Stochastic investigation of long-term persistence in two-dimensional images of rocks

P. Dimitriadis, K. Tzouka, D. Koutsoyiannis, H. Tyralis, A. Kalamioti, E. Lerias, and P. Voudouris, Stochastic investigation of long-term persistence in two-dimensional images of rocks, Spatial Statistics, 29, 177–191, doi:10.1016/j.spasta.2018.11.002, 2019.

[doc_id=1923]

[English]

Determining the geophysical properties of rocks and geological formations is of high importance in many fields such as geotechnical engineering. In this study, we investigate the second-order dependence structure of spatial (two-dimensional) processes through the statistical perspective of variance vs. scale (else known as the climacogram) instead of covariance vs. lag (e.g. autocovariance, variogram etc.) or power vs. frequency (e.g. power spectrum, scaleogram, wavelet transform etc.) which traditionally are applied. In particular, we implement a two-dimensional (visual) estimator, adjusted for bias and for unknown process mean, through the (plot of) variance of the space-averaged process vs. the spatial scale. Additionally, we attempt to link the climacogram to the type of rocks and provide evidence on stochastic similarities in certain of their characteristics, such as mineralogical composition and resolution. To this end, we investigate two-dimensional spatial images of rocks in terms of their stochastic microstructure as estimated by the climacogram. The analysis is based both on microscale and macroscale data extracted from grayscale images of rocks. Interestingly, a power-law drop of variance vs. scale (or else known as long-term persistence) is detected in all scales presenting a similar power-exponent. Furthermore, the strengths and limitations of the climacogram as a stochastic tool are discussed and compared with the traditional tool in spatial statistics, the variogram. We show that the former has considerable strengths for detecting the long-range dependence in spatial statistics.

Full text is only available to the NTUA network due to copyright restrictions

PDF Additional material:

Remarks:

Share Link: https://authors.elsevier.com/c/1YJjr7su79fMuR

Our works referenced by this work:

1. D. Koutsoyiannis, The Hurst phenomenon and fractional Gaussian noise made easy, Hydrological Sciences Journal, 47 (4), 573–595, doi:10.1080/02626660209492961, 2002.
2. D. Koutsoyiannis, Climate change, the Hurst phenomenon, and hydrological statistics, Hydrological Sciences Journal, 48 (1), 3–24, doi:10.1623/hysj.48.1.3.43481, 2003.
3. D. Koutsoyiannis, H. Yao, and A. Georgakakos, Medium-range flow prediction for the Nile: a comparison of stochastic and deterministic methods, Hydrological Sciences Journal, 53 (1), 142–164, doi:10.1623/hysj.53.1.142, 2008.
4. D. Koutsoyiannis, A random walk on water, Hydrology and Earth System Sciences, 14, 585–601, doi:10.5194/hess-14-585-2010, 2010.
5. H. Tyralis, and D. Koutsoyiannis, Simultaneous estimation of the parameters of the Hurst-Kolmogorov stochastic process, Stochastic Environmental Research & Risk Assessment, 25 (1), 21–33, 2011.
6. D. Koutsoyiannis, A. Paschalis, and N. Theodoratos, Two-dimensional Hurst-Kolmogorov process and its application to rainfall fields, Journal of Hydrology, 398 (1-2), 91–100, 2011.
7. P. Dimitriadis, D. Koutsoyiannis, and C. Onof, N-Dimensional generalized Hurst-Kolmogorov process and its application to wind fields, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.15642.64963, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.
8. P. Dimitriadis, and D. Koutsoyiannis, Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes, Stochastic Environmental Research & Risk Assessment, 29 (6), 1649–1669, doi:10.1007/s00477-015-1023-7, 2015.
9. D. Koutsoyiannis, Generic and parsimonious stochastic modelling for hydrology and beyond, Hydrological Sciences Journal, 61 (2), 225–244, doi:10.1080/02626667.2015.1016950, 2016.
10. P. Dimitriadis, D. Koutsoyiannis, and K. Tzouka, Predictability in dice motion: how does it differ from hydrometeorological processes?, Hydrological Sciences Journal, 61 (9), 1611–1622, doi:10.1080/02626667.2015.1034128, 2016.
11. P. Dimitriadis, D. Koutsoyiannis, and P. Papanicolaou, Stochastic similarities between the microscale of turbulence and hydrometeorological processes, Hydrological Sciences Journal, 61 (9), 1623–1640, doi:10.1080/02626667.2015.1085988, 2016.
12. P.E. O’Connell, D. Koutsoyiannis, H. F. Lins, Y. Markonis, A. Montanari, and T.A. Cohn, The scientific legacy of Harold Edwin Hurst (1880 – 1978), Hydrological Sciences Journal, 61 (9), 1571–1590, doi:10.1080/02626667.2015.1125998, 2016.
13. P. Dimitriadis, Hurst-Kolmogorov dynamics in hydroclimatic processes and in the microscale of turbulence, PhD thesis, Department of Water Resources and Environmental Engineering – National Technical University of Athens, 2017.
14. P. Dimitriadis, K. Tzouka, H. Tyralis, and D. Koutsoyiannis, Stochastic investigation of rock anisotropy based on the climacogram, European Geosciences Union General Assembly 2017, Geophysical Research Abstracts, Vol. 19, Vienna, EGU2017-10632-1, European Geosciences Union, 2017.
15. P. Dimitriadis, and D. Koutsoyiannis, Stochastic synthesis approximating any process dependence and distribution, Stochastic Environmental Research & Risk Assessment, 32 (6), 1493–1515, doi:10.1007/s00477-018-1540-2, 2018.
16. D. Koutsoyiannis, P. Dimitriadis, F. Lombardo, and S. Stevens, From fractals to stochastics: Seeking theoretical consistency in analysis of geophysical data, Advances in Nonlinear Geosciences, edited by A.A. Tsonis, 237–278, doi:10.1007/978-3-319-58895-7_14, Springer, 2018.
17. H. Tyralis, P. Dimitriadis, D. Koutsoyiannis, P.E. O’Connell, K. Tzouka, and T. Iliopoulou, On the long-range dependence properties of annual precipitation using a global network of instrumental measurements, Advances in Water Resources, 111, 301–318, doi:10.1016/j.advwatres.2017.11.010, 2018.

Tagged under: Students' works presented in conferences