On the long-range dependence properties of annual precipitation using a global network of instrumental measurements

H. Tyralis, P. Dimitriadis, D. Koutsoyiannis, P.E. O’Connell, K. Tzouka, and T. Iliopoulou, On the long-range dependence properties of annual precipitation using a global network of instrumental measurements, Advances in Water Resources, doi:10.1016/j.advwatres.2017.11.010, 2017.

[doc_id=1761]

[English]

The long-range dependence (LRD) is considered an inherent property of geophysical processes, whose presence increases uncertainty. Here we examine the spatial behaviour of LRD in precipitation by regressing the Hurst parameter estimate of mean annual precipitation instrumental data which span from 1916-2015 and cover a big area of the earth’s surface on location characteristics of the instrumental data stations. Furthermore, we apply the Mann-Kendall test under the LRD assumption (MKt-LRD) to reassess the significance of observed trends. To summarize the results, the LRD is spatially clustered, it seems to depend mostly on the location of the stations, while the predictive value of the regression model is good. Thus when investigating for LRD properties we recommend that the local characteristics should be considered. The application of the MKt-LRD suggests that no significant monotonic trend appears in global precipitation, excluding the climate type D (snow) regions in which positive significant trends appear.

Full text is only available to the NTUA network due to copyright restrictions

PDF Additional material:

Remarks:

Supplementary information files are hosted at: https://doi.org/10.6084/m9.figshare.4892447.v1

Our works referenced by this work:

1. D. Koutsoyiannis, The Hurst phenomenon and fractional Gaussian noise made easy, Hydrological Sciences Journal, 47 (4), 573–595, doi:10.1080/02626660209492961, 2002.
2. D. Koutsoyiannis, Climate change, the Hurst phenomenon, and hydrological statistics, Hydrological Sciences Journal, 48 (1), 3–24, doi:10.1623/hysj.48.1.3.43481, 2003.
3. D. Koutsoyiannis, Statistics of extremes and estimation of extreme rainfall, 2, Empirical investigation of long rainfall records, Hydrological Sciences Journal, 49 (4), 591–610, 2004.
4. D. Koutsoyiannis, Nonstationarity versus scaling in hydrology, Journal of Hydrology, 324, 239–254, 2006.
5. D. Koutsoyiannis, and A. Montanari, Statistical analysis of hydroclimatic time series: Uncertainty and insights, Water Resources Research, 43 (5), W05429, doi:10.1029/2006WR005592, 2007.
6. D. Koutsoyiannis, A random walk on water, Hydrology and Earth System Sciences, 14, 585–601, doi:10.5194/hess-14-585-2010, 2010.
7. H. Tyralis, and D. Koutsoyiannis, Simultaneous estimation of the parameters of the Hurst-Kolmogorov stochastic process, Stochastic Environmental Research & Risk Assessment, 25 (1), 21–33, 2011.
8. S.M. Papalexiou, and D. Koutsoyiannis, Battle of extreme value distributions: A global survey on extreme daily rainfall, Water Resources Research, 49 (1), 187–201, doi:10.1029/2012WR012557, 2013.
9. H. Tyralis, and D. Koutsoyiannis, A Bayesian statistical model for deriving the predictive distribution of hydroclimatic variables, Climate Dynamics, 42 (11-12), 2867–2883, doi:10.1007/s00382-013-1804-y, 2014.
10. D. Koutsoyiannis, and A. Montanari, Negligent killing of scientific concepts: the stationarity case, Hydrological Sciences Journal, 60 (7-8), 1174–1183, doi:10.1080/02626667.2014.959959, 2015.
11. Y. Markonis, and D. Koutsoyiannis, Scale-dependence of persistence in precipitation records, Nature Climate Change, doi:10.1038/NCLIMATE2894, 2015.
12. P.E. O’Connell, D. Koutsoyiannis, H. F. Lins, Y. Markonis, A. Montanari, and T.A. Cohn, The scientific legacy of Harold Edwin Hurst (1880 – 1978), Hydrological Sciences Journal, 61 (9), 1571–1590, doi:10.1080/02626667.2015.1125998, 2016.
13. T. Iliopoulou, S.M. Papalexiou, Y. Markonis, and D. Koutsoyiannis, Revisiting long-range dependence in annual precipitation, Journal of Hydrology, doi:10.1016/j.jhydrol.2016.04.015, 2016.
14. A. Tegos, H. Tyralis, D. Koutsoyiannis, and K. H. Hamed, An R function for the estimation of trend signifcance under the scaling hypothesis- application in PET parametric annual time series, Open Water Journal, 4 (1), 66–71, 6, 2017.

Works that cite this document: View on Google Scholar or ResearchGate

Tagged under: Hurst-Kolmogorov dynamics, Rainfall models, Papers initially rejected