Hurst-Kolmogorov dynamics as a result of extremal entropy production

D. Koutsoyiannis, Hurst-Kolmogorov dynamics as a result of extremal entropy production, Physica A: Statistical Mechanics and its Applications, 390 (8), 1424–1432, doi:10.1016/j.physa.2010.12.035, 2011.



It is demonstrated that extremization of entropy production of stochastic representations of natural systems, performed at asymptotic times (zero or infinity) results in constant derivative of entropy in logarithmic time and, in turn, in Hurst-Kolmogorov processes. The constraints used include preservation of the mean, variance and lag-1 autocovariance at the observation time step, and an inequality relationship between conditional and unconditional entropy production, which is necessary to enable physical consistency. An example with real world data illustrates the plausibility of the findings.

Full text is only available to the NTUA network due to copyright restrictions

PDF Additional material:

See also:


Erratum: In the Conclusions section the text "(zero of infinity)" should read "(zero or infinity)".

Blog posts and discussions: Bishop Hill blog - Koutsoyiannis 2011, Society for Interdisciplinary Studies.

Our works referenced by this work:

1. D. Koutsoyiannis, The Hurst phenomenon and fractional Gaussian noise made easy, Hydrological Sciences Journal, 47 (4), 573–595, doi:10.1080/02626660209492961, 2002.
2. D. Koutsoyiannis, Uncertainty, entropy, scaling and hydrological stochastics, 2, Time dependence of hydrological processes and time scaling, Hydrological Sciences Journal, 50 (3), 405–426, doi:10.1623/hysj.50.3.405.65028, 2005.
3. D. Koutsoyiannis, and A. Montanari, Statistical analysis of hydroclimatic time series: Uncertainty and insights, Water Resources Research, 43 (5), W05429, doi:10.1029/2006WR005592, 2007.
4. D. Koutsoyiannis, A random walk on water, Hydrology and Earth System Sciences, 14, 585–601, doi:10.5194/hess-14-585-2010, 2010.

Our works that reference this work:

1. D. Koutsoyiannis, Clausius-Clapeyron equation and saturation vapour pressure: simple theory reconciled with practice, European Journal of Physics, 33 (2), 295–305, doi:10.1088/0143-0807/33/2/295, 2012.
2. F. Lombardo, E. Volpi, and D. Koutsoyiannis, Rainfall downscaling in time: Theoretical and empirical comparison between multifractal and Hurst-Kolmogorov discrete random cascades, Hydrological Sciences Journal, 57 (6), 1052–1066, 2012.
3. Y. Markonis, and D. Koutsoyiannis, Climatic variability over time scales spanning nine orders of magnitude: Connecting Milankovitch cycles with Hurst–Kolmogorov dynamics, Surveys in Geophysics, 34 (2), 181–207, doi:10.1007/s10712-012-9208-9, 2013.
4. D. Koutsoyiannis, Hydrology and Change, Hydrological Sciences Journal, 58 (6), 1177–1197, doi:10.1080/02626667.2013.804626, 2013.
5. D. Koutsoyiannis, Physics of uncertainty, the Gibbs paradox and indistinguishable particles, Studies in History and Philosophy of Modern Physics, 44, 480–489, doi:10.1016/j.shpsb.2013.08.007, 2013.
6. F. Lombardo, E. Volpi, D. Koutsoyiannis, and S.M. Papalexiou, Just two moments! A cautionary note against use of high-order moments in multifractal models in hydrology, Hydrology and Earth System Sciences, 18, 243–255, doi:10.5194/hess-18-243-2014, 2014.
7. H. Tyralis, and D. Koutsoyiannis, A Bayesian statistical model for deriving the predictive distribution of hydroclimatic variables, Climate Dynamics, 42 (11-12), 2867–2883, doi:10.1007/s00382-013-1804-y, 2014.
8. D. Koutsoyiannis, Reconciling hydrology with engineering, Hydrology Research, 45 (1), 2–22, doi:10.2166/nh.2013.092, 2014.
9. D. Koutsoyiannis, Entropy: from thermodynamics to hydrology, Entropy, 16 (3), 1287–1314, doi:10.3390/e16031287, 2014.
10. C. Pappas, S.M. Papalexiou, and D. Koutsoyiannis, A quick gap-filling of missing hydrometeorological data, Journal of Geophysical Research-Atmospheres, 119 (15), 9290–9300, doi:10.1002/2014JD021633, 2014.
11. S. Ceola, A. Montanari, and D. Koutsoyiannis, Toward a theoretical framework for integrated modeling of hydrological change, WIREs Water, 1 (5), 427–438, doi:10.1002/wat2.1038, 2014.
12. D. Koutsoyiannis, Generic and parsimonious stochastic modelling for hydrology and beyond, Hydrological Sciences Journal, 61 (2), 225–244, doi:10.1080/02626667.2015.1016950, 2016.
13. P. Dimitriadis, D. Koutsoyiannis, and K. Tzouka, Predictability in dice motion: how does it differ from hydrometeorological processes?, Hydrological Sciences Journal, 61 (9), 1611–1622, doi:10.1080/02626667.2015.1034128, 2016.
14. P. Dimitriadis, D. Koutsoyiannis, and P. Papanicolaou, Stochastic similarities between the microscale of turbulence and hydrometeorological processes, Hydrological Sciences Journal, 61 (9), 1623–1640, doi:10.1080/02626667.2015.1085988, 2016.
15. Y. Markonis, and D. Koutsoyiannis, Scale-dependence of persistence in precipitation records, Nature Climate Change, 6, 399–401, doi:10.1038/nclimate2894, 2016.
16. Y. Markonis, S. C. Batelis, Y. Dimakos, E. C. Moschou, and D. Koutsoyiannis, Temporal and spatial variability of rainfall over Greece, Theoretical and Applied Climatology, doi:10.1007/s00704-016-1878-7, 2016.
17. A. Tegos, H. Tyralis, D. Koutsoyiannis, and K. H. Hamed, An R function for the estimation of trend signifcance under the scaling hypothesis- application in PET parametric annual time series, Open Water Journal, 4 (1), 66–71, 6, 2017.
18. D. Koutsoyiannis, Entropy production in stochastics, Entropy, 19 (11), 581, doi:10.3390/e19110581, 2017.
19. T. Iliopoulou, S.M. Papalexiou, Y. Markonis, and D. Koutsoyiannis, Revisiting long-range dependence in annual precipitation, Journal of Hydrology, 556, 891–900, doi:10.1016/j.jhydrol.2016.04.015, 2018.
20. P. Dimitriadis, and D. Koutsoyiannis, Stochastic synthesis approximating any process dependence and distribution, Stochastic Environmental Research & Risk Assessment, 32 (6), 1493–1515, doi:10.1007/s00477-018-1540-2, 2018.
21. D. Koutsoyiannis, P. Dimitriadis, F. Lombardo, and S. Stevens, From fractals to stochastics: Seeking theoretical consistency in analysis of geophysical data, Advances in Nonlinear Geosciences, edited by A.A. Tsonis, 237–278, doi:10.1007/978-3-319-58895-7_14, Springer, 2018.
22. G. Koudouris, P. Dimitriadis, T. Iliopoulou, N. Mamassis, and D. Koutsoyiannis, A stochastic model for the hourly solar radiation process for application in renewable resources management, Advances in Geosciences, 45, 139–145, doi:10.5194/adgeo-45-139-2018, 2018.
23. D. Koutsoyiannis, Time’s arrow in stochastic characterization and simulation of atmospheric and hydrological processes, Hydrological Sciences Journal, doi:10.1080/02626667.2019.1600700, 2019.

Works that cite this document: View on Google Scholar or ResearchGate

Other works that reference this work (this list might be obsolete):

1. Resta, M., Hurst exponent and its applications in time-series analysis, Recent Patents on Computer Science, 5 (3), 211-219, 2012.
2. Serinaldi, F., L. Zunino and O. Rosso, Complexity–entropy analysis of daily stream flow time series in the continental United States, Stochastic Environmental Research and Risk Assessment, 28 (7), 1685-1708, 2014.
3. Fan, L., H. Wang, W. Lai and C. Wang, Administration of water resources in Beijing: Problems and countermeasures, Water Policy, 17 (4), 563-580, 2015.

Tagged under: Hurst-Kolmogorov dynamics, Course bibliography: Stochastic methods, Climate stochastics, Entropy, Papers initially rejected, Stochastics, Uncertainty