Εντροπική-στοχαστική περιγραφή της διαλείπουσας φύσης της βροχής: Η προέλευση της συστoίχιστης και της εμμονής

D. Koutsoyiannis, An entropic-stochastic representation of rainfall intermittency: The origin of clustering and persistence, Water Resources Research, 42 (1), W01401, doi:10.1029/2005WR004175, 2006.

[Εντροπική-στοχαστική περιγραφή της διαλείπουσας φύσης της βροχής: Η προέλευση της συστoίχιστης και της εμμονής]

[doc_id=675]

[Αγγλικά]

Η αναγνωρισμένη φυσική και μαθηματική αρχή της μέγιστης εντροπίας, που ερμηνευεται ως μέγιστη αβεβαιότητα, χρησιμοποιείται για την εξήγηση των παρατηρημένων ιδιοτήτων εξάρτησης της διεργασίας της εμφάνισης βροχόπτωσης και ιδίως τη συμπεριφορά συστοίχισης και εμμονής. Οι συνθήκες που χρησιμοποιούνται για τη μεγιστοποίηση της εντροπίας είναι οι απλούστερες δυνατές, ήτοι ότι η βροχή είναι διαλείπουσα με εξαρτημένες εμφανίσεις. Η διαλείπουσα φύση ποσοτικοποιείται μέσω της πιθανότητας να είναι στεγνό ένα χρονικό διάστημα και η εξάρτηση ποσοτικοποιείται μέσω της πιθανότητας να είναι στεγνά δύο διαδοχικά χρονικά διαστήματα. Αυτές οι δύο πιθανότητες χρησιμοποιούνται ως περιορισμοί σε ένα πλαίσιο μεγιστοποίησης της εντροπίας σε πολλαπλές κλίμακες. Με τη μεγιστοποίηση προσδιορίζεται οποιαδήποτε δεσμευμένη ή αδέσμευτη πιθανότητα για οποιαδήποτε αλληλουχία βροχερών και στεγνών χρονικών διαστημάτων σε οποιαδήποτε χρονική κλίμακα. Έτσι, η διεργασία της εμφάνισης βροχόπτωσης και η δομή εξάρτησής της περιγράφονται με δύο μόνο παραμέτρους. Αυτή η δομή αυτοσυσχέτισης προκύπτει να είναι μη Μαρκοβιανή. Εφαρμογή του θεωρητικού πλαισίου σε ένα σύνολο δεδομένων βροχής στην Αθήνα δείχνει καλή συμφωνία θεωρητικών προβλέψεων και εμπειρικών δεδομένων σε όλο το φάσμα χρονικών κλιμάκων, για τις οποίες μπορούν να εκτιμηθούν οι πιθανότητες βροχερής και στεγνής κατάστασης (από μια ώρα μέχρι μερικούς μήνες).

Το πλήρες κείμενο διατίθεται μόνο στο δίκτυο του ΕΜΠ λόγω νομικών περιορισμών

PDF Συμπληρωματικό υλικό:

Βλέπε επίσης: http://dx.doi.org/10.1029/2005WR004175

Εργασίες μας στις οποίες αναφέρεται αυτή η εργασία:

1. D. Koutsoyiannis, D. Kozonis, and A. Manetas, A mathematical framework for studying rainfall intensity-duration-frequency relationships, Journal of Hydrology, 206 (1-2), 118–135, doi:10.1016/S0022-1694(98)00097-3, 1998.
2. D. Koutsoyiannis, Coupling stochastic models of different time scales, Water Resources Research, 37 (2), 379–391, doi:10.1029/2000WR900200, 2001.
3. D. Koutsoyiannis, and C. Onof, Rainfall disaggregation using adjusting procedures on a Poisson cluster model, Journal of Hydrology, 246, 109–122, 2001.
4. D. Koutsoyiannis, The Hurst phenomenon and fractional Gaussian noise made easy, Hydrological Sciences Journal, 47 (4), 573–595, doi:10.1080/02626660209492961, 2002.
5. D. Koutsoyiannis, C. Onof, and H. S. Wheater, Multivariate rainfall disaggregation at a fine timescale, Water Resources Research, 39 (7), 1173, doi:10.1029/2002WR001600, 2003.
6. D. Koutsoyiannis, Statistics of extremes and estimation of extreme rainfall, 1, Theoretical investigation, Hydrological Sciences Journal, 49 (4), 575–590, doi:10.1623/hysj.49.4.575.54430, 2004.
7. D. Koutsoyiannis, Statistics of extremes and estimation of extreme rainfall, 2, Empirical investigation of long rainfall records, Hydrological Sciences Journal, 49 (4), 591–610, doi:10.1623/hysj.49.4.591.54424, 2004.
8. D. Koutsoyiannis, Uncertainty, entropy, scaling and hydrological stochastics, 1, Marginal distributional properties of hydrological processes and state scaling, Hydrological Sciences Journal, 50 (3), 381–404, doi:10.1623/hysj.50.3.381.65031, 2005.
9. D. Koutsoyiannis, Uncertainty, entropy, scaling and hydrological stochastics, 2, Time dependence of hydrological processes and time scaling, Hydrological Sciences Journal, 50 (3), 405–426, doi:10.1623/hysj.50.3.405.65028, 2005.

Εργασίες μας που αναφέρονται σ' αυτή την εργασία:

1. D. Koutsoyiannis, C. Makropoulos, A. Langousis, S. Baki, A. Efstratiadis, A. Christofides, G. Karavokiros, and N. Mamassis, Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability, Hydrology and Earth System Sciences, 13, 247–257, doi:10.5194/hess-13-247-2009, 2009.
2. D. Koutsoyiannis, and A. Langousis, Precipitation, Treatise on Water Science, edited by P. Wilderer and S. Uhlenbrook, 2, 27–78, doi:10.1016/B978-0-444-53199-5.00027-0, Academic Press, Oxford, 2011.
3. S.M. Papalexiou, D. Koutsoyiannis, and A. Montanari, Can a simple stochastic model generate rich patterns of rainfall events?, Journal of Hydrology, 411 (3-4), 279–289, 2011.
4. D. Koutsoyiannis, Physics of uncertainty, the Gibbs paradox and indistinguishable particles, Studies in History and Philosophy of Modern Physics, 44, 480–489, doi:10.1016/j.shpsb.2013.08.007, 2013.
5. D. Koutsoyiannis, Entropy: from thermodynamics to hydrology, Entropy, 16 (3), 1287–1314, doi:10.3390/e16031287, 2014.
6. D. Koutsoyiannis, and S.M. Papalexiou, Extreme rainfall: Global perspective, Handbook of Applied Hydrology, Second Edition, edited by V.P. Singh, 74.1–74.16, McGraw-Hill, New York, 2017.
7. F. Lombardo, E. Volpi, D. Koutsoyiannis, and F. Serinaldi, A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall, Water Resources Research, 53 (6), 4586–4605, doi:10.1002/2017WR020529, 2017.
8. T. Iliopoulou, and D. Koutsoyiannis, Revealing hidden persistence in maximum rainfall records, Hydrological Sciences Journal, 64 (14), 1673–1689, doi:10.1080/02626667.2019.1657578, 2019.
9. T. Iliopoulou, and D. Koutsoyiannis, Projecting the future of rainfall extremes: better classic than trendy, Journal of Hydrology, 588, doi:10.1016/j.jhydrol.2020.125005, 2020.
10. D. Koutsoyiannis, and P. Dimitriadis, Towards generic simulation for demanding stochastic processes, Sci, 3, 34, doi:10.3390/sci3030034, 2021.
11. P. Kossieris, I. Tsoukalas, A. Efstratiadis, and C. Makropoulos, Generic framework for downscaling statistical quantities at fine time-scales and its perspectives towards cost-effective enrichment of water demand records, Water, 13 (23), 3429, doi:10.3390/w13233429, 2021.
12. T. Iliopoulou, N. Malamos, and D. Koutsoyiannis, Regional ombrian curves: Design rainfall estimation for a spatially diverse rainfall regime, Hydrology, 9 (5), 67, doi:10.3390/hydrology9050067, 2022.
13. D. Koutsoyiannis, Stochastics of Hydroclimatic Extremes - A Cool Look at Risk, Εκδοση 3, ISBN: 978-618-85370-0-2, 391 pages, doi:10.57713/kallipos-1, Kallipos Open Academic Editions, Athens, 2023.

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

1. Di Baldassarre, G., A. Brath and A. Montanari, Reliability of different depth-duration-frequency equations for estimating short-duration design storms, Water Resources Research, 42(12), W12501, 2006.
2. Langousis, A., and D. Veneziano, Intensity-duration-frequency curves from scaling representations of rainfall, Water Resources Research, 43(2), W02422, 2007.
3. #Stockwell, D., Niche Modeling: Predictions from Statistical Distributions, Chapman & Hall, Boka Raton, USA, 2007.
4. Wang, J.Y., B.T. Anderson and G.D. Salvucci, Stochastic modeling of daily summertime rainfall over the southwestern United States. Part II: Intraseasonal variability, Journal of Hydrometeorology, 8(4), 938-951, 2007.
5. Veneziano, D., C. Lepore, A. Langousis and P. Furcolo, Marginal methods of intensity-duration-frequency estimation in scaling and nonscaling rainfall, Water Resources Research, 43(10), W10418, 2007.
6. Raynal, J.A., Comparison of the method of the principle of maximum entropy for the estimation of parameters of the extreme value type I distribution, Informacion Tecnologica, 19(2), 103-112, 2008.
7. Molini, A., G. G. Katul, and A. Porporato, Revisiting rainfall clustering and intermittency across different climatic regimes, Water Resour. Res., 45, W11403, doi:10.1029/2008WR007352, 2009.
8. #Montesarchio, V., and F. Napolitano, A single-site rainfall disaggregation model based on entropy, International Workshop Advances in Statistical Hydrology, International Association of Hydrological Sciences (IAHS/STAHY), Taormina, Italy, 2010.
9. Dupuis, D.J., Statistical modeling of the monthly Palmer drought severity index, Journal of Hydrologic Engineering, 15 (10), 796-807, art. no. 004010QHE, 2010.
10. Bae, D.-H., I.-W. Jung and D. P. Lettenmaier, Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju Basin, Korea, Journal of Hydrology, 401 (1-2), 90-105, 2011.
11. Kileshye Onema, J., and A. E.Taigbenu, Sensitivity analyses of landscape attributes on flow prediction in data-poor Semliki Watershed, Physics and Chemistry of the Earth, 36 (14-15), 814-822, 2011.
12. Schleiss, M., J. Jaffrain, and A. Berne, Statistical analysis of rainfall intermittency at small spatial and temporal scales, Geophys. Res. Lett., 38, L18403, doi: 10.1029/2011GL049000, 2011.
13. García-Marín, A. P., J. L. Ayuso-Muñoz, F. J. Jiménez-Hornero and J. Estévez, Selecting the best IDF model by using the multifractal approach, Hydrological Processes, 27 (3), 433-443, 2013.
14. Ridolfi, E., L. Alfonso, G. Di Baldassarre, F. Dottori, F. Russo, and F. Napolitano, An entropy approach for the optimization of cross-section spacing for river modelling, Hydrological Sciences Journal, 59 (1), 126-137, 2014.
15. Jeong, C., and T. Lee, Copula-based modeling and stochastic simulation of seasonal intermittent streamflows for arid regions, Journal of Hydro-environment Research, 10.1016/j.jher.2014.06.001, 2014.
16. Jameson, A.R., M.L. Larsen and A.B. Kostinski, Disdrometer network observations of finescale spatial-temporal clustering in rain, Journal of the Atmospheric Sciences, 72 (4), 1648-1666, 10.1175/JAS-D-14-0136.1, 2015.

Κατηγορίες: Εντροπία, Μοντέλα βροχής