A stochastic view of varying styles in art paintings

G.-F. Sargentis, P. Dimitriadis, T. Iliopoulou, and D. Koutsoyiannis, A stochastic view of varying styles in art paintings, Heritage, 4, 21, doi:10.3390/heritage4010021, 2021.

[doc_id=2086]

[English]

A physical process is characterized as complex when it is difficult to analyze and explain in a simple way, and even more difficult to predict. The complexity within an art painting is expected to be high, possibly comparable to that of nature. Herein, we apply a 2D stochastic methodology to images of both portrait photography and artistic portraits, the latter belonging to different genres of art, with the aim to better understand their variability in quantitative terms. To quantify the dependence structure and variability, we estimate the Hurst parameter, which is a common dependence metric for hydrometeorological processes. We also seek connections between the identified stochastic patterns and the desideratum that each art movement aimed to express. Results show remarkable stochastic similarities between portrait paintings, linked to philosophical, cultural and theological characteristics of each period.

PDF Full text (3242 KB)

Our works referenced by this work:

1. A. Christofides, A. Efstratiadis, D. Koutsoyiannis, G.-F. Sargentis, and K. Hadjibiros, Resolving conflicting objectives in the management of the Plastiras Lake: can we quantify beauty?, Hydrology and Earth System Sciences, 9 (5), 507–515, doi:10.5194/hess-9-507-2005, 2005.
2. D. Koutsoyiannis, H. Yao, and A. Georgakakos, Medium-range flow prediction for the Nile: a comparison of stochastic and deterministic methods, Hydrological Sciences Journal, 53 (1), 142–164, doi:10.1623/hysj.53.1.142, 2008.
3. D. Koutsoyiannis, A random walk on water, Hydrology and Earth System Sciences, 14, 585–601, doi:10.5194/hess-14-585-2010, 2010.
4. D. Koutsoyiannis, Encolpion of stochastics: Fundamentals of stochastic processes, doi:10.13140/RG.2.2.10956.82564, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, 2013.
5. D. Koutsoyiannis, Climacogram-based pseudospectrum: a simple tool to assess scaling properties, European Geosciences Union General Assembly 2013, Geophysical Research Abstracts, Vol. 15, Vienna, EGU2013-4209, doi:10.13140/RG.2.2.18506.57284, European Geosciences Union, 2013.
6. P. Dimitriadis, and D. Koutsoyiannis, Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes, Stochastic Environmental Research & Risk Assessment, 29 (6), 1649–1669, doi:10.1007/s00477-015-1023-7, 2015.
7. P. Dimitriadis, D. Koutsoyiannis, and K. Tzouka, Predictability in dice motion: how does it differ from hydrometeorological processes?, Hydrological Sciences Journal, 61 (9), 1611–1622, doi:10.1080/02626667.2015.1034128, 2016.
8. P. Dimitriadis, Hurst-Kolmogorov dynamics in hydroclimatic processes and in the microscale of turbulence, PhD thesis, Department of Water Resources and Environmental Engineering – National Technical University of Athens, 2017.
9. G.-F. Sargentis, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, and D. Koutsoyiannis, Stochastic investigation of the Hurst-Kolmogorov behaviour in arts, European Geosciences Union General Assembly 2018, Geophysical Research Abstracts, Vol. 20, Vienna, EGU2018-17740-1, European Geosciences Union, 2018.
10. P. Dimitriadis, K. Tzouka, D. Koutsoyiannis, H. Tyralis, A. Kalamioti, E. Lerias, and P. Voudouris, Stochastic investigation of long-term persistence in two-dimensional images of rocks, Spatial Statistics, 29, 177–191, doi:10.1016/j.spasta.2018.11.002, 2019.
11. G.-F. Sargentis, P. Dimitriadis, R. Ioannidis, T. Iliopoulou, and D. Koutsoyiannis, Stochastic evaluation of landscapes transformed by renewable energy installations and civil works, Energies, 12 (4), 2817, doi:10.3390/en12142817, 2019.
12. P. Dimitriadis, and D. Koutsoyiannis, The mode of the climacogram estimator for a Gaussian Hurst-Kolmogorov process, Journal of Hydroinformatics, doi:10.2166/hydro.2019.038, 2019.
13. D. Koutsoyiannis, Stochastics of Hydroclimatic Extremes - A Cool Look at Risk, 330 pages, Edition 0, National Technical University of Athens, Athens, 2020.
14. G.-F. Sargentis, T. Iliopoulou, S. Sigourou, P. Dimitriadis, and D. Koutsoyiannis, Evolution of clustering quantified by a stochastic method — Case studies on natural and human social structures, Sustainability, 12 (19), 7972, doi:10.3390/su12197972, 2020.
15. G.-F. Sargentis, R. Ioannidis, T. Iliopoulou, P. Dimitriadis, and D. Koutsoyiannis, Landscape planning of infrastructure through focus points’ clustering analysis. Case study: Plastiras artificial lake (Greece), Infrastructures, 6 (1), 12, doi:10.3390/infrastructures6010012, 2021.