Landscape planning of infrastructure through focus points’ clustering analysis. Case study: Plastiras artificial lake (Greece)

G.-F. Sargentis, R. Ioannidis, T. Iliopoulou, P. Dimitriadis, and D. Koutsoyiannis, Landscape planning of infrastructure through focus points’ clustering analysis. Case study: Plastiras artificial lake (Greece), Infrastructures, 6 (1), 12, doi:10.3390/infrastructures6010012, 2021.

[doc_id=2083]

[English]

Even though landscape quality is largely a subjective issue, the integration of infrastructure into landscapes has been identified as a key element of sustainability. In a spatial planning context, the landscape impacts that are generated by infrastructures are commonly quantified through visibility analysis. In this study, we develop a new method of visibility analysis and apply it in a case study of a reservoir (Plastiras dam in Greece). The methodology combines common visibility analysis with a stochastic tool for visual-impacts evaluation; points that generate high visual contrasts in landscapes are considered Focus Points (FPs) and their clustering in landscapes is analyzed trying to answer two questions: (1) How does the clustering of Focus Points (FPs) impact the aesthetic value of the landscape? (2) How can the visual impacts of these FPs be evaluated? Visual clustering is calculated utilizing a stochastic analysis of generated Zones of Theoretical Visibility. Based on the results, we argue that if the visual effect of groups of FPs is positive, then the optimal sitting of FPs should be in the direction of faint clustering, whereas if the effect is negative, the optimal sitting of FPs should be directed to intense clustering. In order to optimize the landscape integration of infrastructure, this method could be a useful analytical tool for environmental impact assessment or a monitoring tool for a project’s managing authorities. This is demonstrated through the case study of Plastiras’ reservoir, where the clustering of positively perceived FPs is found to be an overlooked attribute of its perception as a highly sustainable infrastructure project.

PDF Full text (5634 KB)

Our works referenced by this work:

1. G.-F. Sargentis, The esthetic element in water, hydraulic works and dams, Diploma thesis, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, 1998.
2. K. Hadjibiros, A. Katsiri, A. Andreadakis, D. Koutsoyiannis, A. Stamou, A. Christofides, A. Efstratiadis, and G.-F. Sargentis, Multi-criteria reservoir water management, Proceedings of the 9th International Conference on Environmental Science and Technology (9CEST), Rhodes, A, 535–543, Department of Environmental Studies, University of the Aegean, 2005.
3. A. Christofides, A. Efstratiadis, D. Koutsoyiannis, G.-F. Sargentis, and K. Hadjibiros, Resolving conflicting objectives in the management of the Plastiras Lake: can we quantify beauty?, Hydrology and Earth System Sciences, 9 (5), 507–515, doi:10.5194/hess-9-507-2005, 2005.
4. D. Koutsoyiannis, A random walk on water, Hydrology and Earth System Sciences, 14, 585–601, doi:10.5194/hess-14-585-2010, 2010.
5. D. Koutsoyiannis, Encolpion of stochastics: Fundamentals of stochastic processes, doi:10.13140/RG.2.2.10956.82564, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, 2013.
6. D. Koutsoyiannis, Climacogram-based pseudospectrum: a simple tool to assess scaling properties, European Geosciences Union General Assembly 2013, Geophysical Research Abstracts, Vol. 15, Vienna, EGU2013-4209, doi:10.13140/RG.2.2.18506.57284, European Geosciences Union, 2013.
7. P. Dimitriadis, and D. Koutsoyiannis, Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes, Stochastic Environmental Research & Risk Assessment, 29 (6), 1649–1669, doi:10.1007/s00477-015-1023-7, 2015.
8. P. Dimitriadis, D. Koutsoyiannis, and K. Tzouka, Predictability in dice motion: how does it differ from hydrometeorological processes?, Hydrological Sciences Journal, 61 (9), 1611–1622, doi:10.1080/02626667.2015.1034128, 2016.
9. P.E. O’Connell, D. Koutsoyiannis, H. F. Lins, Y. Markonis, A. Montanari, and T.A. Cohn, The scientific legacy of Harold Edwin Hurst (1880 – 1978), Hydrological Sciences Journal, 61 (9), 1571–1590, doi:10.1080/02626667.2015.1125998, 2016.
10. G.-F. Sargentis, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, and D. Koutsoyiannis, Stochastic investigation of the Hurst-Kolmogorov behaviour in arts, European Geosciences Union General Assembly 2018, Geophysical Research Abstracts, Vol. 20, Vienna, EGU2018-17740-1, European Geosciences Union, 2018.
11. P. Dimitriadis, K. Tzouka, D. Koutsoyiannis, H. Tyralis, A. Kalamioti, E. Lerias, and P. Voudouris, Stochastic investigation of long-term persistence in two-dimensional images of rocks, Spatial Statistics, 29, 177–191, doi:10.1016/j.spasta.2018.11.002, 2019.
12. G.-F. Sargentis, P. Dimitriadis, R. Ioannidis, T. Iliopoulou, and D. Koutsoyiannis, Stochastic evaluation of landscapes transformed by renewable energy installations and civil works, Energies, 12 (4), 2817, doi:10.3390/en12142817, 2019.
13. E. Manta, R. Ioannidis, G.-F. Sargentis, and A. Efstratiadis, Aesthetic evaluation of wind turbines in stochastic setting: Case study of Tinos island, Greece, European Geosciences Union General Assembly 2020, Geophysical Research Abstracts, Vol. 22, Vienna, EGU2020-5484, doi:10.5194/egusphere-egu2020-5484, 2020.
14. G.-F. Sargentis, P. Dimitriadis, and D. Koutsoyiannis, Aesthetical issues of Leonardo Da Vinci’s and Pablo Picasso’s paintings with stochastic evaluation, Heritage, 3 (2), 283–305, doi:10.3390/heritage3020017, 2020.
15. R. Ioannidis, and D. Koutsoyiannis, A review of land use, visibility and public perception of renewable energy in the context of landscape impact, Applied Energy, 276, 115367, doi:10.1016/j.apenergy.2020.115367, 2020.
16. G.-F. Sargentis, T. Iliopoulou, S. Sigourou, P. Dimitriadis, and D. Koutsoyiannis, Evolution of clustering quantified by a stochastic method — Case studies on natural and human social structures, Sustainability, 12 (19), 7972, doi:10.3390/su12197972, 2020.

Our works that reference this work:

1. G.-F. Sargentis, P. Dimitriadis, T. Iliopoulou, and D. Koutsoyiannis, A stochastic view of varying styles in art paintings, Heritage, 4, 21, doi:10.3390/heritage4010021, 2021.
2. P. Dimitriadis, D. Koutsoyiannis, T. Iliopoulou, and P. Papanicolaou, A global-scale investigation of stochastic similarities in marginal distribution and dependence structure of key hydrological-cycle processes, Hydrology, 8 (2), 59, doi:10.3390/hydrology8020059, 2021.
3. R. Ioannidis, G.-F. Sargentis, and D. Koutsoyiannis, Landscape design in infrastructure projects - is it an extravagance? A cost-benefit investigation of practices in dams, Landscape Research, doi:10.1080/01426397.2022.2039109, 2022.
4. R. Ioannidis, N. Mamassis, A. Efstratiadis, and D. Koutsoyiannis, Reversing visibility analysis: Towards an accelerated a priori assessment of landscape impacts of renewable energy projects, Renewable and Sustainable Energy Reviews, 161, 112389, doi:10.1016/j.rser.2022.112389, 2022.
5. G.-F. Sargentis, N. D. Lagaros, G.L. Cascella, and D. Koutsoyiannis, Threats in Water–Energy–Food–Land Nexus by the 2022 Military and Economic Conflict, Land, doi:10.3390/land11091569, 2022.

Works that cite this document: View on Google Scholar or ResearchGate