Navigation

Climate change, the Hurst phenomenon, and hydrological statistics

D. Koutsoyiannis, Climate change, the Hurst phenomenon, and hydrological statistics, Hydrological Sciences Journal, 48 (1), 3–24, doi:10.1623/hysj.48.1.3.43481, 2003.

[doc_id=537]

[English]

The intensive research of the recent years on climate change has led to the strong conclusion that climate has always, through the planet history, changed irregularly on all time scales. Climate changes are closely related to the Hurst phenomenon, which has been detected in many long hydroclimatic time series and is stochastically equivalent with a simple scaling behaviour of climate variability over timescale. The climate variability, anthropogenic or natural, increases the uncertainty of the hydrologic processes. It is shown that hydrologic statistics, the branch of hydrology that deals with uncertainty, in its current state is not consistent with the varying character of climate. Typical statistics used in hydrology such as means, variances, cross- and auto-correlations and Hurst coefficients, and the variability thereof, are revisited under the hypothesis of a varying climate following a simple scaling law, and new estimators are studied which in many cases differ dramatically from the classic ones. The new statistical framework is applied to real-world examples for typical tasks such as estimation and hypothesis testing where again the results depart significantly from those of the classic statistics.

PDF Full text (409 KB)

PDF Additional material:

See also: http://dx.doi.org/10.1623/hysj.48.1.3.43481

Remarks:

Alternative names for Hurst phenomenon are Hurst effect, Joseph effect, Long term persistence, Long range dependence, Scaling behaviour (in time), Multi-scale fluctuation, Hurst-Kolmogorov pragmaticity, etc.

Erratum: The runoff of the Boeotikos Kephisos catchment (Fig. 3, p. 7, and p. 21, first full paragraph) should be corrected to volume units, i.e. cubic hectometers (instead of millimeters).

Our works referenced by this work:

1. I. Nalbantis, N. Mamassis, et D. Koutsoyiannis, Le phénomène recent de sécheresse persistante et l' alimentation en eau de la cité d' Athènes, Publications de l'Association Internationale de Climatologie, 6eme Colloque International de Climatologie, edité par P. Maheras, Thessaloniki, 6, 123–132, doi:10.13140/RG.2.1.4430.1041, Association Internationale de Climatologie, Aix-en-Provence Cedex, France, 1993.
2. D. Koutsoyiannis, A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series, Water Resources Research, 36 (6), 1519–1533, 2000.
3. D. Koutsoyiannis, The Hurst phenomenon and fractional Gaussian noise made easy, Hydrological Sciences Journal, 47 (4), 573–595, doi:10.1080/02626660209492961, 2002.

Our works that reference this work:

1. D. Koutsoyiannis, Uncertainty, entropy, scaling and hydrological stochastics, 2, Time dependence of hydrological processes and time scaling, Hydrological Sciences Journal, 50 (3), 405–426, doi:10.1623/hysj.50.3.405.65028, 2005.
2. A. Langousis, and D. Koutsoyiannis, A stochastic methodology for generation of seasonal time series reproducing overyear scaling behaviour, Journal of Hydrology, 322, 138–154, 2006.
3. D. Koutsoyiannis, A toy model of climatic variability with scaling behaviour, Journal of Hydrology, 322, 25–48, 2006.
4. D. Koutsoyiannis, Nonstationarity versus scaling in hydrology, Journal of Hydrology, 324, 239–254, 2006.
5. D. Koutsoyiannis, A. Efstratiadis, and K. Georgakakos, Uncertainty assessment of future hydroclimatic predictions: A comparison of probabilistic and scenario-based approaches, Journal of Hydrometeorology, 8 (3), 261–281, doi:10.1175/JHM576.1, 2007.
6. D. Koutsoyiannis, and A. Montanari, Statistical analysis of hydroclimatic time series: Uncertainty and insights, Water Resources Research, 43 (5), W05429, doi:10.1029/2006WR005592, 2007.
7. D. Koutsoyiannis, H. Yao, and A. Georgakakos, Medium-range flow prediction for the Nile: a comparison of stochastic and deterministic methods, Hydrological Sciences Journal, 53 (1), 142–164, doi:10.1623/hysj.53.1.142, 2008.
8. D. Koutsoyiannis, A. Efstratiadis, N. Mamassis, and A. Christofides, On the credibility of climate predictions, Hydrological Sciences Journal, 53 (4), 671–684, 2008.
9. D. Koutsoyiannis, C. Makropoulos, A. Langousis, S. Baki, A. Efstratiadis, A. Christofides, G. Karavokiros, and N. Mamassis, Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability, Hydrology and Earth System Sciences, 13, 247–257, doi:10.5194/hess-13-247-2009, 2009.
10. D. Koutsoyiannis, A. Montanari, H. F. Lins, and T.A. Cohn, Climate, hydrology and freshwater: towards an interactive incorporation of hydrological experience into climate research—DISCUSSION of “The implications of projected climate change for freshwater resources and their management”, Hydrological Sciences Journal, 54 (2), 394–405, doi:10.1623/hysj.54.2.394, 2009.
11. G. G. Anagnostopoulos, D. Koutsoyiannis, A. Christofides, A. Efstratiadis, and N. Mamassis, A comparison of local and aggregated climate model outputs with observed data, Hydrological Sciences Journal, 55 (7), 1094–1110, doi:10.1080/02626667.2010.513518, 2010.
12. H. Tyralis, and D. Koutsoyiannis, Simultaneous estimation of the parameters of the Hurst-Kolmogorov stochastic process, Stochastic Environmental Research & Risk Assessment, 25 (1), 21–33, 2011.
13. D. Koutsoyiannis, and A. Langousis, Precipitation, Treatise on Water Science, edited by P. Wilderer and S. Uhlenbrook, 2, 27–78, Academic Press, Oxford, 2011.
14. D. Koutsoyiannis, Hurst-Kolmogorov dynamics and uncertainty, Journal of the American Water Resources Association, 47 (3), 481–495, doi:10.1111/j.1752-1688.2011.00543.x, 2011.
15. D. Koutsoyiannis, A. Paschalis, and N. Theodoratos, Two-dimensional Hurst-Kolmogorov process and its application to rainfall fields, Journal of Hydrology, 398 (1-2), 91–100, 2011.
16. S.M. Papalexiou, D. Koutsoyiannis, and A. Montanari, Can a simple stochastic model generate rich patterns of rainfall events?, Journal of Hydrology, 411 (3-4), 279–289, 2011.
17. Y. Markonis, and D. Koutsoyiannis, Climatic variability over time scales spanning nine orders of magnitude: Connecting Milankovitch cycles with Hurst–Kolmogorov dynamics, Surveys in Geophysics, 34 (2), 181–207, doi:10.1007/s10712-012-9208-9, 2013.
18. D. Koutsoyiannis, Hydrology and Change, Hydrological Sciences Journal, 58 (6), 1177–1197, doi:10.1080/02626667.2013.804626, 2013.
19. C. Ioannou, G. Tsekouras, A. Efstratiadis, and D. Koutsoyiannis, Stochastic analysis and simulation of hydrometeorological processes for optimizing hybrid renewable energy systems, Proceedings of the 2nd Hellenic Concerence on Dams and Reservoirs, Athens, Zappeion, doi:10.13140/RG.2.1.3787.0327, Hellenic Commission on Large Dams, 2013.
20. H. Tyralis, and D. Koutsoyiannis, A Bayesian statistical model for deriving the predictive distribution of hydroclimatic variables, Climate Dynamics, 42 (11-12), 2867–2883, doi:10.1007/s00382-013-1804-y, 2014.
21. G. Tsekouras, and D. Koutsoyiannis, Stochastic analysis and simulation of hydrometeorological processes associated with wind and solar energy, Renewable Energy, 63, 624–633, doi:10.1016/j.renene.2013.10.018, 2014.
22. C. Pappas, S.M. Papalexiou, and D. Koutsoyiannis, A quick gap-filling of missing hydrometeorological data, Journal of Geophysical Research-Atmospheres, 119 (15), 9290–9300, doi:10.1002/2014JD021633, 2014.
23. A. Efstratiadis, Y. Dialynas, S. Kozanis, and D. Koutsoyiannis, A multivariate stochastic model for the generation of synthetic time series at multiple time scales reproducing long-term persistence, Environmental Modelling and Software, 62, 139–152, doi:10.1016/j.envsoft.2014.08.017, 2014.
24. P. Dimitriadis, and D. Koutsoyiannis, Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes, Stochastic Environmental Research & Risk Assessment, 29 (6), 1649–1669, doi:10.1007/s00477-015-1023-7, 2015.
25. Y. Markonis, and D. Koutsoyiannis, Scale-dependence of persistence in precipitation records, Nature Climate Change, doi:10.1038/NCLIMATE2894, 2015.
26. D. Koutsoyiannis, Generic and parsimonious stochastic modelling for hydrology and beyond, Hydrological Sciences Journal, 61 (2), 225–244, doi:10.1080/02626667.2015.1016950, 2016.
27. P. Dimitriadis, D. Koutsoyiannis, and P. Papanicolaou, Stochastic similarities between the microscale of turbulence and hydrometeorological processes, Hydrological Sciences Journal, 61 (9), 1623–1640, doi:10.1080/02626667.2015.1085988, 2016.
28. P.E. O’Connell, D. Koutsoyiannis, H. F. Lins, Y. Markonis, A. Montanari, and T.A. Cohn, The scientific legacy of Harold Edwin Hurst (1880 – 1978), Hydrological Sciences Journal, 61 (9), 1571–1590, doi:10.1080/02626667.2015.1125998, 2016.
29. T. Iliopoulou, S.M. Papalexiou, Y. Markonis, and D. Koutsoyiannis, Revisiting long-range dependence in annual precipitation, Journal of Hydrology, doi:10.1016/j.jhydrol.2016.04.015, 2016.
30. P. Kossieris, C. Makropoulos, C. Onof, and D. Koutsoyiannis, A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures, Journal of Hydrology, doi:10.1016/j.jhydrol.2016.07.015, 2016.
31. Y. Markonis, S. C. Batelis, Y. Dimakos, E. C. Moschou, and D. Koutsoyiannis, Temporal and spatial variability of rainfall over Greece, Theoretical and Applied Climatology, doi:10.1007/s00704-016-1878-7, 2016.
32. A. Tegos, H. Tyralis, D. Koutsoyiannis, and K. H. Hamed, An R function for the estimation of trend signifcance under the scaling hypothesis- application in PET parametric annual time series, Open Water Journal, 4 (1), 66–71, 6, 2017.

Works that cite this document: View on Google Scholar or ResearchGate

Other works that reference this work (this list might be obsolete):

1. Sakalauskiene, G., The Hurst Phenomenon in Hydrology, Environmental Research, Engineering and Management, 3(25), 16-20, 2003.
2. Kallache, M., H.W. Rust and J. Kropp, Trend assessment: applications for hydrology and climate research, Nonlinear Processes in Geophysics, 12(2), 201-210, 2005.
3. Gyasi-Agyei, Y., Stochastic disaggregation of daily rainfall into one-hour time scale, Journal of Hydrology, 309, 178-190, 2005.
4. Cunderlik, J.M., and S.P. Simonovic, Hydrological extremes in a southwestern Ontario river basin under future climate conditions, Hydrological Sciences Journal, 50 (4), 631-654, 2005.
5. Cohn, T.A., and H.F. Lins, Nature's style: Naturally trendy, Geophysical Research Letters, 32(23), L23402, 2005.
6. #Gottschalk, L., Methods of analyzing variability, Encyclopedia of Hydrological Sciences, Part 1. Theory, Organization and Scale, DOI: 10.1002/0470848944.hsa006, Wiley, 2005.
7. Wang, G., T. Jiang and G. Chen, Structure and long-term memory of discharge series in Yangtze River, Acta Geographica Sinica, 61(1), 47-56, 2006.
8. #Kidson, R.L., K.S. Richards and P.A. Carling, Power-law extreme flood frequency, Geological Society Special Publication, (261), 141-153, 2006.
9. Wong, H., W.-c. Ip, R. Zhang and J. Xia, Non-parametric time series models for hydrological forecasting, Journal of Hydrology, 332(3-4), 337-347, 2007.
10. Pujol, N., L. Neppel and R. Sabatier, Regional tests for trend detection in maximum precipitation series in the French Mediterranean region, Hydrological Sciences Journal, 52(5), 956-973, 2007.
11. Mackey, R., Rhodes Fairbridge and the idea that the solar system regulates the Earth's climate, Journal of Coastal Research, Special Issue 50, Proceedings ICS2007, 955- 968, 2007.
12. Hamed, K.H., Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis, Journal of Hydrology, 349(3-4), 350-363, 2008.
13. Alvarez-Ramirez, J., J. Alvarez, L. Dagdug, E. Rodriguez and J. Carlos Echeverria, Long-term memory dynamics of continental and oceanic monthly temperatures in the recent 125 years, Physica A, 387(14), 3629-3640, 2008.
14. Lins, H.F., Challenges to hydrological observations, WMO Bulletin, 57(1), 55-58, 2008.
15. Khaliq, M.N., T.B.M.J. Ouarda, P. Gachon and L. Sushama, Temporal evolution of low-flow regimes in Canadian rivers, Water Resources Research, 44 (8), W08436, doi:10.1029/2007WR006132, 2008.
16. Rust, H.W., O. Mestre and V.K.C. Venema, Fewer jumps, less memory: Homogenized temperature records and long memory, Journal of Geophysical Research-Atmospheres, 113(D19), D19110, DOI: 10.1029/2008JD009919, 2008.
17. Kim, B.-S., B.-K. Kim, M.-S. Kyung and H.-S. Kim, Impact Assessment of Climate Change on Extreme Rainfall and I-D-F Analysis, Journal of Korea Water Resources Association, 41 (4), 379-394, 2008.
18. #Padmanabhan, G., S. L. Shrestha and R. G. Kavasseri, Persistence in North American Palmer drought severity index data reconstructed from tree ring history, 13th World Water Congress, Montpellier, France, 2008.
19. #Granger Morgan, M., H. Dowlatabadi, M. Henrion, D. Keith, R. Lempert, S. McBride, M. Small and T. Wilbanks, Best Practice Approaches for Characterizing, Communicating and Incorporating Scientific Uncertainty in Climate Decision Making U.S. Climate Change Science Program, Synthesis and Assessment Product 5.2, National Oceanic and Atmospheric Administration, 156 pp., Washington D.C., USA, 2009.
20. von Storch, H., E. Zorita and F. Gonzalez-Rouco, Assessment of three temperature reconstruction methods in the virtual reality of a climate simulation, International Journal of Earth Sciences, 98 (1), 67-82, 2009.
21. Halley, J. M., Using models with long-term persistence to interpret the rapid increase of earth’s temperature, Physica A: Statistical Mechanics and its Applications, 388(12), 2492-2502, 2009.
22. Khaliq, M., T. Ouarda, P. Gachon, L. Sushama and A. St-Hilaire, Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers, Journal of Hydrology, 368(1-4), 117-130, 2009.
23. Khaliq, M., T. Ouarda, and P. Gachon, Identification of temporal trends in annual and seasonal low flows occurring in Canadian rivers: The effect of short- and long-term persistence, Journal of Hydrology, 369(1-2), 183-197, 2009.
24. Mukhopadhyay, B., A. Acharyya, and S. Dasgupta, Statistical analysis on yearly seismic moment release data to demarcate the source zone for an impending earthquake in the Himalaya, Acta Geophysica, 57(2), 387-399, 2009.
25. He, W.P., Q. Wu, W. Zhang, O.G. Wang and Y. Zhang, Comparison of characteristics of moving detrended fluctuation analysis with that of approximate entropy method in detecting abrupt dynamic change, Acta Physica Sinica, 58 (4), 2862-2871, 2009.
26. #McIntyre, S., and R. McKitrick, An updated comparison of model ensemble and observed temperature trends in the tropical troposphere, arxiv.org, 0905.0445, 2009.
27. Déry, S. J., K. Stahl, R. D. Moore, P. H. Whitfield, B. Menounos, and J. E. Burford, Detection of runoff timing changes in pluvial, nival, and glacial rivers of western Canada, Water Resour. Res., 45, W04426, doi:10.1029/2008WR006975, 2009.
28. Hurtado, A. F., and G. Poveda, Linear and global space-time dependence and Taylor hypotheses for rainfall in the tropical Andes, J. Geophys. Res., 114, D10105, doi:10.1029/2008JD011074, 2009.
29. Kumar, S., V. Merwade, J. Kam, and K. Thurner, Streamflow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains, Journal of Hydrology, 374(1-2), 171-183, 2009.
30. Hurtado, A. F., and G. Poveda, Linear and global space-time dependence and Taylor hypotheses for rainfall in the tropical Andes, J. Geophys. Res., 114, D10105, doi:10.1029/2008JD011074, 2009.
31. Hamed, K. H., Effect of persistence on the significance of Kendall’s tau as a measure of correlation between natural time series, The European Physical Journal, 174 (1), 65-79, 2009.
32. #Li, M,. Self-similarity and long-range dependence in teletraffic, Proceedings of the 9th WSEAS international conference on Multimedia systems & signal processing, 19-24, World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA, 2009.
33. Bordi, I., K. Fraedrich, and A. Sutera, Observed drought and wetness trends in Europe: an update, Hydrol. Earth Syst. Sci., 13, 1519-1530, 2009.
34. Villarini, G., F. Serinaldi, J. A. Smith, and W. F. Krajewski, On the stationarity of annual flood peaks in the continental United States during the 20th century, Water Resour. Res., 45, W08417, doi:10.1029/2008WR007645, 2009.
35. Serinaldi, F., Assessing the applicability of fractional order statistics for computing confidence intervals for extreme quantiles, Journal of Hydrology, 376 (3-4), 528-541, 2009.
36. Fatichi, S., S. M. Barbosa, E. Caporali and M. E. Silva, Deterministic versus stochastic trends: Detection and challenges, Journal Of Geophysical Research-Atmospheres, 114, D18121, doi:10.1029/2009JD011960, 2009.
37. Zhang, Z., A. D. Dehoff, R. D. Pody and J. W. Balay, Detection of Streamflow Change in the Susquehanna River Basin, Water Resources Management, 24 (10), 1947-1964, 2010.
38. Ehsanzadeh, E., and K. Adamowski, Trends in timing of low stream flows in Canada: impact of autocorrelation and long-term persistence, Hydrological Processes, 24, 970–980, 2010.
39. Hossain, F., I. Jeyachandran and R. Pielke Sr., Dam safety effects due to human alteration of extreme precipitation, Water Resources Research, 46, W03301, doi:10.1029/2009WR007704, 2010.
40. Clarke, R. T., On the (mis)use of statistical methods in hydro-climatological research, Hydrol. Sci. J., 55(2), 139–144, 2010.
41. Serinaldi, F., Use and misuse of some Hurst parameter estimators applied to stationary and non-stationary financial time series, Physica A, 389 (14), 2770-2781, 2010.
42. Raziei, T., I. Bordi, L. S. Pereira and A. Sutera, Space-time variability of hydrological drought and wetness in Iran using NCEP/NCAR and GPCC datasets, Hydrol. Earth Syst. Sci., 14, 1919-1930, doi: 10.5194/hess-14-1919-2010, 2010.
43. Stahl, K., H. Hisdal, J. Hannaford, L. M. Tallaksen, H. A. J. van Lanen, E. Sauquet, S. Demuth, M. Fendekova, and J. Jódar, Streamflow trends in Europe: evidence from a dataset of near-natural catchments, Hydrol. Earth Syst. Sci., 14, 2367-2382, doi:10.5194/hess-14-2367-2010, 2010.
44. Khaliq M. N., and P. Gachon, Pacific decadal oscillation climate variability and temporal pattern of winter flows in Northwestern North America, Journal of Hydrometeorology, 11 (4), 917-933, 2010.
45. #Sheng, H., H. Sun, Y.-Q. Chen and T.-S. Qiu, A variable-order fractional operator based synthesis method for multifractional Gaussian noise, 2010 IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (MESA), 474-479, doi: 10.1109/MESA.2010.5552002, 2010.
46. #Rust, H. W., M. Kallache, H. J. Schellnhuber and J. P. Kropp, Confidence intervals for flood return level estimates assuming long-range dependence, in: In Extremis: Disruptive Events and Trends in Climate and Hydrology, J. Kropp and H.-J. Schellnhuber (Eds.), Springer, 400 pp., 2010.
47. #Rybski, D., A. Bunde, S. Havlin, J. W. Kantelhardt and E. Koscielny-Bunde, Detrended fluctuation studies of long-term persistence and multifractality of precipitation and river runoff records, in: In Extremis: Disruptive Events and Trends in Climate and Hydrology, J. Kropp and H.-J. Schellnhuber (Eds.), Springer, 400 pp., 2010.
48. Botter, G., Stochastic recession rates and the probabilistic structure of stream flows, Water Resources Research, 46 (12), art. no. W12527, doi: 10.1029/2010WR009217, 2010.
49. #Sheng, H., YQ. Chen and TS. Qiu, Robustness analysis of Hurst estimators for multifractional Gaussian processes, Proceedings of the 4th IFAC Workshop on Fractional Differentiation and Its Applications, ed. by I. Podlubny, B. M. Vinagre Jara, YQ. Chen, V. Feliu Batlle, I. Tejado Balsera, ISBN: 9788055304878, Article no. FDA10-107, 2010.
50. #Sheng, H., YQ. Chen and TS. Qiu, Tracking performance of Hurst estimators for multifractional Gaussian processes, Proceedings of the 4th IFAC Workshop on Fractional Differentiation and Its Applications, ed. by I. Podlubny, B. M. Vinagre Jara, YQ. Chen, V. Feliu Batlle, I. Tejado Balsera, ISBN: 9788055304878, Article no. FDA10-100, 2010.
51. Kamruzzaman, M., S. Beecham and A. V. Metcalfe, Non-stationarity in rainfall and temperature in the Murray Darling Basin, Hydrological Processes, 25 (10), 1659-1675, 2011.
52. Fatichi, S., V. Y. Ivanov, and E. Caporali, Simulation of future climate scenarios with a weather generator, Advances in Water Resources, 34(4), 448-467, doi: 10.1016/j.advwatres.2010.12.013, 2011.
53. Sheng, H., H. Sun, Y. Q. Chen and T. S. Qiu, Synthesis of multifractional Gaussian noises based on variable-order fractional operators, Signal Processing, 91 (7), 1645-1650, 2011.
54. Sheng, H., Y.Q. Chen and T. Qiu, Heavy-tailed distribution and local long memory in time series of molecular motion on the cell membrane, Fluctuation and Noise Letters, 10(1), 93-119, 2011.
55. Halley, J. M., and D. Kugiumtzis, Nonparametric testing of variability and trend in some climatic records, Climatic Change, 107(3-4), 267-276, 2011.
56. Di Baldassarre, G., M. Elshamy, A. van Griensven, E. Soliman, M. Kigobe, P. Ndomba, J. Mutemi, F. Mutua, S. Moges, J.-Q. Xuan, D. Solomatine and S. Uhlenbrook, Future hydrology and climate in the River Nile basin: a review, Hydrol. Sci. J., 56(2), 199-211, 2011.
57. Craigmile, P. F., and P. Guttorp, Space-time modelling of trends in temperature series, Journal of Time Series Analysis, 32 (4), 378–395, 2011.
58. Sheng, H., Y. Q. Chen and T. Qiu, On the robustness of Hurst estimators, IET Signal Processing, 5 (2), 209-225, 2011.
59. Ouarda, T. B. M. J., and S. El-Adlouni, Bayesian nonstationary frequency analysis of hydrological variables, Journal of the American Water Resources Association, 47(3), 496-505, 2011.
60. #Navarro, X., A. Beuchée, F. Porée and G. Carrault, Performance analysis of Hurst’s exponent estimators in highly immature breathing patterns of preterm infants, International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2011, Prague, 701-704, 2011.
61. Hamed, K. H., The distribution of Kendall’s tau for testing the significance of cross-correlation in persistent data, Hydrol. Sci. J., 56 (5), 841–853, 2011.
62. Lennartz, S. and A. Bunde, Distribution of natural trends in long-term correlated records: A scaling approach, Phys. Rev. E, 84 (2), 021129, DOI: 10.1103/PhysRevE.84.021129, 2011.
63. Rao, A. R., M. Azli and L. J. Pae, Identification of trends in Malaysian monthly runoff under the scaling hypothesis, Hydrol. Sci. J., 56 (6), 917–929, 2011.
64. Gudmundsson, L., L. M. Tallaksen, K. Stahl, and A. K. Fleig, Low-frequency variability of European runoff, Hydrol. Earth Syst. Sci., 15, 2853-2869, doi: 10.5194/hess-15-2853-2011, 2011.
65. Savina, M., P. Molnar and P. Burlando, Seasonal long-term persistence in radar precipitation in complex terrain, Water Resources Research, 47 (10), W10506, doi: 10.1029/2010WR010170, 2011.
66. #Liu, L. Z. Xu & J. Huang, Long-term trend of major climate variables in the Taihu basin during the last 53 years, Hydrological Cycle and Water Resources Sustainability in Changing Environments, Proceedings of the IWRM2010 Methodology in Hydrology Symposium, Nanjing, China (ed. by L. Ren, W. Wang and F. Yuan), IAHS Publ. 350, ISBN 978-1-907161-25-4, 18-27, 2011.
67. Ehsanzadeh, E., G.. van der Kamp and C. Spence, The impact of climatic variability and change in the hydroclimatology of Lake Winnipeg watershed, Hydrological Processes, 26 (18), 2802-2813, 2012.
68. Lennartz, S., and A. Bunde, On the estimation of natural and anthropogenic trends in climate records, Geophysical Monograph Series, 196, 177-189, 2012.
69. Bakker, A. M. R., and B. J. J. M. van den Hurk, Estimation of persistence and trends in geostrophic wind speed for the assessment of wind energy yields in Northwest Europe, Climate Dynamics, 39 (3-4), 767-782, 2012.
70. Liu, L., Z.-X. Xu and J.-X. Huang, Spatio-temporal variation and abrupt changes for major climate variables in the Taihu Basin, China, Stochastic Environmental Research and Risk Assessment, 26 (6), 777-791, 2012.
71. #Sheng, H., Y.Q. Chen and T.S. Qiu, Fractional Processes and Fractional-Order Signal Processing, Techniques and Applications, Springer, London, DOI: 10.1007/978-1-4471-2233-3, 2012.
72. Hirsch, R. M., and K. R. Ryberg, Has the magnitude of floods across the USA changed with global CO2 levels?, Hydrolological Sciences Journal, 57 (1), 1-9, 2012.
73. Hahn, T., T. Dresler, A.-C. Ehlis, M. Pyka, A. C. Dieler, C. Saathoff, P. M. Jakob, K.-P. Lesch and A. J. Fallgatter, Randomness of resting-state brain oscillations encodes Gray's personality trait, NeuroImage, 59 (2), 16, 1842-1845, 2012.
74. Rassaa, N., F. Bnejdi, A. Chalh and M. El Gazzah, The validity of using juvenile stages for evaluation of salt stress tolerance of Triticum durum genotypes, African Journal of Biotechnology, 11 (9), 2178-2189, 2012.
75. Gautam, M. R., and K. Acharya, Streamflow trends in Nepal, Hydrological Sciences Journal, 57 (2), 344–357, 2012.
76. #Machiwal, D., and M. K. Jha, Analysis of trends in low-flow time series of Canadian rivers, Hydrologic Time Series Analysis: Theory and Practice, Springer, Netherlands, 201-221, 2012.
77. Wagesho, N., N. K. Goel and M. K. Jain, Investigation of non-stationarity in hydro-climatic variables at Rift Valley lakes basin of Ethiopia, Journal of Hydrology, 444–445, 113-133, 2012.
78. Montanari, A., Hydrology of the Po River: looking for changing patterns in river discharge, Hydrol. Earth Syst. Sci., 16, 3739-3747, 2012.
79. Whitfield, P. H., Floods in future climates: a review, Journal of Flood Risk Management, 5(4), 336–365, 2012.
80. Sheng, S., Y. Q. Chen and T. S. Qiu, Tracking performance and robustness analysis of Hurst estimators for multifractional processes, IET Signal Process, 6 (3), 213–226, 2012.
81. Evangelia, A. T., and P. S. Karagkiozidis, Climate change and biofuels, Journal of Environmental Protection and Ecology, 13 (2), 781-788, 2012.
82. Fleming, S. W., and F. A. Weber, Detection of long-term change in hydroelectric reservoir inflows: bridging theory and practice, Journal of Hydrology, 470-471, 36-54, 2012.
83. Fatichi, S., V. Yu. Ivanov and E. Caporali, Investigating interannual variability of precipitation at the global scale: Is there a connection with seasonality? J. Climate, 25, 5512-5523, 2012.
84. #Schumann, A., Gumbel Distribution, ARMA, Copulas – The importance of stochastic tools for water management, 3rd STAHY International Workshop on Statistical Methods for Hydrology and Water Resources Management, Tunis, Tunisia, 2012.
85. #Rice, K. C., and R. M. Hirsch, Spatial and temporal trends in runoff at long-term streamgages within and near the Chesapeake Bay Watershed, U.S. Geological Survey Scientific Investigations Report 2012–5151, 56 pp., 2012.
86. Merz, B., T. Maurer and K. Kaiser, Wie gut können wir vergangene und zukünftige Veränderungen des Wasserhaushalts quantifizieren? [How well can we quantify past and future changes of the water cycle?], Hydrologie und Wasserbewirtschaftung, 5, 244-256, DOI: 10.5675/HyWa_2012,5_1, 2012.
87. Musa, M., and K. Ibrahim, Existence of long memory in ozone time series, Sains Malaysiana, 41 (11), 1367-1376, 2012.
88. Bard, A., B. Renard et M. Lang, Tendances observées sur les régimes hydrologiques de l’Arc Alpin [Observed Trends in the hydrologic regime of Alpine catchments], Houille Blanche, (1), 38-43, 2012.
89. Resta, M., Hurst exponent and its applications in time-series analysis, Recent Patents on Computer Science, 5 (3), 211-219, 2012.
90. Ye, X., X. Xia, J. Zhang and Y. Chen, Effects of trends and seasonalities on robustness of the Hurst parameter estimators, Signal Processing, IET, 6 (9), 849-856, 2012.
91. Bakker, A., J. Coelingh and B. van den Hurk, Long-term trends in the wind supply in the Netherlands, Proceedings EWEA 2012 Annual Event, Copenhagen, Denmark, 2012.
92. Kumar, S., V. Merwade, J. L. Kinter III and D. Niyogi, Evaluation of temperature and precipitation trends and long-term persistence in CMIP5 20th century climate simulations, Journal of Climate, 26 (12), 4168-4185, 2013.
93. Hannaford, J., G. Buys, K. Stahl and L. M. Tallaksen, The influence of decadal-scale variability on trends in long European streamflow records, Hydrol. Earth Syst. Sci., 17, 2717-2733, 10.5194/hess-17-2717-2013, 2013.
94. #Alexandridis, A. K., and A. D. Zapranis, Weather Derivatives: Modeling and Pricing Weather-Related Risk, Springer, New York, 2013.
95. Zeng, X., D. Wang, J. Wu and X. Chen, Reliability analysis of the groundwater conceptual model, Human and Ecological Risk Assessment, 19 (2), 515-525, 2013.
96. Lacombe, G., V. Smakhtin and C. Hoanh, Wetting tendency in the Central Mekong Basin consistent with climate change-induced atmospheric disturbances already observed in East Asia, Theoretical and Applied Climatology, 111 (1-2), 251-263, 2013.
97. Yusof, F., I. L. Kane and Z. Yusop, Structural break or long memory: an empirical survey on daily rainfall data sets across Malaysia, Hydrol. Earth Syst. Sci., 17, 1311-1318, 2013.
98. Fleming, S. W., and D. J. Sauchyn, Availability, volatility, stability, and teleconnectivity changes in prairie water supply from Canadian Rocky Mountain sources over the last millennium, Water Resources Research, 49 (1), 64-74, 2013.
99. Navarro, X., F. Porée, A. Beuchée and G. Carrault, Performance analysis of Hurst exponent estimators using surrogate-data and fractional lognormal noise models: Application to breathing signals from preterm infants, Digital Signal Processing, 10.1016/j.dsp.2013.04.007, 2013.
100. #Jones, M. R., S. Blenkinsop, H. J. Fowler, D. B. Stephenson and C. G. Kilsby, Generalized additive modelling of daily precipitation extremes and their climatic drivers, NCAR Technical Note 501+STR, National Center for Atmospheric Research, Boulder, Colorado, USA, 2013.
101. Kirchner, J.W. and C. Neal, Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend detection, Proceedings of the National Academy of Sciences (PNAS), 110 (30), 12213-12218, 2013.
102. #Ercan, A., M. L. Kavvas and R. Abbasov, Long-range dependence and ARFIMA models, Long-Range Dependence and Sea Level Forecasting, Springer International Publishing, 10.1007/978-3-319-01505-7_2, 2013.
103. #Loukas, A., and L. Vasiliades, Review of applied methods for flood-frequency analysis in a changing environment in Greece, In: A review of applied methods in Europe for flood-frequency analysis in a changing environment, Floodfreq COST action ES0901: European procedures for flood frequency estimation (ed. by H. Madsen et al.), Centre for Ecology & Hydrology, Wallingford, UK, 2013.
104. Steinschneider, S., and C. Brown, Casey, A semiparametric multivariate, multi-site weather generator with low-frequency variability for use in climate risk assessments, Water Resources Research, 10.1002/wrcr.20528, 2013.
105. Rocheta, E., M. Sugiyanto, F. Johnson, J. Evans and A. Sharma, How well do general circulation models represent low frequency rainfall variability?, Water Resources Research, 50 (3), 2108-2123, 2014.
106. Szolgayova, E., G. Laaha, G. Blöschl and C. Bucher, Factors influencing long range dependence in streamflow of European rivers, Hydrological Processes, 28 (4), 1573-1586, 2014.
107. Dinpashoh, Y., R. Mirabbasi, D. Jhajharia, H. Abianeh and A. Mostafaeipour, Effect of short term and long-term persistence on identification of temporal trends, J. Hydrol. Eng., 19(3), 617–625, 2014.
108. Lacombe, G., and M. McCartney, Uncovering consistencies in Indian rainfall trends observed over the last half century, Climatic Change, 10.1007/s10584-013-1036-5, 2014.
109. Condon, L. E., and R. M. Maxwell, Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts, Environmental Research Letters, 9 (3), 034009, 2014.
110. Ghadage, A., S. Balan and S. Shelke, Performance analysis different filters for noise removal of underwater bathymetric data, International Journal of Application or Innovation in Engineering & Management, 3 (3), 339-344, 2014.
111. #Kalra, A., S. Sagarika and S. Ahmad, Investigation of the linkages between oceanic atmospheric variability and continental U.S. streamflow, ASCE World Water and Environmental Resources Congress, Portland, OR., USA, 2014.
112. Ilich, N., An effective three-step algorithm for multi-site generation of stochastic weekly hydrological time series, Hydrological Sciences Journal, 59 (1), 85-98, 2014.
113. Sagarika, S., A. Kalra and S. Ahmad, Evaluating the effect of persistence on long-term trends and analyzing step changes in streamflows of the continental United States, Journal of Hydrology, 10.1016/j.jhydrol.2014.05.002, 2014.
114. Fatichi, S., and V. Y. Ivanov, Interannual variability of evapotranspiration and vegetation productivity, Water Resources Research, 50 (4), 3275-3294, 2014.
115. Ribeiro, L., N. Kretschmer, J. Nascimento, A. Buxo, T. Roetting, G. Soto, M. Señoret, J. Oyarzún, H. Maturana and R. Oyarzún, Evaluating piezometric trends using the Mann-Kendall test on the alluvial aquifers of the Elqui river basin, Chile, Hydrological Sciences Journal, 10.1080/02626667.2014.945936, 2014.
116. Stonevičius, E., G. Valiuškevičius, E. Rimkus and J. Kažys, Climate induced changes of Lithuanian rivers runoff in 1960–2009, Water Resources, 41 (5), 592-603, 2014.
117. Yao, Y., S. Zhao, Y. Zhang, K. Jia and M. Liu, Spatial and decadal variations in potential evapotranspiration of China based on reanalysis datasets during 1982–2010, Atmosphere, 5(4), 737-754, 2014.
118. Setty, V. A., and A. S. Sharma, Characterizing Detrended Fluctuation Analysis of multifractional Brownian motion, Physica A: Statistical Mechanics and its Applications, 10.1016/j.physa.2014.10.016, 2014.
119. Franzke, C.L.E., S.M. Osprey, P. Davini and N.W. Watkins, A dynamical systems explanation of the Hurst effect and atmospheric low-frequency variability, Scientific Reports, 5, art. no. 9068, 10.1038/srep09068, 2015.
120. Tamazian, A., J. Ludescher and A. Bunde, Significance of trends in long-term correlated records, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 91 (3), art. no. 032806, 10.1103/PhysRevE.91.032806, 2015.
121. Razavi, S., A. Elshorbagy, H. Wheater and D. Sauchyn, Toward understanding nonstationarity in climate and hydrology through tree ring proxy records, Water Resources Research, 51 (3), 1813-1830, 2015.
122. Machado, J.A.T., Fractional order description of DNA, Applied Mathematical Modelling, 39 (14), 4095-4102, 2015.
123. Kalra, A., S. Sagarika and S. Ahmad, Spatial and temporal evaluation of hydroclimatic variables in the Colorado river basin, World Environmental and Water Resources Congress 2015: Floods, Droughts, and Ecosystems - Proceedings of the 2015 World Environmental and Water Resources Congress, 1118-1127, 2015.
124. Odongo, V.O., C. van der Tol, P.R. van Oel, F.M. Meins, R. Becht, J. Onyando and Z.B. Su, Characterisation of hydroclimatological trends and variability in the Lake Naivasha basin, Kenya, Hydrological Processes, 29 (15), 3276-3293, 10.1002/hyp.10443, 2015.
125. Serinaldi, F., and C.G. Kilsby, The importance of prewhitening in change point analysis under persistence, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-015-1041-5, 2015.
126. Kundzewicz, Z.W. Farewell, HSJ!—address from the retiring editor, Hydrological Sciences Journal, 10.1080/02626667.2015.1058627, 2015.
127. Tenreiro Machado, J.A., Fractional dynamics in the Rayleigh’s piston, Communications in Nonlinear Science and Numerical Simulation, 10.1016/j.cnsns.2015.07.009, 2015.
128. Hu, Z., Q. Li, X. Chen, Z. Teng, C. Chen, G. Yin and Y. Zhang, Climate changes in temperature and precipitation extremes in an alpine grassland of Central Asia, Theoretical and Applied Climatology, 10.1007/s00704-015-1568-x, 2015.
129. Munshi, J., A robust test for OLS trends in daily temperature data, Social Science Research Network, doi:10.2139/ssrn.2631298, 2015.
130. Müller, R., and N. Schütze, Multi-objective optimization of multi-purpose multi-reservoir systems under high reliability constraints, Environmental Earth Sciences, 75:1278, doi:10.1007/s12665-016-6076-5, 2016.

Tagged under: Course bibliography: Stochastic methods, Climate stochastics, Hurst-Kolmogorov dynamics, Papers initially rejected, Stochastics, Uncertainty