Romanos Ioannidis

Civil Engineer, PhD candidate

Participation in research projects

Participation as Researcher

  1. Maintenance, upgrading and extension of the Decision Support System for the management of the Athens water resource system

Published work

Publications in scientific journals

  1. K. Moraiti, S. Sigourou, P. Dimitriadis, R. Ioannidis, I. Benekos, T. Iliopoulou, O. Kitsou, N. Mamassis, D. Koutsoyiannis, and G.-F. Sargentis, Documenting the changing floodplain of Nileas Basin in North Euboea (Greece) before and after Storms Daniel and Elias, Rural and Regional Development, 2 (3), 10013, doi:10.35534/rrd.2024.10013, 2024.
  2. G.-F. Sargentis, R. Ioannidis, I. Bairaktaris, E. Frangedaki, P. Dimitriadis, T. Iliopoulou, D. Koutsoyiannis, and N. D. Lagaros, Wildfires vs. sustainable forest partitioning, Conservation, 2 (1), 195–218, doi:10.3390/conservation2010013, 2022.
  3. R. Ioannidis, N. Mamassis, A. Efstratiadis, and D. Koutsoyiannis, Reversing visibility analysis: Towards an accelerated a priori assessment of landscape impacts of renewable energy projects, Renewable and Sustainable Energy Reviews, 161, 112389, doi:10.1016/j.rser.2022.112389, 2022.
  4. R. Ioannidis, G.-F. Sargentis, and D. Koutsoyiannis, Landscape design in infrastructure projects - is it an extravagance? A cost-benefit investigation of practices in dams, Landscape Research, doi:10.1080/01426397.2022.2039109, 2022.
  5. G.-F. Sargentis, R. Ioannidis, T. Iliopoulou, P. Dimitriadis, and D. Koutsoyiannis, Landscape planning of infrastructure through focus points’ clustering analysis. Case study: Plastiras artificial lake (Greece), Infrastructures, 6 (1), 12, doi:10.3390/infrastructures6010012, 2021.
  6. R. Ioannidis, and D. Koutsoyiannis, A review of land use, visibility and public perception of renewable energy in the context of landscape impact, Applied Energy, 276, 115367, doi:10.1016/j.apenergy.2020.115367, 2020.
  7. G.-F. Sargentis, P. Dimitriadis, R. Ioannidis, T. Iliopoulou, E. Frangedaki, and D. Koutsoyiannis, Optimal utilization of water resources for local communities in mainland Greece (case study of Karyes, Peloponnese), Procedia Manufacturing, 44, 253–260, doi:10.1016/j.promfg.2020.02.229, 2020.
  8. R. Ioannidis, T. Iliopoulou, C. Iliopoulou, L. Katikas, A. Petsou, M.-E. Merakou, M.-E. Asimomiti, N. Pelekanos, G. Koudouris, P. Dimitriadis, C. Plati, E. Vlahogianni, K. Kepaptsoglou, N. Mamassis, and D. Koutsoyiannis, Solar-powered bus route: introducing renewable energy into a university campus transport system, Advances in Geosciences, 49, doi:10.5194/adgeo-49-215-2019, 2019.
  9. G.-F. Sargentis, P. Dimitriadis, R. Ioannidis, T. Iliopoulou, and D. Koutsoyiannis, Stochastic evaluation of landscapes transformed by renewable energy installations and civil works, Energies, 12 (4), 2817, doi:10.3390/en12142817, 2019.
  10. G.-F. Sargentis, R. Ioannidis, G. Karakatsanis, S. Sigourou, N. D. Lagaros, and D. Koutsoyiannis, The development of the Athens water supply system and inferences for optimizing the scale of water infrastructures, Sustainability, 11 (9), 2657, doi:10.3390/su11092657, 2019.
  11. E. Klousakou, M. Chalakatevaki, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, G. Karakatsanis, A. Efstratiadis, N. Mamassis, R. Tomani, E. Chardavellas, and D. Koutsoyiannis, A preliminary stochastic analysis of the uncertainty of natural processes related to renewable energy resources, Advances in Geosciences, 45, 193–199, doi:10.5194/adgeo-45-193-2018, 2018.

Book chapters and fully evaluated conference publications

  1. R. Ioannidis, G.-F. Sargentis, A. Efstratiadis, N. Mamassis, and D. Koutsoyiannis, [No English title available], Proceedings of 4th Hellenic Conference on Dams and Reservoirs, War Museum Athens, Hellenic Commission on Large Dams, Athens, 2024.
  2. R. Ioannidis, N. Mamassis, K. Moraitis, and D. Koutsoyiannis, Proposals of spatial planning and architectural design for the sustainable integration of renewable energy works in the Greek landscape, Proceedings of the 10th Conference of MIRC - NTUA “Research and actions for the regeneration of mountainous and isolated areas”, Metsovo, 332–343, National Technical University of Athens, Metsovion Interdisciplinary Research Center, 2022.
  3. G.-F. Sargentis, R. Ioannidis, M. Chiotinis, P. Dimitriadis, and D. Koutsoyiannis, Aesthetical issues with stochastic evaluation, Data Analytics for Cultural Heritage, edited by A. Belhi, A. Bouras, A.K. Al-Ali, and A.H. Sadka, doi:10.1007/978-3-030-66777-1_8, Springer, 2021.
  4. N. Mamassis, A. Efstratiadis, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, and D. Koutsoyiannis, Water and Energy, Handbook of Water Resources Management: Discourses, Concepts and Examples, edited by J.J. Bogardi, T. Tingsanchali, K.D.W. Nandalal, J. Gupta, L. Salamé, R.R.P. van Nooijen, A.G. Kolechkina, N. Kumar, and A. Bhaduri, Chapter 20, 617–655, doi:10.1007/978-3-030-60147-8_20, Springer Nature, Switzerland, 2021.
  5. R. Ioannidis, and D. Koutsoyiannis, The architectural and landscape value of dams: from international examples to proposals for Greece, Proceedings of 3rd Hellenic Conference on Dams and Reservoirs, Zappeion, Hellenic Commission on Large Dams, Athens, 2017.
  6. D. Koutsoyiannis, and R. Ioannidis, The energetic, environmental and aesthetic superiority of large hydropower projects over other renewable energy projects, Proceedings of 3rd Hellenic Conference on Dams and Reservoirs, Zappeion, Hellenic Commission on Large Dams, Athens, 2017.

Conference publications and presentations with evaluation of abstract

  1. R. Ioannidis, and D. Koutsoyiannis, Α generic quantification of the landscape impacts of wind, solar and hydroelectric energy, 2023 Visual Resource Stewardship Conference: Exploring Multisensory Landscapes, Lemont, Argonne National Laboratory, 2023.
  2. R. Ioannidis, and N. Mamassis, The prospects of reverse GIS visibility analyses for the anticipation and mitigation of landscape impacts of renewable energy projects in large scales, 2023 Visual Resource Stewardship Conference: Exploring Multisensory Landscapes, Lemont, Argonne National Laboratory, 2023.
  3. A. Tsouni, S. Sigourou, P. Dimitriadis, V. Pagana, T. Iliopoulou, G.-F. Sargentis, R. Ioannidis, E. Chardavellas, D. Dimitrakopoulou, N. Mamassis, D. Koutsoyiannis, and C. Contoes, Multi-parameter flood risk assessment towards efficient flood management in highly dense urban river basins in the Region of Attica, Greece, European Geosciences Union General Assembly 2023, Vienna, Austria & Online, EGU23-12624, doi:10.5194/egusphere-egu23-12624, 2023.
  4. G. Kirkmalis, G.-F. Sargentis, R. Ioannidis, D. Markantonis, T. Iliopoulou, P. Dimitriadis, N. Mamassis, and D. Koutsoyiannis, Fertilizers as batteries and regulators in the global Water-Energy-Food equilibrium, European Geosciences Union General Assembly 2023, Vienna, Austria & Online, EGU23-11915, doi:10.5194/egusphere-egu23-11915, 2023.
  5. S. Sigourou, A. Tsouni, V. Pagana, G.-F. Sargentis, P. Dimitriadis, R. Ioannidis, E. Chardavellas, D. Dimitrakopoulou, N. Mamassis, D. Koutsoyiannis, and C. Contoes, An advanced methodology for field visits towards efficient flood management on building block level, European Geosciences Union General Assembly 2023, Vienna, Austria & Online, EGU23-16168, doi:10.5194/egusphere-egu23-16168, 2023.
  6. D. Dimitrakopoulou, R. Ioannidis, P. Dimitriadis, T. Iliopoulou, G.-F. Sargentis, E. Chardavellas, N. Mamassis, and D. Koutsoyiannis, Public involvement in the design and implementation of infrastructure projects, European Geosciences Union General Assembly 2023, Vienna, Austria & Online, EGU23-16478, doi:10.5194/egusphere-egu23-16478, 2023.
  7. D. Dimitrakopoulou, R. Ioannidis, G.-F. Sargentis, P. Dimitriadis, T. Iliopoulou, E. Chardavellas, S. Vavoulogiannis, N. Mamassis, and D. Koutsoyiannis, Social uncertainty in flood risk: field research, citizens’ engagement, institutions' collaboration, IAHS 100th Anniversary – 11th IAHS-AISH Scientific Assembly 2022, Montpellier, France, IAHS2022-351, International Association of Hydrological Sciences, 2022.
  8. R. Ioannidis, C. Iliopoulou, T. Iliopoulou, L. Katikas, P. Dimitriadis, C. Plati, E. Vlahogianni, K. Kepaptsoglou, N. Mamassis, and D. Koutsoyiannis, Solar-electric buses for a university campus transport system, Transportation Research Board (TRB) 99th Annual Meeting, Washington D.C., 2020.
  9. E. Manta, R. Ioannidis, G.-F. Sargentis, and A. Efstratiadis, Aesthetic evaluation of wind turbines in stochastic setting: Case study of Tinos island, Greece, European Geosciences Union General Assembly 2020, Geophysical Research Abstracts, Vol. 22, Vienna, EGU2020-5484, doi:10.5194/egusphere-egu2020-5484, 2020.
  10. M. Karataraki, A. Thanasko, K. Printziou, G. Koudouris, R. Ioannidis, T. Iliopoulou, P. Dimitriadis, C. Plati, and D. Koutsoyiannis, Campus solar roads: a feasibility analysis, European Geosciences Union General Assembly 2019, Geophysical Research Abstracts, Vol. 21, Vienna, EGU2019-15648-2, European Geosciences Union, 2019.
  11. A. Petsou, M.-E. Merakou, T. Iliopoulou, C. Iliopoulou, P. Dimitriadis, R. Ioannidis, K. Kepaptsoglou, and D. Koutsoyiannis, Campus solar roads: Optimization of solar panel and electric charging station location for university bus route, European Geosciences Union General Assembly 2019, Geophysical Research Abstracts, Vol. 21, Vienna, EGU2019-10832, European Geosciences Union, 2019.
  12. Μ. Sako, E. Tsoli, R. Ioannidis, E. Frangedaki, G.-F. Sargentis, and D. Koutsoyiannis, Optimizing the size of Hilarion dam with technical, economical and environmental parameters, European Geosciences Union General Assembly 2019, Geophysical Research Abstracts, Vol. 21, Vienna, EGU2019-15297, European Geosciences Union, 2019.
  13. R. Ioannidis, P. Dimitriadis, G.-F. Sargentis, E. Frangedaki, T. Iliopoulou, and D. Koutsoyiannis, Stochastic similarities between hydrometeorogical and art processes for optimizing architecture and landscape aesthetic parameters, European Geosciences Union General Assembly 2019, Geophysical Research Abstracts, Vol. 21, Vienna, EGU2019-11403, European Geosciences Union, 2019.
  14. G.-F. Sargentis, R. Ioannidis, G. Karakatsanis, and D. Koutsoyiannis, The scale of infrastructures as a social decision. Case study: dams in Greece, European Geosciences Union General Assembly 2018, Geophysical Research Abstracts, Vol. 20, Vienna, EGU2018-17082, European Geosciences Union, 2018.
  15. G.-F. Sargentis, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, and D. Koutsoyiannis, Stochastic investigation of the Hurst-Kolmogorov behaviour in arts, European Geosciences Union General Assembly 2018, Geophysical Research Abstracts, Vol. 20, Vienna, EGU2018-17740-1, European Geosciences Union, 2018.
  16. S. Sigourou, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, A. Skopeliti, K. Sakellari, G. Karakatsanis, L. Tsoulos, and D. Koutsoyiannis, Comparison of climate change vs. urbanization, European Geosciences Union General Assembly 2018, Geophysical Research Abstracts, Vol. 20, Vienna, EGU2018-18598-2, European Geosciences Union, 2018.
  17. S. Sigourou, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, A. Skopeliti, K. Sakellari, G. Karakatsanis, L. Tsoulos, and D. Koutsoyiannis, Statistical and stochastic comparison of climate change vs. urbanization, European Geosciences Union General Assembly 2018, Geophysical Research Abstracts, Vol. 20, Vienna, EGU2018-18608-2, European Geosciences Union, 2018.
  18. E. Klousakou, M. Chalakatevaki, R. Tomani, P. Dimitriadis, A. Efstratiadis, T. Iliopoulou, R. Ioannidis, N. Mamassis, and D. Koutsoyiannis, Stochastic investigation of the uncertainty of atmospheric processes related to renewable energy resources, European Geosciences Union General Assembly 2018, Geophysical Research Abstracts, Vol. 20, Vienna, EGU2018-16982-2, European Geosciences Union, 2018.
  19. P. Dimitriadis, L. Lappas, Ο. Daskalou, A. M. Filippidou, M. Giannakou, Ε. Gkova, R. Ioannidis, Α. Polydera, Ε. Polymerou, Ε. Psarrou, A. Vyrini, S.M. Papalexiou, and D. Koutsoyiannis, Application of stochastic methods for wind speed forecasting and wind turbines design at the area of Thessaly, Greece, European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-13810, doi:10.13140/RG.2.2.25355.08486, European Geosciences Union, 2015.
  20. S. Sigourou, V. Pagana, P. Dimitriadis, A. Tsouni, T. Iliopoulou, G.-F. Sargentis, R. Ioannidis, E. Chardavellas, D. Dimitrakopoulou, N. Mamassis, C. Contoes, and D. Koutsoyiannis, Flood risk assessment in the region of Attica, 9th International Conference on Civil Protection & New Technologies - Safe Thessaloniki 2022, Thessaloniki, Greece, September 2022.
  21. S. Sigourou, V. Pagana, P. Dimitriadis, A. Tsouni, T. Iliopoulou, G.-F. Sargentis, R. Ioannidis, E. Chardavellas, D. Dimitrakopoulou, N. Mamassis, C. Contoes, and D. Koutsoyiannis, Proposed methodology for urban flood-risk assessment at river-basin level: the case study of the Pikrodafni river basin in Athens, Greece, Global Flood Partnership 2022 Annual Meeting, Leeds, UK, September 2022.

Presentations and publications in workshops

  1. G.-F. Sargentis, R. Ioannidis, E. Frangedaki, P. Dimitriadis, T. Iliopoulou, D. Koutsoyiannis, and N. D. Lagaros, Wildfires, Stuff we don't mention in the normal course of studies, Rovies, National Technical University of Athens (NTUA), 2023.
  2. R. Ioannidis, [No English title available], Stuff we don't mention in the normal course of studies, Rovies, National Technical University of Athens (NTUA), 2023.
  3. A. Tsouni, S. Sigourou, V. Pagana, D. Koutsoyiannis, N. Mamassis, A. Koukouvinos, P. Dimitriadis, T. Iliopoulou, G.-F. Sargentis, R. Ioannidis, D. Dimitrakopoulou, E. Chardavellas, S. Vavoulogiannis, and V. Kyriakouli, Flood risk assessment in the Pikrodafni basin, Presentation of results for the 1st Phase of the Program Agreement between Attica Regional Authority and NOA, Athens, National Observatory of Athens, 2022.

Various publications

  1. G.-F. Sargentis, and R. Ioannidis, The effect of wind turbines in the landscape, Department of Water Resources and Environmental Engineering – National Technical University of Athens, 2023.

Academic works

  1. R. Ioannidis, Spatial planning and architectural design for the integration of civil infrastructure into landscapes: Inferences from renewable energy works and dams, PhD thesis, Department of Water Resources and Environmental Engineering – National Technical University of Athens, June 2022.
  2. R. Ioannidis, Architecture and the aesthetic element in dams: From international cases to proposals for Greece, Diploma thesis, 247 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, 2015.

Details on research projects

Participation as Researcher

  1. Maintenance, upgrading and extension of the Decision Support System for the management of the Athens water resource system

    Duration: October 2008–November 2011

    Budget: €72 000

    Project director: N. Mamassis

    Principal investigator: D. Koutsoyiannis

    This research project includes the maintenance, upgrading and extension of the Decision Support System that developed by NTUA for EYDAP in the framework of the research project “Updating of the supervision and management of the water resources’ system for the water supply of the Athens’ metropolitan area”. The project is consisted of the following parts: (a) Upgrading of the Data Base, (b)Upgrading and extension of hydrometeorological network, (c) upgrading of the hydrometeorological data process software, (d) upgrading and extension of the Hydronomeas software, (e) hydrological data analysis and (f) support to the preparation of the annual master plans

Published work in detail

Publications in scientific journals

  1. K. Moraiti, S. Sigourou, P. Dimitriadis, R. Ioannidis, I. Benekos, T. Iliopoulou, O. Kitsou, N. Mamassis, D. Koutsoyiannis, and G.-F. Sargentis, Documenting the changing floodplain of Nileas Basin in North Euboea (Greece) before and after Storms Daniel and Elias, Rural and Regional Development, 2 (3), 10013, doi:10.35534/rrd.2024.10013, 2024.

    The area of north Euboea is characterized by its intense relief, dense hydrographic network, and rich flora and fauna. In the mid-2010s, the region was struck by a plane tree disease that withered the large population of plane trees in the area, while in 2021, a large wildfire completely burned the forest. These unfortunate events depleted the landscape’s natural ability to manage and mitigate flood phenomena. Observing the landscape’s vulnerability to floods, in April 2023, we conduct on-site field inspections in the rivers of the area. In September 2023, a major flood hit the area, causing in dramatic changes to the landscape. Therefore, in November 2023, we conducted follow-up on-site field inspections in the area, in order to trace the differences, present the damages the phenomenon left behind. These inspections allowed to document the landscape changes from the combination of all previous events and identify any associated pathologies. Site visits and comparisons before and after the Daniel/Elias storm revealed dramatic changes in the riverbed width at lower altitudes, significant sediment accumulation in the Voudouros River delta, alterations in the natural landscape along the river and its floodplain, destruction of the arable land, and road collapses in several locations.

    Full text: http://www.itia.ntua.gr/en/getfile/2465/1/documents/df859480db58f57a93db8ae1fd1e29cf.pdf (1896 KB)

    Additional material:

  1. G.-F. Sargentis, R. Ioannidis, I. Bairaktaris, E. Frangedaki, P. Dimitriadis, T. Iliopoulou, D. Koutsoyiannis, and N. D. Lagaros, Wildfires vs. sustainable forest partitioning, Conservation, 2 (1), 195–218, doi:10.3390/conservation2010013, 2022.

    There is a widespread perception that every year wildfires are intensifying on a global scale, something that is often used as an indicator of the adverse impacts of global warming. However, from the analysis of wildfires that have occurred in the US, Canada, and Mediterranean countries, a trend that justifies this perception could not be identified. Arguably, instead of blaming climate change, research on the mitigation of wildfires should be re-directed to forest management policy and practices. Forests are admirable and complex natural ecosystems, and fires, albeit devastating, can be attributed to both human activity and to natural processes that contribute to their rebirth, with the latter constituting an intrinsic and perpetual process of the forest ecosystem. Other than their important ecological value, forests are, in the 21st century, also a capital resource, for many people’s livelihoods depend on them. In this study, we proposed a method for taking mitigation measures against wildfires based on the partitioning of forests, considering both the protection of the ecosystem and the inhabitants and aiming to utilize their co-dependent nature for the general protection and preservation of forests. As a case study, we analyzed the current devastating fire in Euboea (occurred in August 2021), initially in terms of the spatio-temporal progression of the actual wildfire that lasted several days and then by examining how an implementation of the proposed method in the study area could contribute to both the recovery of the ecosystem and the enhancement of the quality of life of the inhabitants as well as their long-term protection.

    Full text: http://www.itia.ntua.gr/en/getfile/2281/1/documents/conservation-02-00013-v2.pdf (13186 KB)

  1. R. Ioannidis, N. Mamassis, A. Efstratiadis, and D. Koutsoyiannis, Reversing visibility analysis: Towards an accelerated a priori assessment of landscape impacts of renewable energy projects, Renewable and Sustainable Energy Reviews, 161, 112389, doi:10.1016/j.rser.2022.112389, 2022.

    Impacts to landscapes have been identified as major drivers of social opposition against renewable energy projects. We investigate how the process of mitigating landscape impacts can be improved and accelerated, through a re-conceptualization of visibility analysis. In their conventional format, visibility analyses cannot be implemented in early planning phases as they require the finalized locations of projects as input. Thus, visual impacts to landscapes cannot be assessed until late in development, when licensing procedures have already begun and projects' locations have already been finalized. In order to overcome this issue and facilitate the earlier identification of impactful projects we investigate the reversal of visibility analyses. By shifting the focus of the analyses from the infrastructure that generates visual impacts to the areas that have to be protected from these impacts, visibility analyses no longer require projects' locations as input. This methodological shift is initially investigated theoretically and then practically, in the region of Thessaly, Greece, computing Reverse - Zones of Theoretical Visibility (R-ZTVs) for important landscape elements of the region, in order to then project visual impacts to them by planned wind energy projects. It was demonstrated that reversing visibility analyses (a) enables the creation of R-ZTV-type maps that facilitate the anticipation of landscape impacts of projects from earlier planning stages and (b) discards the requirement for individual visibility analyses for each new project, thus accelerating project development. Furthermore, R-ZTV maps can be utilized in participatory planning processes or be used independently by projects' investors and by stakeholders in landscape protection.

    Additional material:

    Other works that reference this work (this list might be obsolete):

    1. Duarte, R., Á. García-Riazuelo, L. A. Sáez, and C. Sarasa, Analysing citizens’ perceptions of renewable energies in rural areas: A case study on wind farms in Spain, Energy Reports, 8, 12822-12831, doi:10.1016/j.egyr.2022.09.173, 2022.
    2. Ko, I., Rural opposition to landscape change from solar energy: Explaining the diffusion of setback restrictions on solar farms across South Korean counties, Energy Research & Social Science, 99, 103073, doi:10.1016/j.erss.2023.103073, 2023.
    3. Mikita, T., L. Janošíková, J. Caha, and E. Avoiani, The potential of UAV data as refinement of outdated inputs for visibility analyses, Remote Sensing, 15(4), 1028, doi:10.3390/rs15041028, 2023.
    4. Rodríguez-Segura, F. J., and M. Frolova, How does society assess the impact of renewable energy in rural inland areas? Comparative analysis between the province of Jaén (Spain) and Somogy county (Hungary), Investigaciones Geográficas, 80, 193-214, doi:10.14198/INGEO.24444, 2023.
    5. Beer, M., R. Rybár, and L. Gabániová, Visual impact of renewable energy infrastructure: implications for deployment and public perception, Processes, 11(8), 2252, doi:10.3390/pr11082252, 2023.
    6. García-Ayllón, S., and G. Martínez, Analysis of correlation between anthropization phenomena and landscape values of the territory: A GIS framework based on spatial statistics, ISPRS International Journal of Geo-Information, 12(8), 323, doi:10.3390/ijgi12080323, 2023.
    7. Sas-Bojarska, A., I. Orzechowska-Szajda, K. Puzdrakiewicz, and M. Kiejzik-Głowińska, Landscape, EIA and decision-making. A case study of the Vistula Spit Canal, Poland, Impact Assessment and Project Appraisal, 42(1), 2-29, doi:10.1080/14615517.2023.2273612, 2024.
    8. Alphan, H., Incorporating visibility information into multi-criteria decision making (MCDM) for wind turbine deployment, Applied Energy, 353(B), 122164, doi:10.1016/j.apenergy.2023.122164, 2024.
    9. Song, R., X. Gao, H. Nan, S. Zeng, and V. W. Y. Tam, Ecological restoration for mega-infrastructure projects: a study based on multi-source heterogeneous data, Engineering, Construction and Architectural Management, doi:10.1108/ECAM-12-2022-1197, 2023.
    10. Abdul, D., J. Wenqi, A. Tanveer, and M. Sameeroddin, Comprehensive analysis of renewable energy technologies adoption in remote areas using the integrated Delphi-Fuzzy AHP-VIKOR approach, Arabian Journal for Science and Engineering, 49, 7585-7610, doi:10.1007/s13369-023-08334-2, 2024.
    11. Codemo, A., M. Ghislanzoni, M.-J. Prados, and R. Albatici, Landscape-based spatial energy planning: minimization of renewables footprint in the energy transition, Journal of Environmental Planning and Management, doi:10.1080/09640568.2023.2287978, 2024.
    12. Xiao, T. J. Deng, C. Wen, and Q. Gu, Parallel algorithm for multi-viewpoint viewshed analysis on the GPU grounded in target cluster segmentation, International Journal of Digital Earth, 17(1), doi:10.1080/17538947.2024.2308707, 2024.
    13. Ji, G., and H. Sun, Assessing urban river landscape visual quality with extreme learning machines: A case study of the yellow river in Ningxia Hui autonomous region, China, Ecological Indicators, 165, 112173, doi:10.1016/j.ecolind.2024.112173, 2024.
    14. Rosley, M. S. F., N. Z. Harun, J. N. Yusof, and S. R. Abdul Rahman, Empowering public participation in assessing the indicators of aesthetic value for historical landscape: a case study on Melaka, Malaysia, Cogent Arts & Humanities, 11(1), doi:10.1080/23311983.2024.2380114, 2024.
    15. Tsani, T., J. M. Weinand, J. Linßen, and D. Stolten, Quantifying social factors for onshore wind planning – A systematic review, Renewable and Sustainable Energy Reviews, 203, 114762, doi:10.1016/j.rser.2024.114762, 2024.
    16. Karasmanaki, E., S. Galatsidas, and G. Tsantopoulos, Exploring the nuances in citizen willingness-to-invest in renewable energy, Energy Efficiency, 17, 69, doi:10.1007/s12053-024-10250-9, 2024.
    17. Wolsink, M., Land use as a crucial resource for smart grids — The ‘common good’ of renewables in distributed energy systems, Land, 13(8), 1236, doi:10.3390/land13081236, 2024.

  1. R. Ioannidis, G.-F. Sargentis, and D. Koutsoyiannis, Landscape design in infrastructure projects - is it an extravagance? A cost-benefit investigation of practices in dams, Landscape Research, doi:10.1080/01426397.2022.2039109, 2022.

    Landscape design of major civil infrastructure works has often been undermined as a policy requirement or been neglected in practice. We investigate whether this is justified by technical challenges, high costs or proven lack of utility of landscape design of infrastructure, focussing on dam-design practice. Initially, we investigate global practice and identify 56 cases of dams in which landscape or architectural treatment has been applied. We then create a typology of utilised design techniques and investigate their contribution to improving landscape quality perception through literature review and through the analysis of photograph upload densities in geotagged photography databases. Finally, we investigate costs of landscape works, analysing three dam projects in detail. The results demonstrate that landscape design of civil infrastructure (a) improves landscape quality perception of infrastructures’ landscapes and (b) that its implementation can be both economically and technically feasible, especially if existing knowledge from best practices is utilised.

    Additional material:

  1. G.-F. Sargentis, R. Ioannidis, T. Iliopoulou, P. Dimitriadis, and D. Koutsoyiannis, Landscape planning of infrastructure through focus points’ clustering analysis. Case study: Plastiras artificial lake (Greece), Infrastructures, 6 (1), 12, doi:10.3390/infrastructures6010012, 2021.

    Even though landscape quality is largely a subjective issue, the integration of infrastructure into landscapes has been identified as a key element of sustainability. In a spatial planning context, the landscape impacts that are generated by infrastructures are commonly quantified through visibility analysis. In this study, we develop a new method of visibility analysis and apply it in a case study of a reservoir (Plastiras dam in Greece). The methodology combines common visibility analysis with a stochastic tool for visual-impacts evaluation; points that generate high visual contrasts in landscapes are considered Focus Points (FPs) and their clustering in landscapes is analyzed trying to answer two questions: (1) How does the clustering of Focus Points (FPs) impact the aesthetic value of the landscape? (2) How can the visual impacts of these FPs be evaluated? Visual clustering is calculated utilizing a stochastic analysis of generated Zones of Theoretical Visibility. Based on the results, we argue that if the visual effect of groups of FPs is positive, then the optimal sitting of FPs should be in the direction of faint clustering, whereas if the effect is negative, the optimal sitting of FPs should be directed to intense clustering. In order to optimize the landscape integration of infrastructure, this method could be a useful analytical tool for environmental impact assessment or a monitoring tool for a project’s managing authorities. This is demonstrated through the case study of Plastiras’ reservoir, where the clustering of positively perceived FPs is found to be an overlooked attribute of its perception as a highly sustainable infrastructure project.

    Full text: http://www.itia.ntua.gr/en/getfile/2083/1/documents/infrastructures-06-00012-v2.pdf (5634 KB)

    Works that cite this document: View on Google Scholar or ResearchGate

  1. R. Ioannidis, and D. Koutsoyiannis, A review of land use, visibility and public perception of renewable energy in the context of landscape impact, Applied Energy, 276, 115367, doi:10.1016/j.apenergy.2020.115367, 2020.

    Landscape impacts associated with aesthetics have been a persistent cause of opposition against renewable energy projects. However, the current uncertainty over the spatial extents and the rationality of reported impacts impedes the development of optimal strategies for their mitigation. In this paper, a typology of landscape impacts is formed for hydroelectric, wind and solar energy through the review of three metrics that have been used extensively for impact-assessment: land use, visibility and public perception. Additionally, a generic landscape-impact ranking is formed, based on data from realized projects, demonstrating that hydroelectric energy has been the least impactful to landscapes per unit energy generation, followed by solar and wind energy, respectively. More importantly, the analysis highlights the strengths and weaknesses of each technology, in a landscape impact context, and demonstrates that, depending on landscape attributes, any technology can potentially be the least impactful. Finally, a holistic approach is proposed for future research and policy for the integration of renewable energy to landscapes, introducing the maximum utilization of the advantages of each technology as an additional strategy in an effort to expand beyond the mitigation of negative impacts.

    Remarks:

    Download site: https://authors.elsevier.com/c/1bbKL15eiezzux

    Additional material:

    Works that cite this document: View on Google Scholar or ResearchGate

  1. G.-F. Sargentis, P. Dimitriadis, R. Ioannidis, T. Iliopoulou, E. Frangedaki, and D. Koutsoyiannis, Optimal utilization of water resources for local communities in mainland Greece (case study of Karyes, Peloponnese), Procedia Manufacturing, 44, 253–260, doi:10.1016/j.promfg.2020.02.229, 2020.

    Water is the basis of our civilization and the development of society is intertwined with the exploitation of water resources in various scales, from a well dug to irrigate a garden, to a large dam providing water and energy for a large area. However, for remote mountainous areas, intermittent natural water resources and high seasonal demand the above tasks become challenging. Here we discuss various alternative management options and appropriate solutions on how to exploit water resources meeting the above restrictions under limited infrastructure budgets. As a case study we examine the area of Karyes in Peloponnese that meets the above criteria, exploring various solutions to satisfy the water demand.

    Full text: http://www.itia.ntua.gr/en/getfile/2047/1/documents/1-s2.0-S2351978920308167-main.pdf (1660 KB)

    Works that cite this document: View on Google Scholar or ResearchGate

  1. R. Ioannidis, T. Iliopoulou, C. Iliopoulou, L. Katikas, A. Petsou, M.-E. Merakou, M.-E. Asimomiti, N. Pelekanos, G. Koudouris, P. Dimitriadis, C. Plati, E. Vlahogianni, K. Kepaptsoglou, N. Mamassis, and D. Koutsoyiannis, Solar-powered bus route: introducing renewable energy into a university campus transport system, Advances in Geosciences, 49, doi:10.5194/adgeo-49-215-2019, 2019.

    We investigate the application of a solar-powered bus route to a small-scale transportation system, as such of a university campus. In particular, we explore the prospect of replacing conventional fossil fuel buses by electric buses powered by solar energy and electricity provided by the central grid. To this end, we employ GIS mapping technology to estimate the solar radiation at the university campus and, accordingly, we investigate three different scenarios for harnessing the available solar power: (1) solar panels installed on the roof of bus stop shelters, (2) solar panels installed at an unused open space in the university, and (3) solar roads, i.e. roads constructed by photovoltaic (PV) materials. For each of the three scenarios, we investigate the optimal technical configuration, the resulting energy generation, as well as the capital cost for application in the case of NTUA campus in Athens (Greece). The preliminary feasibility analysis showcases that all three scenarios contribute to satisfying transportation demand, proportionately to their size, with scenario (2) presenting the lowest capital cost in relation to energy generation. Therefore, we further explore this scenario by simulating its daily operation including the actions of buying and selling energy to the central grid, when there is energy deficit or surplus, respectively. A sensitivity analysis is carried out in order to ascertain the optimal size of the solar panel installation in relation to profit and reliability. Overall, results indicate that, albeit the high capital costs, solar-powered transportation schemes present a viable alternative for replacing conventional buses at the studied location, especially considering conventional PV panels. We note that present results heavily depend on the choice of capacity factors of PV materials, which differ among technologies. Yet, as capacity factors of PV panels are currently increasing, the studied schemes might be more promising in the future.

    Full text: http://www.itia.ntua.gr/en/getfile/2016/1/documents/adgeo-49-215-2019.pdf (8167 KB)

    Works that cite this document: View on Google Scholar or ResearchGate

  1. G.-F. Sargentis, P. Dimitriadis, R. Ioannidis, T. Iliopoulou, and D. Koutsoyiannis, Stochastic evaluation of landscapes transformed by renewable energy installations and civil works, Energies, 12 (4), 2817, doi:10.3390/en12142817, 2019.

    Renewable energy (RE) installations and civil works are beneficial in terms of sustainability, but a considerable amount of space in the landscape is required in order to harness this energy. In contemporary environmental theory the landscape is considered an environmental parameter and the transformation of the landscape by RE works has received increasing attention by the scientific community and affected societies. This research develops a novel computational stochastic tool the 2D Climacogram (2D-C) that allows the analysis and comparison of images of landscapes, both original and transformed by RE works. This is achieved by a variability characterization of the grayscale intensity of 2D images. A benchmark analysis is performed for art paintings in order to evaluate the properties of the 2D-C for image analysis, and the change in variability among images. Extensive applications are performed for landscapes transformed by RE works. Results show that the 2D-C is able to quantify the changes in variability of the image features, which may prove useful in the landscape impact assessment of large-scale engineering works.

    Full text: http://www.itia.ntua.gr/en/getfile/1984/1/documents/energies-12-02817.pdf (2772 KB)

    Additional material:

    Works that cite this document: View on Google Scholar or ResearchGate

    Other works that reference this work (this list might be obsolete):

    1. Ding, L., Q. Li, J. Tang, J. Wang, and X. Chen, Linking land use metrics measured in aquatic-terrestrial interfaces to water quality of reservoir-based water sources in Eastern China, Sustainability, 11(18), 4860, doi:10.3390/su11184860, 2019.

  1. G.-F. Sargentis, R. Ioannidis, G. Karakatsanis, S. Sigourou, N. D. Lagaros, and D. Koutsoyiannis, The development of the Athens water supply system and inferences for optimizing the scale of water infrastructures, Sustainability, 11 (9), 2657, doi:10.3390/su11092657, 2019.

    Modern organized societies require robust infrastructures, among which hydraulic projects, such as water supply and drainage systems, are most important, particularly in water-scarce areas. Athens is a unique example because it is a big city (population 3.7 million) located in a very dry area. In order to support the development of the city, large hydraulic projects had to be constructed during its history and, as a result, Athens currently has one of the largest water supply systems in the world. Could Athenians choose smaller scale infrastructures instead? Analyzing social, technical and economical historical data, we can see that large capital investments were required. In order to evaluate these investments this paper presents a technical summary of the development. An economic analysis displays historical values of these investments in present monetary values. The cost of existing infrastructure is compared to the cost of constructing smaller reservoirs and a model is created to correlate the price of water and the cost of water storage with the size of reservoirs. In particular, if more and smaller reservoirs were built instead of the large existing ones, the cost of the water would significantly increase, as illustrated by modelling the cost using local data.

    Full text: http://www.itia.ntua.gr/en/getfile/1970/1/documents/sustainability-11-02657-v3.pdf (6450 KB)

    See also: https://www.mdpi.com/2071-1050/11/9/2657

    Works that cite this document: View on Google Scholar or ResearchGate

  1. E. Klousakou, M. Chalakatevaki, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, G. Karakatsanis, A. Efstratiadis, N. Mamassis, R. Tomani, E. Chardavellas, and D. Koutsoyiannis, A preliminary stochastic analysis of the uncertainty of natural processes related to renewable energy resources, Advances in Geosciences, 45, 193–199, doi:10.5194/adgeo-45-193-2018, 2018.

    The ever-increasing energy demand has led to overexploitation of fossil fuels deposits, while renewables offer a viable alternative. Since renewable energy resources derive from phenomena related to either atmospheric or geophysical processes, unpredictability is inherent to renewable energy systems. An innovative and simple stochastic tool, the climacogram, was chosen to explore the degree of unpredictability. By applying the climacogram across the related timeseries and spatial-series it was feasible to identify the degree of unpredictability in each process through the Hurst parameter, an index that quantifies the level of uncertainty. All examined processes display a Hurst parameter larger than 0.5, indicating increased uncertainty on the long term. This implies that only through stochastic analysis may renewable energy resources be reliably manageable and cost efficient. In this context, a pilot application of a hybrid renewable energy system in the Greek island of Astypalaia is discussed, for which we show how the uncertainty (in terms of variability) of the input hydrometeorological processes alters the uncertainty of the output energy values.

    Full text: http://www.itia.ntua.gr/en/getfile/1864/1/documents/adgeo-45-193-2018.pdf (559 KB)

    See also: https://www.adv-geosci.net/45/193/2018/

    Works that cite this document: View on Google Scholar or ResearchGate

    Other works that reference this work (this list might be obsolete):

    1. Kaps, C., S. Marinesi, and S. Netessine, When should the off-grid sun shine at night? Optimum renewable generation and energy storage investment, Management Science, 69(12), 7633-7650, doi:10.1287/mnsc.2021.04129, 2023.
    2. Adewumi, A., C. E. Okoli, F. O. Usman, K. A. Olu-lawal, and O. T. Soyombo, Reviewing the impact of AI on renewable energy efficiency and management, International Journal of Science and Research Archive, 11(01), 1518–1527, doi:10.30574/ijsra.2024.11.1.0245, 2024.
    3. #Awudu, S., A. K. Yeliawati, and M. Sari, Unveiling the green tapestry: Exploring the influence of green budget tagging on the nexus of fiscal policy sustainability and green budgeting practices in metropolitan municipal and district assemblies in Ghana, Proceedings of the 8th Global Conference on Business, Management, and Entrepreneurship (GCBME 2023), 186-192, Atlantic Press, 2024.

Book chapters and fully evaluated conference publications

  1. R. Ioannidis, G.-F. Sargentis, A. Efstratiadis, N. Mamassis, and D. Koutsoyiannis, [No English title available], Proceedings of 4th Hellenic Conference on Dams and Reservoirs, War Museum Athens, Hellenic Commission on Large Dams, Athens, 2024.

    Full text: http://www.itia.ntua.gr/en/getfile/2478/1/documents/Ioannidisetall%CE%95%CE%95%CE%9C%CE%A62024.pdf (4583 KB)

  1. R. Ioannidis, N. Mamassis, K. Moraitis, and D. Koutsoyiannis, Proposals of spatial planning and architectural design for the sustainable integration of renewable energy works in the Greek landscape, Proceedings of the 10th Conference of MIRC - NTUA “Research and actions for the regeneration of mountainous and isolated areas”, Metsovo, 332–343, National Technical University of Athens, Metsovion Interdisciplinary Research Center, 2022.

    Full text: http://www.itia.ntua.gr/en/getfile/2249/1/documents/Ietal_2022M_.pdf (1216 KB)

  1. G.-F. Sargentis, R. Ioannidis, M. Chiotinis, P. Dimitriadis, and D. Koutsoyiannis, Aesthetical issues with stochastic evaluation, Data Analytics for Cultural Heritage, edited by A. Belhi, A. Bouras, A.K. Al-Ali, and A.H. Sadka, doi:10.1007/978-3-030-66777-1_8, Springer, 2021.

    Throughout human history, the quantification of aesthetics has intrigued philosophers, artists, and mathematicians alike. In this chapter, a methodology based on stochastic mathematics is applied for the quantification of aesthetic attributes of paintings and landscapes. The paintings analyzed include Da Vinci, Pablo Picasso, and various other celebrated paintings from 1250 AD to modern times. In regard to landscapes, the analysis focuses on the aesthetic transformations imposed to landscapes from wind energy projects. The methodology used is called stochastic 2D-C analysis and is based on a stochastic computational tool that analyzes brightness fluctuation in images. The 2D-C tool is used to measure the degree of variability and in particular the change in variability vs. scale. The application of the tool provides (a) input on the qualitative efficiency of mainstream methods used in landscape-impact analysis, (b) insights into the expression forms of the examined artists and historical periods, and finally (c) evidence that can be used in the search of the originality of an artwork of disputed authorship.

  1. N. Mamassis, A. Efstratiadis, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, and D. Koutsoyiannis, Water and Energy, Handbook of Water Resources Management: Discourses, Concepts and Examples, edited by J.J. Bogardi, T. Tingsanchali, K.D.W. Nandalal, J. Gupta, L. Salamé, R.R.P. van Nooijen, A.G. Kolechkina, N. Kumar, and A. Bhaduri, Chapter 20, 617–655, doi:10.1007/978-3-030-60147-8_20, Springer Nature, Switzerland, 2021.

    The fundamental concepts in the field of water-energy systems and their historical evolution with emphasis on recent developments are reviewed. Initially, a brief history of the relation of water and energy is presented, and the concept of the water-energy nexus in the 21th century is introduced. The investigation of the relationship between water and energy shows that this relationship comprises both conflicting and synergistic elements. Hydropower is identified as the major industry of the sector and its role in addressing modern energy challenges by means of integrated water-energy management is highlighted. Thus, the modelling steps of designing and operating a hydropower system are reviewed, followed by an analysis of theory and physics behind energy hydraulics. The key concept of uncertainty, which characterises all types of renewable energy, is also presented in the context of the design and management of water-energy systems. Subsequently, environmental considerations and impacts of using water for energy generation are discussed, followed by a summary of the developments in the emerging field of maritime energy. Finally, present challenges and possible future directions are presented.

    Other works that reference this work (this list might be obsolete):

    1. Bertsiou, M. M., and E. Baltas, Management of energy and water resources by minimizing the rejected renewable energy, Sustainable Energy Technologies and Assessments, 52(A), 102002, doi:10.1016/j.seta.2022.102002, 2022.
    2. Spanoudaki, K., P. Dimitriadis, E. A. Varouchakis, and G. A. C. Perez, Estimation of hydropower potential using Bayesian and stochastic approaches for streamflow simulation and accounting for the intermediate storage retention, Energies, 15(4), 1413, doi:10.3390/en15041413, 2022.
    3. Freires, f. J., V. do Nascimento Damasceno, A. L. S. Machado, G. B. Martins, L. M. da Silva, M. C. da Silveira Pio, L. H. Claro Júnior, D. C. Sales, A. G. Reis, and D. Nascimento-e-Silva, Advantages and disadvantages of renewable energy: a review of the scientific literature, Revista de Gestão e Secretariado, 14(11), 20221-20240, doi:10.7769/gesec.v14i11.3174, 2023.
    4. Bertsiou, M. M., and E. Baltas, Integration of different storage technologies towards sustainable development—A case study in a Greek island, Wind, 4(1), 68-89, doi:10.3390/wind4010004, 2024.

  1. R. Ioannidis, and D. Koutsoyiannis, The architectural and landscape value of dams: from international examples to proposals for Greece, Proceedings of 3rd Hellenic Conference on Dams and Reservoirs, Zappeion, Hellenic Commission on Large Dams, Athens, 2017.

    Dam architecture has been an issue that has not significantly concerned Greek organizations engaged in research, design and construction of dams. This research paper explores the need to raise the awareness of these organizations on issues related to the architecture of dams and produces relevant proposals. Initially, the current situation is investigated in relation to the architecture of Greek dams and the impact of these projects on the Greek landscape is evaluated. Then, international examples of architectural interventions on dams are examined leading to the creation of database of techniques and ideas that could be implemented in Greece or worldwide. At last, a case study examining the architectural design of a Hardfill dam is conducted, in which the technical, construction-process, architecture and cost aspects of the proposed architectural interventions are analyzed.

    Full text: http://www.itia.ntua.gr/en/getfile/2105/1/documents/IoannidisKoutsoyiannis2017.pdf (836 KB)

  1. D. Koutsoyiannis, and R. Ioannidis, The energetic, environmental and aesthetic superiority of large hydropower projects over other renewable energy projects, Proceedings of 3rd Hellenic Conference on Dams and Reservoirs, Zappeion, Hellenic Commission on Large Dams, Athens, 2017.

    Full text: http://www.itia.ntua.gr/en/getfile/1745/1/documents/2017SynedrioFragmatwn5.pdf (3948 KB)

Conference publications and presentations with evaluation of abstract

  1. R. Ioannidis, and D. Koutsoyiannis, Α generic quantification of the landscape impacts of wind, solar and hydroelectric energy, 2023 Visual Resource Stewardship Conference: Exploring Multisensory Landscapes, Lemont, Argonne National Laboratory, 2023.

    Stakeholders in the development of renewable energy are often uncertain about whether landscape impacts are a genuine and objective issue or whether they should be attributed to biased NIMBY (not in my back yard) dispositions by the public. This uncertainty eventually conflicts with the development of effective design methods for the mitigation of impacts. The aim of this work is to reduce the uncertainties over the landscape impacts of renewable energy works, meanwhile also laying a better foundation for their mitigation. In this regard we investigate the following research question: Can the extents and the severity of landscape impacts of different types of renewable energy works be generically and objectively quantified and compared? Hydroelectric, wind and solar works were analysed in detail in this regard, utilizing literature and data from realized projects, from global sources. The analysis focuses on three established metrics of landscape impacts that were elected as insightful indicators covering both the spatial and perceptual aspects of impacts: land use, visibility and public perception. Through the investigation of these metrics, it was demonstrated that wind energy works have been, on average, the most impactful to landscapes, per unit energy generation, followed by solar photovoltaic projects and hydroelectric dams, respectively. More broadly, it was concluded that different types of renewable energy works indeed have different generic landscape impacts and therefore require different mitigation approaches. Overall, the impacts and the approaches for their mitigation are highly dependent on: (i) whether the examined infrastructure-type is perceived negatively by the public, within a landscape context, (ii) the spatial extents of its visual impacts and land-use requirements and (iii) the application or not of architectural and landscape studies, in works that are recipient of architectural treatment.

    Full text: http://www.itia.ntua.gr/en/getfile/2423/1/documents/IoannidisKoutsoyiannis2023Chicago.pdf (4122 KB)

  1. R. Ioannidis, and N. Mamassis, The prospects of reverse GIS visibility analyses for the anticipation and mitigation of landscape impacts of renewable energy projects in large scales, 2023 Visual Resource Stewardship Conference: Exploring Multisensory Landscapes, Lemont, Argonne National Laboratory, 2023.

    Conventional visibility analyses face limitations as a spatial planning tool since they can only be applied in late planning phases, when project's locations have been partly or completely determined. This is due to the fact that they require a particular location as input, in order to be implemented. Therefore, visibility analyses cannot be easily carried out in the early planning phases of projects, e.g. during multicriteria studies, in order to aid in the siting of projects; because at this stage the project location is still under investigation within an extensive area. In this work, we propose the reversal of visibility analyses as a methodological shift that can enable their use in earlier planning phases and aid in overcoming various issues associated with delayed implementation. Reverse visibility analyses use the locations of protected landscape elements as their input rather than the locations of the proposed energy works. This methodological shift allows for the a priori generation of fixed landscape-protection maps surrounding important landscape elements which enjoy the advantages of: (i) proactiveness, as they can be used to anticipate landscape impacts from earlier planning stages, while proposed projects’ locations are still under investigation, (ii) time-saving, as they only need to be calculated once within a region or country, discarding the requirement for individual visibility analysis for each new project (iii) compatibility with multicriteria studies, which are only carried out in very early planning stages, and finally (iv) potential for wider combination with participatory planning processes. The implementation of reverse visibility analysis was also investigated in practice, by developing and applying a novel method called Reverse – Zone of Theoretical Visibility (R-ZTV) analysis. The method was implemented in the regional scale in the region of Thessaly, Greece, where R-ZTV maps were formed and then used to project visual impacts from planned wind energy projects to the protected landscape elements of the region. Both from the theoretical investigation and the practical application, it was demonstrated that reverse visibility analyses, such as the proposed R-ZTV or in other formats, can strengthen the role of visibility analysis in the planning of renewable energy projects and facilitate its wider implementation. Ongoing applications in large spatial scales are also briefly presented to further showcase this potential.

    Full text: http://www.itia.ntua.gr/en/getfile/2422/1/documents/IoannidisMamassis2023Chicago.pdf (3796 KB)

  1. A. Tsouni, S. Sigourou, P. Dimitriadis, V. Pagana, T. Iliopoulou, G.-F. Sargentis, R. Ioannidis, E. Chardavellas, D. Dimitrakopoulou, N. Mamassis, D. Koutsoyiannis, and C. Contoes, Multi-parameter flood risk assessment towards efficient flood management in highly dense urban river basins in the Region of Attica, Greece, European Geosciences Union General Assembly 2023, Vienna, Austria & Online, EGU23-12624, doi:10.5194/egusphere-egu23-12624, 2023.

    Flood risk assessment in vulnerable areas is crucial for efficient flood risk management, including the analysis and design of civil protection measures and the implementation of studies with proper interventions towards mitigating flood risk. This is even more crucial in highly dense urban river basins such as the ones in the region of Attica, which is hosting Athens, the capital of Greece, as well as critical infrastructures and important social economic activities. In the framework of the Programming Agreement with the Prefecture of Attica, the Operational Unit BEYOND Centre of EO Research and Satellite Remote Sensing of the Institute of Astronomy, Astrophysics, Space Applications & Remote Sensing (IAASARS) of the National Observatory of Athens (NOA), in cooperation with the Research Group ITIA of the Department of Water Resources and Environmental Engineering of the School of Civil Engineering of the National Technical University of Athens (NTUA), study five flood-stricken river basins in the region of Attica, which affect 23 Municipalities. The research teams collect all available data, conduct detailed field visits, run hydrological and hydraulic models, and assess flood hazard, flood vulnerability and eventually flood risk in every area of interest. Furthermore, high-risk critical points are identified, and mitigation measures are proposed, both structural and non-structural, in order to achieve effective crisis management for the protection of the population, the properties and the infrastructures. In addition, the BEYOND Centre has developed a web GIS platform where all the collected and produced data, the flood hazard, vulnerability and risk maps, as well as the identified critical points, the refuge areas and escape routes are stored and made available. All the relevant stakeholders and the competent authorities, who are directly or indirectly involved in civil protection, participate in dedicated workshops designed for their needs, and moreover, the studies’ general outcomes are disseminated to the wider public for raising awareness purposes. The response of the end users is very positive, and their feedback very constructive. The methodology and the outputs of the project are in line with the requirements for the implementation of the EU Floods Directive 2007/60/EC, the Sendai Framework for Disaster Risk Reduction, the UN SDGs, as well as the GEO’s Societal Benefit Areas.

    Full text: http://www.itia.ntua.gr/en/getfile/2303/1/documents/EGU23-12624-print.pdf (290 KB)

    See also: https://meetingorganizer.copernicus.org/EGU23/EGU23-12624.html

  1. G. Kirkmalis, G.-F. Sargentis, R. Ioannidis, D. Markantonis, T. Iliopoulou, P. Dimitriadis, N. Mamassis, and D. Koutsoyiannis, Fertilizers as batteries and regulators in the global Water-Energy-Food equilibrium, European Geosciences Union General Assembly 2023, Vienna, Austria & Online, EGU23-11915, doi:10.5194/egusphere-egu23-11915, 2023.

    Fertilizers and especially Nutrient Nitrogen, are high consumers of energy. At present, the energy crisis has a serious effect in the production of fertilizers. As the world is seeking to smooth the curves of energy production, especially by renewable energy installations, the use of potential energy surplus in fertilizers’ production could be an alternative practice. Fertilizers can be utilized for the cultivation of energy crops or food (which also has an energy equivalent). In this work, we attempt to evaluate the potential of the integration of fertilizers in the energy production both for energy recovery and for the avoidance of possible failures by the deficit of fertilizers in the global Water-Energy-Food equilibrium.

    Full text:

    See also: https://meetingorganizer.copernicus.org/EGU23/EGU23-11915.html

  1. S. Sigourou, A. Tsouni, V. Pagana, G.-F. Sargentis, P. Dimitriadis, R. Ioannidis, E. Chardavellas, D. Dimitrakopoulou, N. Mamassis, D. Koutsoyiannis, and C. Contoes, An advanced methodology for field visits towards efficient flood management on building block level, European Geosciences Union General Assembly 2023, Vienna, Austria & Online, EGU23-16168, doi:10.5194/egusphere-egu23-16168, 2023.

    Flood risk assessment for vulnerable areas serves the needs of the stakeholders for flood management. Therefore, it’s essential for the applied methodology to be detailed and use advanced techniques depending on the characteristics of each study area. In the Programming Agreement with the Prefecture of Attica, the Operational Unit “BEYOND Centre of EO Research & Satellite Remote Sensing” of the Institute of Astronomy, Astrophysics, Space Applications & Remote Sensing (IAASARS) of the National Observatory of Athens (NOA), in cooperation with the Research Group ITIA of the Department of Water Resources and Environmental Engineering of the School of Civil Engineering of the National Technical University of Athens (NTUA) study five flood-stricken river basins in the region of Attica, which affect 23 Municipalities. It’s the first time that such a holistic approach for flood risk assessment is implemented on building block level in Greece. Hence, taking into consideration the regional scale and the high spatial resolution in hydrologic and hydraulic models and flood hazards maps, detailed field visits are conducted following a specific methodology. Specifically, cross section measurements of pipes, culvers, bridges are gathered from the field and used for the terrain modification of Digital Elevation Model. Additionally, many high-risk points are identified in residential areas, road network and other critical infrastructures, which are classified based on their risk level and accompanied by a detailed technical report. The importance of field visits lies on the need of updated and high resolution input data, the understanding and the functionality of a constantly changing river basin including the anthropogenic and environmental stressors. As a result, enhanced models are created using both earth observation and field data and the reduction of the uncertainty is achieved comparing with past studies.

    Full text: http://www.itia.ntua.gr/en/getfile/2301/1/documents/EGU23-16168-print.pdf (289 KB)

    See also: https://meetingorganizer.copernicus.org/EGU23/EGU23-16168.html

  1. D. Dimitrakopoulou, R. Ioannidis, P. Dimitriadis, T. Iliopoulou, G.-F. Sargentis, E. Chardavellas, N. Mamassis, and D. Koutsoyiannis, Public involvement in the design and implementation of infrastructure projects, European Geosciences Union General Assembly 2023, Vienna, Austria & Online, EGU23-16478, doi:10.5194/egusphere-egu23-16478, 2023.

    Infrastructure projects, although associated with public health and well-being, are often faced with opposition movements during their design and implementation. In this work, public involvement is investigated as means for comprehending the reasons behind any public opposition during the implementation of civil infrastructure works. More specifically, three courses of actions are proposed in order to initiate public engagement in the design process of infrastructure projects, i.e., (i) the collaboration with municipalities, institutes and universities for collection of data and previous studies in the area, (ii) the indirect communication with the public through online questionnaires, and (iii) the direct communication with the public during field works and by loose-format interviews regarding their experiences. After statistically evaluating the information acquired by the input data, it is concluded that the combination of the above actions can enhance the engineers’ knowledge at the area of interest, and thus, may result in a more efficient design of civil works, but also, in the public engagement during and after their implementation.

    Full text:

    See also: https://meetingorganizer.copernicus.org/EGU23/EGU23-16478.html

  1. D. Dimitrakopoulou, R. Ioannidis, G.-F. Sargentis, P. Dimitriadis, T. Iliopoulou, E. Chardavellas, S. Vavoulogiannis, N. Mamassis, and D. Koutsoyiannis, Social uncertainty in flood risk: field research, citizens’ engagement, institutions' collaboration, IAHS 100th Anniversary – 11th IAHS-AISH Scientific Assembly 2022, Montpellier, France, IAHS2022-351, International Association of Hydrological Sciences, 2022.

    The well-presented results and the high efficiency of new tools in the evaluation of flood risk leads us to forget the fundamental tool for analysis which is field research, citizens’ engagement and institutions collaboration. Having in mind that field-research must be connected with modern tools, this paper shows that only engineers are appropriate for flood-study field-research. In addition, a training protocol is necessary. This protocol describes the method of the field-research, the organization of the team, legal distractions in field research, proper software needed for field research, characteristic points of interest, code name and proper depiction of the points. In addition, describes an efficient formula of the reports in order to be used in GIS and evaluated in DEM and risk analysis. In addition, the cooperation of research and governmental institutions is crucial for the quantification of risks associated with natural hazards. Research institutions, local-government authorities and environmental agencies are all necessary, in order to combine both theoretical and practical knowledge for the generation of optimized risk-assessment results. Thus, a targeted methodology was formed including a process of successive cycles of communications relevant those agencies and institutions, aiming to utilize both their qualitative and quantitative knowledge and overall, to set a solid data-based foundation for the later stages of the flood-risk analysis. Last but not least, in the process of investigating for locations with increased flood risk, citizens’ engagement should be sought. During the research field or through an online form, the citizens should be asked to fill in a relative questionnaire with brief, multiple choice questions, regarding their residence, their years of residence, the frequency of floods that they can recall and their location and other relates topics. The permanent residents' experience can lead to the location of areas prone to flood that cannot be located otherwise, in terms of designs. Consequently, it is argued that the residents must play an active role in the conception, design and implementation of flood protection projects and infrastructure projects, overall.

    Full text:

    See also: https://meetingorganizer.copernicus.org/IAHS2022/IAHS2022-351.html

  1. R. Ioannidis, C. Iliopoulou, T. Iliopoulou, L. Katikas, P. Dimitriadis, C. Plati, E. Vlahogianni, K. Kepaptsoglou, N. Mamassis, and D. Koutsoyiannis, Solar-electric buses for a university campus transport system, Transportation Research Board (TRB) 99th Annual Meeting, Washington D.C., 2020.

    This study explores the prospect of replacing conventional university campus buses powered by fossil fuels with electric ones using primarily solar energy stored in batteries and secondarily the central electricity grid. On the basis of existing infrastructure and facilities in the NTUA campus in Athens (Greece), three scenarios are developed for the collection and use of solar energy for electric buses: (a) bus stop shelters covered with solar panels, (b) installation of solar panels in unused open spaces, and (c) solar roads, i.e. specially engineered panels that can be installed on the road surface. Since the availability of solar energy is linked to sunshine levels, we employ GIS mapping technology to select the locations with the highest solar radiation. For each of the three scenarios, we investigate the optimal technical configuration, the resulting energy generation and the capital cost. The preliminary feasibility analysis shows that scenario (b) presents the lower capital costs in relation to energy generation. Therefore, we further explore this scenario by simulating its daily operation using historical solar radiation data including the actions of buying and selling energy to the central grid, when there is energy deficit or surplus, respectively. Overall, results indicate that, regardless of the high capital costs, solar-powered transportation schemes present a viable alternative for replacing conventional buses at the studied location, yet heavily depend on the choice of Photovoltaic (PV) materials, since capacity factors differ among technologies.

    Full text: http://www.itia.ntua.gr/en/getfile/2424/1/documents/1.Ioannidisetal2022Washington.pdf (2640 KB)

  1. E. Manta, R. Ioannidis, G.-F. Sargentis, and A. Efstratiadis, Aesthetic evaluation of wind turbines in stochastic setting: Case study of Tinos island, Greece, European Geosciences Union General Assembly 2020, Geophysical Research Abstracts, Vol. 22, Vienna, EGU2020-5484, doi:10.5194/egusphere-egu2020-5484, 2020.

    Wind turbines are large-scale engineering infrastructures that may cause significant social reactions, due to the anticipated aesthetic nuisance. On the other hand, aesthetics is a highly subjective issue, thus any attempt towards its quantification requires accounting for the uncertainty induced from subjectivity. In this work, taking as example the Aegean island of Tinos, Cyclades, Greece, we present a stochastic-based methodology for evaluating the feasibility of developing wind parks in terms of their aesthetic impacts. At first, a field analysis is been conducted along with photographic surveying, 3D representation and the opinion of the target population regarding the development of wind parks across the island. Subsequently, the landscape transformations that will be caused from the wind turbines are assessed according to the theory of aesthetics, which are depicted by using suitable spatial analysis tools in GIS environment. The 3D representation images along with the maps are finally assessed through stochastic analysis, in order to quantify the visual impacts to the landscape and the nuisance to local community.

    Full text:

    See also: https://meetingorganizer.copernicus.org/EGU2020/EGU2020-5484.html

    Other works that reference this work (this list might be obsolete):

    1. Vlami, V., I. P. Kokkoris, S. Zogaris, G. Kehayias, and P. Dimopoulos, Cultural ecosystem services in the Natura 2000 network: Introducing proxy indicators and conflict risk in Greece, Land, 10(1), 4, doi:10.3390/land10010004, 2021.

  1. M. Karataraki, A. Thanasko, K. Printziou, G. Koudouris, R. Ioannidis, T. Iliopoulou, P. Dimitriadis, C. Plati, and D. Koutsoyiannis, Campus solar roads: a feasibility analysis, European Geosciences Union General Assembly 2019, Geophysical Research Abstracts, Vol. 21, Vienna, EGU2019-15648-2, European Geosciences Union, 2019.

    We study the possibility of replacing conventional roads and buses with solar powered panel roads and electric buses fueled by solar energy within a closed system at a university campus. We also examine an alternative option of using solar buses equipped with panels on the rooftop. We review the recent advances in the technology of solar roads and buses and examine the modeling challenges and uncertainties of a transportation system powered by solar energy. We evaluate the economic aspects as well as the advantages and limitations of the proposed systems.The feasibility of this project is examined in terms of its application in the NTUA campus and possible directions for further research are identified.

    Full text: http://www.itia.ntua.gr/en/getfile/1959/1/documents/Teliko_poster_egu_1_selida.pdf (1985 KB)

  1. A. Petsou, M.-E. Merakou, T. Iliopoulou, C. Iliopoulou, P. Dimitriadis, R. Ioannidis, K. Kepaptsoglou, and D. Koutsoyiannis, Campus solar roads: Optimization of solar panel and electric charging station location for university bus route, European Geosciences Union General Assembly 2019, Geophysical Research Abstracts, Vol. 21, Vienna, EGU2019-10832, European Geosciences Union, 2019.

    We explore the prospect of replacing conventional university campus buses powered by fossil fuels with ones using solar energy. The proposed research investigates the emerging technology of solar powered road panels within a stochastic framework in order to optimally determine the corresponding infrastructure requirements for a university circulator line. More specifically, an optimization model is developed in order to determine the optimal locations for solar-powered roadway segments and electric charging stations for the existing university campus bus route. Since the availability of solar energy is linked to sunshine levels, we explore the possibility of using hybrid buses, powered by electricity and storing the energy to batteries in order to allow operation in days with no sunshine. As an alternative we study the use of solar buses equipped with panels on the rooftop. In order to account for the uncertainty associated with the system inputs, the transportation demand for the campus route and the availability of solar energy over the campus area are simulated using stochastic methods. The capital cost and energy consumption of the selected buses, charging stations and solar panels are also investigated in a case study for the NTUA campus.

    Full text: http://www.itia.ntua.gr/en/getfile/1957/1/documents/EGU-Solar-Roads-FINAL.pdf (1082 KB)

  1. Μ. Sako, E. Tsoli, R. Ioannidis, E. Frangedaki, G.-F. Sargentis, and D. Koutsoyiannis, Optimizing the size of Hilarion dam with technical, economical and environmental parameters, European Geosciences Union General Assembly 2019, Geophysical Research Abstracts, Vol. 21, Vienna, EGU2019-15297, European Geosciences Union, 2019.

    The construction and operation of large dams has been questioned in recent years as, despite their positive effect on the economy, they are regarded as negative to the environment. The size of a dam, in particular, is an important aspect of this debate as it is thought to increase its economic benefit but also its environmental impacts. We investigate the dam scale issue based on a case study for the Hilarion dam, located in Kozani, Greece. More specifically, in an effort to examine the problem of optimal project scale, we quantify selected technical, economic and environmental parameters of the Hilarion dam for different hypothetical scenarios of dam size including its original size. The various scenarios are compared on a cost-benefit basis to provide a first approximation of the exact relation between dam size and its technical, environmental and economic characteristics.

    Remarks:

    This research has been supported by the OptArch project: "Optimization Driven Architectural Design of Structures" (No: 689983) belonging to the Marie Skłodowska-Curie Actions (MSCA) Research and Innovation Staff Exchange (RISE) H2020-MSCA-RISE-2015.

    Full text:

  1. R. Ioannidis, P. Dimitriadis, G.-F. Sargentis, E. Frangedaki, T. Iliopoulou, and D. Koutsoyiannis, Stochastic similarities between hydrometeorogical and art processes for optimizing architecture and landscape aesthetic parameters, European Geosciences Union General Assembly 2019, Geophysical Research Abstracts, Vol. 21, Vienna, EGU2019-11403, European Geosciences Union, 2019.

    Stochastics help develop a unified perception for natural phenomena and expel dichotomies like random vs. deterministic, as both randomness and predictability coexist and are intrinsic to natural systems which can be deterministic and random at the same time, depending on the prediction horizon and the time scale. The high complexity and uncertainty of natural processes has been long identified through observations as well as extended analyses of hydrometeorological processes such as temperature, humidity, surface wind, precipitation, atmospheric pressure, river discharges etc. All these processes seem to exhibit high unpredictability due to the clustering of events. Art is a mix of determinism (e.g., certain rules have to be followed) and stochasticity (e.g., creativity and inspiration). However, in this analysis we analyse each artistic work in a stochastic approach, and attempt to identify their degree of intrinsic uncertainty. The stochastic analysis includes the investigation of possible Hurst-Kolmogorov behaviour in the art of different periods (visual arts, music, poetry) and of relationships with natural processes. Based on the stochastic analysis of different artworks, we make an image analysis of architectural elements in the landscape in order to formulate an indicator that can be used in engineering.

    Remarks:

    This research has been supported by the OptArch project: "Optimization Driven Architectural Design of Structures" (No: 689983) belonging to the Marie Skłodowska-Curie Actions (MSCA) Research and Innovation Staff Exchange (RISE) H2020-MSCA-RISE-2015.

    Full text:

  1. G.-F. Sargentis, R. Ioannidis, G. Karakatsanis, and D. Koutsoyiannis, The scale of infrastructures as a social decision. Case study: dams in Greece, European Geosciences Union General Assembly 2018, Geophysical Research Abstracts, Vol. 20, Vienna, EGU2018-17082, European Geosciences Union, 2018.

    Organized societies require specific infrastructures, among which hydraulic projects are most important. Thus, for the functioning of a society, the water supply and drainage are prerequisites, while a new modern society also needs renewable energy in addition to, and in connection with, high quality water. Dams are key infrastructures in this process. Modern economic and social conditions do not define the limits of what we call "development". In this research we are mapping the limits of the development based on the capacity of the landscape, the water resources, the finances, the political aspects and the criteria of a city’s development.

    Full text:

  1. G.-F. Sargentis, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, and D. Koutsoyiannis, Stochastic investigation of the Hurst-Kolmogorov behaviour in arts, European Geosciences Union General Assembly 2018, Geophysical Research Abstracts, Vol. 20, Vienna, EGU2018-17740-1, European Geosciences Union, 2018.

    The Hurst-Kolmogorov (HK) behaviour (i.e. power-law decrease of the process variance vs. scale of averaging) has been already identified in numerous geophysical processes highlighting the large uncertainty of Nature in all time scales. In this study, we investigate through the climacogram whether or not some art works (such as paintings, music pieces and poems) also exhibit this behaviour and try to interpret the results in terms of (un)predictability in works of art.

    Full text:

  1. S. Sigourou, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, A. Skopeliti, K. Sakellari, G. Karakatsanis, L. Tsoulos, and D. Koutsoyiannis, Comparison of climate change vs. urbanization, European Geosciences Union General Assembly 2018, Geophysical Research Abstracts, Vol. 20, Vienna, EGU2018-18598-2, European Geosciences Union, 2018.

    Urbanization has long been identified as one of the major human impacts on the micro-climate of urban areas and has been linked to large (and often disastrous) changes into several hydroclimatic processes such as temperature, humidity and precipitation. However, climate change studies have rarely separated the urban local-scale influence from the global one. In this study, we thoroughly investigate and compare the changes in the variability of the above hydroclimatic processes in urban regions and in the ones with small or negligible human impact. The analysis includes global historical databases of the above processes as well as of the urbanization impact through land-use change.

    Full text: http://www.itia.ntua.gr/en/getfile/1810/1/documents/EGU2018-18598-2.pdf (31 KB)

  1. S. Sigourou, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, A. Skopeliti, K. Sakellari, G. Karakatsanis, L. Tsoulos, and D. Koutsoyiannis, Statistical and stochastic comparison of climate change vs. urbanization, European Geosciences Union General Assembly 2018, Geophysical Research Abstracts, Vol. 20, Vienna, EGU2018-18608-2, European Geosciences Union, 2018.

    Urbanization has long been identified as one of the major human impacts on the micro-climate of urban areas and has been linked to large (and often disastrous) changes into several hydroclimatic processes such as temperature, humidity and precipitation. However, climate change studies have rarely separated the urban local-scale influence from the global one. In this study, we thoroughly investigate and compare the changes in the variability of the above hydroclimatic processes in urban regions and in the ones with small or negligible human impact. The analysis includes Monte-Carlo experiments to assess how the aforementioned variability can be simulated through a stochastic model.

    Full text: http://www.itia.ntua.gr/en/getfile/1809/1/documents/EGU2018-18608-2.pdf (31 KB)

  1. E. Klousakou, M. Chalakatevaki, R. Tomani, P. Dimitriadis, A. Efstratiadis, T. Iliopoulou, R. Ioannidis, N. Mamassis, and D. Koutsoyiannis, Stochastic investigation of the uncertainty of atmospheric processes related to renewable energy resources, European Geosciences Union General Assembly 2018, Geophysical Research Abstracts, Vol. 20, Vienna, EGU2018-16982-2, European Geosciences Union, 2018.

    Renewable energy resources, e.g., wind and solar energy, are characterized by great degree of uncertainty and in general, limited predictability, because of the irregular variability of the related geophysical processes. A simple and robust measure of the inherent uncertainty of a process is the Hurst parameter. Specifically, the more complex a process is, the larger the introduced uncertainty (unpredictability) and the larger the Hurst parameter. This behaviour (called Hurst-Kolmogorov, HK) has been identified in numerous geophysical processes. Although there are several methods for estimating the Hurst parameter, the climacogram (i.e. variance of the averaged process vs. scale of averaging) is one of the most powerful ones, with a lower statistical estimation uncertainty compared to the autocovariance and power spectrum. We apply the climacogram method to timeseries from processes related to renewable energy systems (wind, solar, ocean etc.) with the aim to characterize their degree of uncertainty and predictability across different timescales. We compare results among the different processes and we provide real-world examples of renewable energy systems management to illustrate the technical relevance of our findings.

    Full text:

  1. P. Dimitriadis, L. Lappas, Ο. Daskalou, A. M. Filippidou, M. Giannakou, Ε. Gkova, R. Ioannidis, Α. Polydera, Ε. Polymerou, Ε. Psarrou, A. Vyrini, S.M. Papalexiou, and D. Koutsoyiannis, Application of stochastic methods for wind speed forecasting and wind turbines design at the area of Thessaly, Greece, European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-13810, doi:10.13140/RG.2.2.25355.08486, European Geosciences Union, 2015.

    Several methods exist for estimating the statistical properties of wind speed, most of them being deterministic or probabilistic, disregarding though its long-term behaviour. Here, we focus on the stochastic nature of wind. After analyzing several historical timeseries at the area of interest (AoI) in Thessaly (Greece), we show that a Hurst-Kolmogorov (HK) behaviour is apparent. Thus, disregarding the latter could lead to unrealistic predictions and wind load situations, causing some impact on the energy production and management. Moreover, we construct a stochastic model capable of preserving the HK behaviour and we produce synthetic timeseries using a Monte-Carlo approach to estimate the future wind loads in the AoI. Finally, we identify the appropriate types of wind turbines for the AoI (based on the IEC 61400 standards) and propose several industrial solutions.

    Full text:

    Additional material:

    See also: http://dx.doi.org/10.13140/RG.2.2.25355.08486

  1. S. Sigourou, V. Pagana, P. Dimitriadis, A. Tsouni, T. Iliopoulou, G.-F. Sargentis, R. Ioannidis, E. Chardavellas, D. Dimitrakopoulou, N. Mamassis, C. Contoes, and D. Koutsoyiannis, Flood risk assessment in the region of Attica, 9th International Conference on Civil Protection & New Technologies - Safe Thessaloniki 2022, Thessaloniki, Greece, September 2022.

    Full text: http://www.itia.ntua.gr/en/getfile/2238/1/documents/2022-09-29-FLOOD_RISK_ASSESSMENT_IN_THE_REGION_OF_ATTICA-presentation.pdf (8756 KB)

  1. S. Sigourou, V. Pagana, P. Dimitriadis, A. Tsouni, T. Iliopoulou, G.-F. Sargentis, R. Ioannidis, E. Chardavellas, D. Dimitrakopoulou, N. Mamassis, C. Contoes, and D. Koutsoyiannis, Proposed methodology for urban flood-risk assessment at river-basin level: the case study of the Pikrodafni river basin in Athens, Greece, Global Flood Partnership 2022 Annual Meeting, Leeds, UK, September 2022.

    The need for and the complexity of flood protection works require the development of advanced methodologies for flood risk assessment, especially considering that land cover changes, climate change and human interventions in the riverbed may severely affect the river flow. In the present study, a new methodology for urban flood risk assessment is introduced and implemented at the Pikrodafni river basin (Athens, Greece), by analyzing the vulnerability and the exposure of the river basin of Pikrodafni’s river to flood risk, in conjunction with the actual physical and socioeconomic parameters in order to propose mitigation measures. In March 2021, a Programming Agreement was signed between the Prefecture of Attica and the NOA – Part A – to conduct the study entitled ARIA «Earthquake, Fire and Flood risk assessment in the region of Attica» funded by the Prefecture of Attica. It’s the first time that such a holistic approach for flood risk assessment is implemented on building-block scale in Greece. The prototype knowledge created through the project supports the Prefecture of Attica in the optimum implementation of the National Civil Protection Plan. This serves the operational needs during crisis, as well as the preparedness and the strategic decision making towards disaster resilience. All the above-mentioned factors were also confirmed and positively evaluated according to the stakeholders’ feedback.

    Full text: http://www.itia.ntua.gr/en/getfile/2237/1/documents/FINposter_Proposed_methodology_for_urban_flood-risk_assessment.pdf (5618 KB)

Presentations and publications in workshops

  1. G.-F. Sargentis, R. Ioannidis, E. Frangedaki, P. Dimitriadis, T. Iliopoulou, D. Koutsoyiannis, and N. D. Lagaros, Wildfires, Stuff we don't mention in the normal course of studies, Rovies, National Technical University of Athens (NTUA), 2023.

    Full text: http://www.itia.ntua.gr/en/getfile/2331/1/documents/rovies-2023-sargentis-et-al-fires.pdf (2624 KB)

  1. R. Ioannidis, [No English title available], Stuff we don't mention in the normal course of studies, Rovies, National Technical University of Athens (NTUA), 2023.

    Full text: http://www.itia.ntua.gr/en/getfile/2321/1/documents/%CE%99%CF%89%CE%B1%CE%BD%CE%BD%CE%AF%CE%B4%CE%B7%CF%82%CE%A1%CE%BF%CE%B2%CE%AF%CE%B5%CF%822023.pdf (116 KB)

  1. A. Tsouni, S. Sigourou, V. Pagana, D. Koutsoyiannis, N. Mamassis, A. Koukouvinos, P. Dimitriadis, T. Iliopoulou, G.-F. Sargentis, R. Ioannidis, D. Dimitrakopoulou, E. Chardavellas, S. Vavoulogiannis, and V. Kyriakouli, Flood risk assessment in the Pikrodafni basin, Presentation of results for the 1st Phase of the Program Agreement between Attica Regional Authority and NOA, Athens, National Observatory of Athens, 2022.

    Full text: http://www.itia.ntua.gr/en/getfile/2190/1/documents/20220516.pdf (13374 KB)

Various publications

  1. G.-F. Sargentis, and R. Ioannidis, The effect of wind turbines in the landscape, Department of Water Resources and Environmental Engineering – National Technical University of Athens, 2023.

    Full text: http://www.itia.ntua.gr/en/getfile/2368/1/documents/13_RE_and_beauty.pdf (3708 KB)

Academic works

  1. R. Ioannidis, Spatial planning and architectural design for the integration of civil infrastructure into landscapes: Inferences from renewable energy works and dams, PhD thesis, Department of Water Resources and Environmental Engineering – National Technical University of Athens, June 2022.

    The case of renewable energy has demonstrated that the integration of civil infrastructure into landscapes can be a major challenge. Negligence over impacts to landscapes and marginalization of communities affected by those impacts, perpetuates a vicious cycle of public unrest and developmental disorder.

    In this work, we initially investigate how civil infrastructure transforms landscapes, both quantitatively-spatially and qualitatively-perceptually. Then, utilizing the results of this investigation we propose upgrades to spatial planning and architectural design of infrastructure, aiming for its improved integration into landscapes. The study goes into more detail in the study of wind, solar, hydroelectric energy works and dams but the inferences drawn refer to all major infrastructure works.

    The analysis is structured in three levels at gradually decreasing spatial scales: (A) The global scale, at which a comparative assessment of the generic landscape impacts of renewable energy infrastructure was carried out. (B) The national-regional scale, at which the spatial planning of infrastructure was investigated, focusing on visibility analyses and how they can be improved. (C) The project’s site scale, at which the architectural treatment of infrastructure was investigated in terms of its costs, utility and future potential.

    Full text: http://www.itia.ntua.gr/en/getfile/2258/1/documents/PhD-Ioannidis2022.pdf (27131 KB)

  1. R. Ioannidis, Architecture and the aesthetic element in dams: From international cases to proposals for Greece, Diploma thesis, 247 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, 2015.

    Dam architecture has been an issue that has not significantly concerned Greek organizations engaged in research, design and construction of dams. This thesis explores the need to raise the awareness of these organizations on issues related to the architecture of dams and produces relevant proposals. Initially, in the first part of this thesis, the current situation is investigated in relation to the architecture of Greek dams and the impact of these projects on the Greek landscape. Then, international examples of architectural interventions on dams are examined leading to the creation of database of techniques and ideas that could be implemented in Greece or elsewhere. Thereafter, general arguments for and against the inclusion of the aesthetic element as a design parameter of dams are produced. The second part of this thesis includes a set of proposals for architectural interventions in FSHD (Faced Symmetrical Hardfill Dam) dams, using the designs of the most recently constructed dam of this type in Greece (Filiatrinos dam) and setting the Aegean Islands as the proposed area of construction. Finally, the technical, construction process, architecture and cost aspects of those proposals are analyzed, proposing in the meantime a suggested planning process for similar interventions in the future.

    Full text: http://www.itia.ntua.gr/en/getfile/1624/1/documents/ThesisIoannidis1.pdf (19257 KB)