yao, and A. Georgakakos, Medium-range flow prediction for the Nile: a comparison of stochastic and deterministic methods, Hydrological Sciences Journal, 53 (1), 142–164, doi:10.1623/hysj.53.1.142, 2008.
7. S.M. Papalexiou, D. Koutsoyiannis, and A. Montanari, Can a simple stochastic model generate rich patterns of rainfall events?, Journal of Hydrology, 411 (3-4), 279–289, 2011.
8. S.M. Papalexiou, and D. Koutsoyiannis, Entropy based derivation of probability distributions: A case study to daily rainfall, Advances in Water Resources, 45, 51–57, doi:10.1016/j.advwatres.2011.11.007, 2012.
9. A. Efstratiadis, Y. Dialynas, S. Kozanis, and D. Koutsoyiannis, A multivariate stochastic model for the generation of synthetic time series at multiple time scales reproducing long-term persistence, Environmental Modelling and Software, 62, 139–152, doi:10.1016/j.envsoft.2014.08.017, 2014.
10. P. Kossieris, C. Makropoulos, C. Onof, and D. Koutsoyiannis, A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures, Journal of Hydrology, 556, 980–992, doi:10.1016/j.jhydrol.2016.07.015, 2018.

Εργασίες μας που αναφέρονται σ' αυτή την εργασία:

1. I. Tsoukalas, C. Makropoulos, and A. Efstratiadis, Stochastic simulation of periodic processes with arbitrary marginal distributions, 15th International Conference on Environmental Science and Technology (CEST2017), Rhodes, Global Network on Environmental Science and Technology, 2017.
2. P. Dimitriadis, and D. Koutsoyiannis, Stochastic synthesis approximating any process dependence and distribution, Stochastic Environmental Research & Risk Assessment, 32 (6), 1493–1515, doi:10.1007/s00477-018-1540-2, 2018.
3. I. Tsoukalas, S.M. Papalexiou, A. Efstratiadis, and C. Makropoulos, A cautionary note on the reproduction of dependencies through linear stochastic models with non-Gaussian white noise, Water, 10 (6), 771, doi:10.3390/w10060771, 2018.
4. I. Tsoukalas, C. Makropoulos, and D. Koutsoyiannis, Simulation of stochastic processes exhibiting any-range dependence and arbitrary marginal distributions, Water Resources Research, 54 (11), 9484–9513, doi:10.1029/2017WR022462, 2018.
5. P. Kossieris, and C. Makropoulos, Exploring the statistical and distributional properties of residential water demand at fine time scales, Water, 10 (10), 1481, doi:10.3390/w10101481, 2018.
6. C. Rebolho, V. Andréassian, I. Tsoukalas, et A. Efstratiadis, La crue du Loing de Juin 2016 était-elle exceptionnelle?, De la prévision des crues à la gestion de crise, Avignon, Société Hydrotechnique de France, 2018.
7. I. Tsoukalas, A. Efstratiadis, and C. Makropoulos, Building a puzzle to solve a riddle: A multi-scale disaggregation approach for multivariate stochastic processes with any marginal distribution and correlation structure, Journal of Hydrology, 575, 354–380, doi:10.1016/j.jhydrol.2019.05.017, 2019.
8. P. Kossieris, I. Tsoukalas, C. Makropoulos, and D. Savic, Simulating marginal and dependence behaviour of water demand processes at any fine time scale, Water, 11 (5), 885, doi:10.3390/w11050885, 2019.

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

1. Papalexiou, S. M., Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency, Advances in Water Resources, 115, 234-252, doi:10.1016/j.advwatres.2018.02.013, 2018.
2. Brunner, M. I., A. Bárdossy, and R. Furrer, Technical note: Stochastic simulation of streamflow time series using phase randomization, Hydrology and Earth System Sciences, 23, 3175-3187, doi:10.5194/hess-23-3175-2019, 2019.

Κατηγορίες: Πιο πρόσφατες εργασίες, Στοχαστική