Uncertainty assessment of future hydroclimatic predictions: A comparison of probabilistic and scenario-based approaches

D. Koutsoyiannis, A. Efstratiadis, and K. Georgakakos, Uncertainty assessment of future hydroclimatic predictions: A comparison of probabilistic and scenario-based approaches, Journal of Hydrometeorology, 8 (3), 261–281, doi:10.1175/JHM576.1, 2007.

[doc_id=728]

[English]

During the last decade, numerous studies have been carried out to predict future climate based on climatic models run on the global scale and fed by plausible scenarios about anthropogenic forcing to climate. Based on climatic model output, hydrologic models attempt then to predict future hydrologic regimes at regional scales. Much less systematic work has been done to estimate climatic uncertainty and to assess the climatic and hydrologic model outputs within an uncertainty perspective. In this study, a stochastic framework for future climatic uncertainty is proposed, based on the following lines: (1) climate is not constant but rather varying in time and expressed by the long-term (e.g. 30-year) time average of a natural process, defined on a fine scale; (2) the evolution of climate is represented as a stochastic process; (3) the distributional parameters of a process, marginal and dependence, are estimated from an available sample by statistical methods; (4) the climatic uncertainty is the result of at least two factors, the climatic variability and the uncertainty of parameter estimation; (5) a climatic process exhibits a scaling behavior, also known as long-range dependence or the Hurst phenomenon; (6) because of this dependence, the uncertainty limits of the future are affected by the available observations of the past. The last two lines differ from classical statistical considerations and produce uncertainty limits that eventually are much wider than those of classical statistics. A combination of analytical and Monte Carlo methods is developed to determine uncertainty limits for the nontrivial scaling case. The framework developed is applied with temperature, rainfall and runoff data from a catchment in Greece, for which data exist for about a century. The uncertainty limits are then superimposed onto deterministic projections up to 2050, obtained for several scenarios and climatic models combined with a hydrologic model. These projections indicate a significant increase of temperature in the future, beyond uncertainty bands, and no significant change of rainfall and runoff as they lie well within uncertainty limits.

Full text is only available to the NTUA network due to copyright restrictions

PDF Additional material:

See also: http://dx.doi.org/10.1175/JHM576.1

Remarks:

Erratum in equation (A3) in the final paper; see the correct version in preprint.

Our works referenced by this work:

1. D. Koutsoyiannis, and Th. Xanthopoulos, Engineering Hydrology, Edition 3, 418 pages, doi:10.13140/RG.2.1.4856.0888, National Technical University of Athens, Athens, 1999.
2. D. Koutsoyiannis, A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series, Water Resources Research, 36 (6), 1519–1533, 2000.
3. D. Koutsoyiannis, The Hurst phenomenon and fractional Gaussian noise made easy, Hydrological Sciences Journal, 47 (4), 573–595, doi:10.1080/02626660209492961, 2002.
4. D. Koutsoyiannis, Climate change, the Hurst phenomenon, and hydrological statistics, Hydrological Sciences Journal, 48 (1), 3–24, doi:10.1623/hysj.48.1.3.43481, 2003.
5. E. Rozos, A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Calibration of a semi-distributed model for conjunctive simulation of surface and groundwater flows, Hydrological Sciences Journal, 49 (5), 819–842, doi:10.1623/hysj.49.5.819.55130, 2004.
6. D. Koutsoyiannis, Uncertainty, entropy, scaling and hydrological stochastics, 1, Marginal distributional properties of hydrological processes and state scaling, Hydrological Sciences Journal, 50 (3), 381–404, doi:10.1623/hysj.50.3.381.65031, 2005.
7. D. Koutsoyiannis, Uncertainty, entropy, scaling and hydrological stochastics, 2, Time dependence of hydrological processes and time scaling, Hydrological Sciences Journal, 50 (3), 405–426, doi:10.1623/hysj.50.3.405.65028, 2005.
8. A. Efstratiadis, E. Rozos, A. Koukouvinos, I. Nalbantis, G. Karavokiros, and D. Koutsoyiannis, An integrated model for conjunctive simulation of hydrological processes and water resources management in river basins, European Geosciences Union General Assembly 2005, Geophysical Research Abstracts, Vol. 7, Vienna, 03560, doi:10.13140/RG.2.2.27930.64960, European Geosciences Union, 2005.
9. D. Koutsoyiannis, and S. Kozanis, A simple Monte Carlo methodology to calculate generalized approximate confidence intervals, Research report, Contractor: [Not funded], doi:10.13140/RG.2.2.33579.85286, Hydrologic Research Center, 2005.
10. D. Koutsoyiannis, A toy model of climatic variability with scaling behaviour, Journal of Hydrology, 322, 25–48, 2006.
11. D. Koutsoyiannis, Nonstationarity versus scaling in hydrology, Journal of Hydrology, 324, 239–254, 2006.

Our works that reference this work:

1. D. Koutsoyiannis, and A. Montanari, Statistical analysis of hydroclimatic time series: Uncertainty and insights, Water Resources Research, 43 (5), W05429, doi:10.1029/2006WR005592, 2007.
2. C. Cudennec, C. Leduc, and D. Koutsoyiannis, Dryland hydrology in Mediterranean regions -- a review, Hydrological Sciences Journal, 52 (6), 1077–1087, doi:10.1623/hysj.52.6.1077, 2007.
3. A. Efstratiadis, I. Nalbantis, A. Koukouvinos, E. Rozos, and D. Koutsoyiannis, HYDROGEIOS: A semi-distributed GIS-based hydrological model for modified river basins, Hydrology and Earth System Sciences, 12, 989–1006, doi:10.5194/hess-12-989-2008, 2008.
4. D. Koutsoyiannis, A. Efstratiadis, N. Mamassis, and A. Christofides, On the credibility of climate predictions, Hydrological Sciences Journal, 53 (4), 671–684, doi:10.1623/hysj.53.4.671, 2008.
5. D. Koutsoyiannis, C. Makropoulos, A. Langousis, S. Baki, A. Efstratiadis, A. Christofides, G. Karavokiros, and N. Mamassis, Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability, Hydrology and Earth System Sciences, 13, 247–257, doi:10.5194/hess-13-247-2009, 2009.
6. D. Koutsoyiannis, A. Montanari, H. F. Lins, and T.A. Cohn, Climate, hydrology and freshwater: towards an interactive incorporation of hydrological experience into climate research—DISCUSSION of “The implications of projected climate change for freshwater resources and their management”, Hydrological Sciences Journal, 54 (2), 394–405, doi:10.1623/hysj.54.2.394, 2009.
7. G. G. Anagnostopoulos, D. Koutsoyiannis, A. Christofides, A. Efstratiadis, and N. Mamassis, A comparison of local and aggregated climate model outputs with observed data, Hydrological Sciences Journal, 55 (7), 1094–1110, doi:10.1080/02626667.2010.513518, 2010.
8. D. Koutsoyiannis, Hurst-Kolmogorov dynamics and uncertainty, Journal of the American Water Resources Association, 47 (3), 481–495, doi:10.1111/j.1752-1688.2011.00543.x, 2011.
9. I. Nalbantis, A. Efstratiadis, E. Rozos, M. Kopsiafti, and D. Koutsoyiannis, Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems, Hydrology and Earth System Sciences, 15, 743–758, doi:10.5194/hess-15-743-2011, 2011.
10. D. Koutsoyiannis, A. Christofides, A. Efstratiadis, G. G. Anagnostopoulos, and N. Mamassis, Scientific dialogue on climate: is it giving black eyes or opening closed eyes? Reply to “A black eye for the Hydrological Sciences Journal” by D. Huard, Hydrological Sciences Journal, 56 (7), 1334–1339, doi:10.1080/02626667.2011.610759, 2011.
11. H. Tyralis, D. Koutsoyiannis, and S. Kozanis, An algorithm to construct Monte Carlo confidence intervals for an arbitrary function of probability distribution parameters, Computational Statistics, 28 (4), 1501–1527, doi:10.1007/s00180-012-0364-7, 2013.
12. H. Tyralis, and D. Koutsoyiannis, A Bayesian statistical model for deriving the predictive distribution of hydroclimatic variables, Climate Dynamics, 42 (11-12), 2867–2883, doi:10.1007/s00382-013-1804-y, 2014.
13. D. Koutsoyiannis, Generic and parsimonious stochastic modelling for hydrology and beyond, Hydrological Sciences Journal, 61 (2), 225–244, doi:10.1080/02626667.2015.1016950, 2016.
14. P.E. O’Connell, D. Koutsoyiannis, H. F. Lins, Y. Markonis, A. Montanari, and T.A. Cohn, The scientific legacy of Harold Edwin Hurst (1880 – 1978), Hydrological Sciences Journal, 61 (9), 1571–1590, doi:10.1080/02626667.2015.1125998, 2016.
15. H. Tyralis, and D. Koutsoyiannis, On the prediction of persistent processes using the output of deterministic models, Hydrological Sciences Journal, 62 (13), 2083–2102, doi:10.1080/02626667.2017.1361535, 2017.

Works that cite this document: View on Google Scholar or ResearchGate

Other works that reference this work (this list might be obsolete):

1. Hamed, K.H., Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis, Journal of Hydrology, 349(3-4), 350-363, 2008.
2. O’Hara, J.K., and K.P. Georgakakos, Quantifying the urban water supply impacts of climate change, Water Resources Management, 22(10), 1477-1497, 2008.
3. #Shelton, M. L., Hydroclimatology: Perspectives and Applications, Cambridge University Press, 2008.
4. #McKitrick, R., The T3 tax as a policy strategy for global warming, The Vancouver Volumes, Nakamura, A. (ed.), Vancouver, BC, Trafford Press, 2008.
5. #Chung, F., J. Anderson, S. Arora, M. Ejeta, J. Galef, T. Kadir, K. Kao, A. Olson, C. Quan, E. Reyes, M. Roos, S. Seneviratne, J. Wang, H. Yin and N. Blomquist, Using Future Climate Projections to Support Water Resources Decision Making in California, 54 pp., California Department of Water Resources, California, 2009.
6. Hou, D., K. Mitchell, Z. Toth, D. Lohmann, and H. Wei, The effect of large scale atmospheric uncertainty on streamflow predictability, Journal of Hydrometeorology, 10(3) 717-733, 2009.
7. Kerkhoven, E., and T. Y. Gan, Unconditional uncertainties of historical and simulated river flows subjected to climate change, Journal of Hydrology, 396(1-2), 113-127, 2011.
8. Lo, M.‐H., and J. S. Famiglietti, Precipitation response to land subsurface hydrologic processes in atmospheric general circulation model simulations, Journal of Geophysical Research, 116, D05107, doi: 10.1029/2010JD015134, 2011.
9. Di Baldassarre, G., M. Elshamy, A. van Griensven, E. Soliman, M. Kigobe, P. Ndomba, J. Mutemi, F. Mutua, S. Moges, J.-Q. Xuan, D. Solomatine and S. Uhlenbrook, Future hydrology and climate in the River Nile basin: a review, Hydrological Sciences Journal, 56(2), 199-211, 2011.
10. Wang, J., H. Yin, and F. Chung, Isolated and integrated effects of sea level rise, seasonal runoff shifts, and annual runoff volume on California’s largest water supply, Journal of Hydrology, 405(1-2), 83-92, 2011.
11. Tao, F. L., and Z. Zhang, Dynamic response of terrestrial hydrological cycles and plant water stress to climate change in China, Journal of Hydrometeorology, 12(3), 371-393, 2011.
12. Sheikh, V., and A. Bahremand, Trends in precipitation and stream flow in the semi-arid region of Atrak River, Desert, 16, 49-60, 2011.
13. #Kerkhoven, E., T. Y.Gan, C.-C. Kuo, and Z. Islam, Unconditional uncertainties of historical and simulated river flows subjected to climate change, Proceedings of 20th Annual Conference of Canadian Society for Civil Engineering, Vol. 4 , 3238-3248, 2011.
14. Di Baldassarre, G., M. Elshamy, A. van Griensven, E. Soliman, M. Kigobe, P. Ndomba, J. Mutemi, F. Mutua, S. Moges, Y. Xuan, D. Solomatine and S. Uhlenbrook, A Critical Discussion of Recent Studies Evaluating the Impacts of Climate Change on Water Resources in the Nile basin, Nile Basin Water Science & Engineering Journal, 4 (2), 94-100, 2011.
15. Patil, A., and Z.-Q. Deng, Input data measurement-induced uncertainty in watershed modelling, Hydrological Sciences Journal, 57(1), 118–133, 2012.
16. Bakker, A. M. R., and B. J. J. M. van den Hurk, Estimation of persistence and trends in geostrophic wind speed for the assessment of wind energy yields in Northwest Europe, Climate Dynamics, 39 (3-4), 767-782, 2012.
17. Liu, L.-L.,T. Jiang, J.-G. Xu, J.-Q. Zhai and Y. Luo, Responses of hydrological processes to climate change in the Zhujiang river basin in the 21st century, Advances In Climate Change Research, 3(2), 84-91, 2012.
18. #Qin, J., Z.-C. Hao, G.-X. Ou, L. Wang, and C.-J. Zhu, Impact of global climate change on regional water resources: A case study in the Huai River Basin, in: L. M. Druyan (editor), Climate Models, 336 pp., Chapter 5, 87-108, InTech Publications, 2012.
19. #Samaras, A.G., and C.G. Koutitas, Climate change and its impact on sediment transport and morphology in the watershed – coast entity, Protection and Restoration of the Environment XI, 2547-2556, 2012.
20. #Loukas, A., and L. Vasiliades, Review of applied methods for flood-frequency analysis in a changing environment in Greece, In: A review of applied methods in Europe for flood-frequency analysis in a changing environment, Floodfreq COST action ES0901: European procedures for flood frequency estimation (ed. by H. Madsen et al.), Centre for Ecology & Hydrology, Wallingford, UK, 2013.
21. Liu, L., T. Fischer, T. Jiang, and Y. Luo, Comparison of uncertainties in projected flood frequency of the Zhujiang River, South China, Quaternary International, 304, 51-61, 2013.
22. Panagoulia, D., and E. I. Vlahogianni, Non-linear dynamics and recurrence analysis of extreme precipitation for observed and general circulation model generated climates, Hydrological Processes, 28(4), 2281–2292, 2014.
23. Graf, R., Reference statistics for the structure of measurement series of groundwater levels (Wielkopolska Lowland - western Poland), Hydrological Sciences Journal, 60(9), 1587-1606, doi:10.1080/02626667.2014.905689, 2015.
24. Hosseinpour, A., L. Dolcine, and M. Fuamba, Natural flow reconstruction using Kalman filter and water balance–based methods I: Theory, Journal of Hydrologic Engineering, 10.1061/(ASCE)HE.1943-5584.0000977, 04014029, 2014.
25. Samaras, A. G., and C. G. Koutitas, Modeling the impact of climate change on sediment transport and morphology in coupled watershed-coast systems: A case study using an integrated approach, International Journal of Sediment Research, 29(3), 304-315, 2014.
26. #Viglione, A., and M. Rogger, Flood processes and hazards, in: P. Paron, G. Di Baldassarre, and J. F. Shroder Jr. (eds.), Hydro-Meteorological Hazards, Risks and Disasters, Chapter 1, 3–33, Elsevier, 2015.
27. Turner, S. W. D., R. J. Blackwell, M. A. Smith, and P. J. Jeffrey, Risk-based water resources planning in England and Wales: challenges in execution and implementation, Urban Water Journal, 13(2), 182-197, doi:10.1080/1573062X.2014.955856, 2016.
28. Lin, Y.-H., M.-H. Lo, and C. Chou, Potential negative effects of groundwater dynamics on dry season convection in the Amazon River basin, Climate Dynamics, 46, 1001-1013, doi:10.1007/s00382-015-2628-8, 2016.
29. Paparrizos, S., and A. Matzarakis, Assessment of future climate change impacts on the hydrological regime of selected Greek areas with different climate conditions, Hydrology Research, 47(4), nh2016018; doi:10.2166/nh.2016.018, 2016.
30. Tiwari, H., S. Pd. Rai, N. Sharma, and D. Kumar, Computational approaches for annual maximum river flow series, Ain Shams Engineering Journal, 8(1), 51-58, doi:10.1016/j.asej.2015.07.016, 2017.
31. Tan, X., and T. Y. Gan, Multifractality of Canadian precipitation and streamflow, International Journal of Climatology, 37(S1), 1221–1236, doi:10.1002/joc.5078, 2017.
32. Bukovsky, M. S., R. R. McCrary, A. Seth, and L. O. Mearns, A mechanistically credible, poleward shift in warm-season precipitation projected for the U.S. Southern Great Plains?, Journal of Climate, doi:10.1175/JCLI-D-16-0316.1, 2017.

Tagged under: Course bibliography: Hydrometeorology, Climate stochastics, Hurst-Kolmogorov dynamics, Stochastics, Uncertainty