Predictability in dice motion: how does it differ from hydrometeorological processes?

P. Dimitriadis, D. Koutsoyiannis, and K. Tzouka, Predictability in dice motion: how does it differ from hydrometeorological processes?, Hydrological Sciences Journal, 61 (9), 1611–1622, doi:10.1080/02626667.2015.1034128, 2016.

[doc_id=1538]

[English]

From ancients times dice have been used to denote randomness. A dice throw experiment is set up in order to examine the predictability of the die orientation through time using visualization techniques. We apply and compare a deterministic-chaotic and a stochastic model and we show that both suggest predictability in die motion that deteriorates with time just like in hydrometeorological processes. Namely, die’s trajectory can be predictable for short horizons and unpredictable for long ones. Furthermore, we show that the same models can be applied, with satisfactory results, to high temporal resolution time series of rainfall intensity and wind speed magnitude, occurring during mild and strong weather conditions. The difference among the experimental and two natural processes is in the time length of the high-predictability window, which is of the order of 0.1 s, 10 min and 1 h for dice, rainfall and wind process, respectively.

Full text is only available to the NTUA network due to copyright restrictions

PDF Additional material:

See also: http://dx.doi.org/10.1080/02626667.2015.1034128

Our works referenced by this work:

1. D. Koutsoyiannis, H. Yao, and A. Georgakakos, Medium-range flow prediction for the Nile: a comparison of stochastic and deterministic methods, Hydrological Sciences Journal, 53 (1), 142–164, doi:10.1623/hysj.53.1.142, 2008.
2. D. Koutsoyiannis, A random walk on water, Hydrology and Earth System Sciences, 14, 585–601, doi:10.5194/hess-14-585-2010, 2010.
3. D. Koutsoyiannis, and A. Langousis, Precipitation, Treatise on Water Science, edited by P. Wilderer and S. Uhlenbrook, 2, 27–78, Academic Press, Oxford, 2011.
4. D. Koutsoyiannis, Hurst-Kolmogorov dynamics as a result of extremal entropy production, Physica A: Statistical Mechanics and its Applications, 390 (8), 1424–1432, doi:10.1016/j.physa.2010.12.035, 2011.
5. S.M. Papalexiou, D. Koutsoyiannis, and A. Montanari, Can a simple stochastic model generate rich patterns of rainfall events?, Journal of Hydrology, 411 (3-4), 279–289, 2011.
6. Y. Markonis, and D. Koutsoyiannis, Climatic variability over time scales spanning nine orders of magnitude: Connecting Milankovitch cycles with Hurst–Kolmogorov dynamics, Surveys in Geophysics, 34 (2), 181–207, doi:10.1007/s10712-012-9208-9, 2013.
7. D. Koutsoyiannis, Encolpion of stochastics: Fundamentals of stochastic processes, doi:10.13140/RG.2.2.10956.82564, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, 2013.
8. P. Dimitriadis, K. Tzouka, and D. Koutsoyiannis, Windows of predictability in dice motion, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.19417.52322, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.
9. P. Dimitriadis, and D. Koutsoyiannis, Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes, Stochastic Environmental Research & Risk Assessment, 29 (6), 1649–1669, doi:10.1007/s00477-015-1023-7, 2015.
10. D. Koutsoyiannis, Generic and parsimonious stochastic modelling for hydrology and beyond, Hydrological Sciences Journal, 61 (2), 225–244, doi:10.1080/02626667.2015.1016950, 2016.

Our works that reference this work:

1. P. Dimitriadis, and D. Koutsoyiannis, Stochastic synthesis approximating any process dependence and distribution, Stochastic Environmental Research & Risk Assessment, 32 (6), 1493–1515, doi:10.1007/s00477-018-1540-2, 2018.
2. E. Klousakou, M. Chalakatevaki, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, G. Karakatsanis, A. Efstratiadis, N. Mamassis, R. Tomani, E. Chardavellas, and D. Koutsoyiannis, A preliminary stochastic analysis of the uncertainty of natural processes related to renewable energy resources, Advances in Geosciences, 45, 193–199, doi:10.5194/adgeo-45-193-2018, 2018.
3. P. Dimitriadis, K. Tzouka, D. Koutsoyiannis, H. Tyralis, A. Kalamioti, E. Lerias, and P. Voudouris, Stochastic investigation of long-term persistence in two-dimensional images of rocks, Spatial Statistics, 29, 177–191, doi:10.1016/j.spasta.2018.11.002, 2019.
4. T. Iliopoulou, C. Aguilar , B. Arheimer, M. Bermúdez, N. Bezak, A. Ficchi, D. Koutsoyiannis, J. Parajka, M. J. Polo, G. Thirel, and A. Montanari, A large sample analysis of European rivers on seasonal river flow correlation and its physical drivers, Hydrology and Earth System Sciences, 23, 73–91, doi:10.5194/hess-23-73-2019, 2019.

Works that cite this document: View on Google Scholar or ResearchGate

Tagged under: Determinism vs. stochasticity, Stochastics, Uncertainty