Τυχαίος περίπατος στο νερό

D. Koutsoyiannis, A random walk on water, Hydrology and Earth System Sciences, 14, 585–601, doi:10.5194/hess-14-585-2010, 2010.

[Τυχαίος περίπατος στο νερό]

[doc_id=923]

[Αγγλικά]

PDF Πλήρες κείμενο (4499 KB)

PDF Συμπληρωματικό υλικό:

Βλέπε επίσης: http://dx.doi.org/10.5194/hess-14-585-2010

Σχετικές εργασίες:

Σημείωση:

Μερικές συζητήσεις σε ιστολόγια: Outside the Cube, Climate Science: Roger Pielke Sr., Retread Resources Blog, William M. Briggs, Niche Modeling 1, Niche Modeling 2, The Blackboard 1, The Blackboard 2, The Blackboard 3, Climate Audit, Bart Verheggen's weblog.

Παρόραμα στη σ. 589, αριστερή στήλη, περίπου στο μέσο: Η γραμμή "Eq. (1) (but not in Eq. (1), which represents..." πρέπει να γραφεί "Eq. (2) (but not in Eq. (1), which represents...".

Εργασίες μας στις οποίες αναφέρεται αυτή η εργασία:

1. D. Koutsoyiannis, On the quest for chaotic attractors in hydrological processes, Hydrological Sciences Journal, 51 (6), 1065–1091, doi:10.1623/hysj.51.6.1065, 2006.
2. D. Koutsoyiannis, and A. Montanari, Statistical analysis of hydroclimatic time series: Uncertainty and insights, Water Resources Research, 43 (5), W05429, doi:10.1029/2006WR005592, 2007.
3. D. Koutsoyiannis, A. Montanari, H. F. Lins, and T.A. Cohn, Climate, hydrology and freshwater: towards an interactive incorporation of hydrological experience into climate research—DISCUSSION of “The implications of projected climate change for freshwater resources and their management”, Hydrological Sciences Journal, 54 (2), 394–405, doi:10.1623/hysj.54.2.394, 2009.

Εργασίες μας που αναφέρονται σ' αυτή την εργασία:

1. G. G. Anagnostopoulos, D. Koutsoyiannis, A. Christofides, A. Efstratiadis, and N. Mamassis, A comparison of local and aggregated climate model outputs with observed data, Hydrological Sciences Journal, 55 (7), 1094–1110, doi:10.1080/02626667.2010.513518, 2010.
2. D. Koutsoyiannis, and A. Langousis, Precipitation, Treatise on Water Science, edited by P. Wilderer and S. Uhlenbrook, 2, 27–78, doi:10.1016/B978-0-444-53199-5.00027-0, Academic Press, Oxford, 2011.
3. D. Koutsoyiannis, Hurst-Kolmogorov dynamics and uncertainty, Journal of the American Water Resources Association, 47 (3), 481–495, doi:10.1111/j.1752-1688.2011.00543.x, 2011.
4. D. Koutsoyiannis, A. Paschalis, and N. Theodoratos, Two-dimensional Hurst-Kolmogorov process and its application to rainfall fields, Journal of Hydrology, 398 (1-2), 91–100, doi:10.1016/j.jhydrol.2010.12.012, 2011.
5. D. Koutsoyiannis, Hurst-Kolmogorov dynamics as a result of extremal entropy production, Physica A: Statistical Mechanics and its Applications, 390 (8), 1424–1432, doi:10.1016/j.physa.2010.12.035, 2011.
6. A. Christofides, and D. Koutsoyiannis, Causality in climate and hydrology, European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, EGU2011-7440, doi:10.13140/RG.2.2.33776.46082, European Geosciences Union, 2011.
7. D. Koutsoyiannis, A. Christofides, A. Efstratiadis, G. G. Anagnostopoulos, and N. Mamassis, Scientific dialogue on climate: is it giving black eyes or opening closed eyes? Reply to “A black eye for the Hydrological Sciences Journal” by D. Huard, Hydrological Sciences Journal, 56 (7), 1334–1339, doi:10.1080/02626667.2011.610759, 2011.
8. S.M. Papalexiou, D. Koutsoyiannis, and A. Montanari, Can a simple stochastic model generate rich patterns of rainfall events?, Journal of Hydrology, 411 (3-4), 279–289, 2011.
9. A. Montanari, and D. Koutsoyiannis, A blueprint for process-based modeling of uncertain hydrological systems, Water Resources Research, 48, W09555, doi:10.1029/2011WR011412, 2012.
10. Y. Markonis, and D. Koutsoyiannis, Climatic variability over time scales spanning nine orders of magnitude: Connecting Milankovitch cycles with Hurst–Kolmogorov dynamics, Surveys in Geophysics, 34 (2), 181–207, doi:10.1007/s10712-012-9208-9, 2013.
11. D. Koutsoyiannis, Hydrology and Change, Hydrological Sciences Journal, 58 (6), 1177–1197, doi:10.1080/02626667.2013.804626, 2013.
12. Χ. Ιωάννου, Γ. Τσεκούρας, Α. Ευστρατιάδης, και Δ. Κουτσογιάννης, Στοχαστική ανάλυση και προσομοίωση υδρομετεωρολογικών διεργασιών για τη βελτιστοποίηση ενός υβριδικού συστήματος ανανεώσιμης ενέργειας, Πρακτικά 2ου Πανελλήνιου Συνεδρίου Φραγμάτων και Ταμιευτήρων, Αθήνα, Αίγλη Ζαππείου, doi:10.13140/RG.2.1.3787.0327, Ελληνική Επιτροπή Μεγάλων Φραγμάτων, 2013.
13. F. Lombardo, E. Volpi, D. Koutsoyiannis, and S.M. Papalexiou, Just two moments! A cautionary note against use of high-order moments in multifractal models in hydrology, Hydrology and Earth System Sciences, 18, 243–255, doi:10.5194/hess-18-243-2014, 2014.
14. G. Tsekouras, and D. Koutsoyiannis, Stochastic analysis and simulation of hydrometeorological processes associated with wind and solar energy, Renewable Energy, 63, 624–633, doi:10.1016/j.renene.2013.10.018, 2014.
15. D. Koutsoyiannis, Reconciling hydrology with engineering, Hydrology Research, 45 (1), 2–22, doi:10.2166/nh.2013.092, 2014.
16. C. Pappas, S.M. Papalexiou, and D. Koutsoyiannis, A quick gap-filling of missing hydrometeorological data, Journal of Geophysical Research-Atmospheres, 119 (15), 9290–9300, doi:10.1002/2014JD021633, 2014.
17. A. Montanari, and D. Koutsoyiannis, Modeling and mitigating natural hazards: Stationarity is immortal!, Water Resources Research, 50 (12), 9748–9756, doi:10.1002/2014WR016092, 2014.
18. D. Koutsoyiannis, and A. Montanari, Negligent killing of scientific concepts: the stationarity case, Hydrological Sciences Journal, 60 (7-8), 1174–1183, doi:10.1080/02626667.2014.959959, 2015.
19. P. Dimitriadis, and D. Koutsoyiannis, Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes, Stochastic Environmental Research & Risk Assessment, 29 (6), 1649–1669, doi:10.1007/s00477-015-1023-7, 2015.
20. D. Koutsoyiannis, Generic and parsimonious stochastic modelling for hydrology and beyond, Hydrological Sciences Journal, 61 (2), 225–244, doi:10.1080/02626667.2015.1016950, 2016.
21. P. Dimitriadis, D. Koutsoyiannis, and K. Tzouka, Predictability in dice motion: how does it differ from hydrometeorological processes?, Hydrological Sciences Journal, 61 (9), 1611–1622, doi:10.1080/02626667.2015.1034128, 2016.
22. I. Deligiannis, P. Dimitriadis, Ο. Daskalou, Y. Dimakos, and D. Koutsoyiannis, Global investigation of double periodicity οf hourly wind speed for stochastic simulation; application in Greece, Energy Procedia, 97, 278–285, doi:10.1016/j.egypro.2016.10.001, 2016.
23. G. Koudouris, P. Dimitriadis, T. Iliopoulou, N. Mamassis, and D. Koutsoyiannis, Investigation on the stochastic nature of the solar radiation process, Energy Procedia, 125, 398–404, 2017.
24. D. Koutsoyiannis, Entropy production in stochastics, Entropy, 19 (11), 581, doi:10.3390/e19110581, 2017.
25. P. Dimitriadis, and D. Koutsoyiannis, Stochastic synthesis approximating any process dependence and distribution, Stochastic Environmental Research & Risk Assessment, 32 (6), 1493–1515, doi:10.1007/s00477-018-1540-2, 2018.
26. D. Koutsoyiannis, P. Dimitriadis, F. Lombardo, and S. Stevens, From fractals to stochastics: Seeking theoretical consistency in analysis of geophysical data, Advances in Nonlinear Geosciences, edited by A.A. Tsonis, 237–278, doi:10.1007/978-3-319-58895-7_14, Springer, 2018.
27. H. Tyralis, P. Dimitriadis, D. Koutsoyiannis, P.E. O’Connell, K. Tzouka, and T. Iliopoulou, On the long-range dependence properties of annual precipitation using a global network of instrumental measurements, Advances in Water Resources, 111, 301–318, doi:10.1016/j.advwatres.2017.11.010, 2018.
28. I. Tsoukalas, C. Makropoulos, and D. Koutsoyiannis, Simulation of stochastic processes exhibiting any-range dependence and arbitrary marginal distributions, Water Resources Research, 54 (11), 9484–9513, doi:10.1029/2017WR022462, 2018.
29. G. Koudouris, P. Dimitriadis, T. Iliopoulou, N. Mamassis, and D. Koutsoyiannis, A stochastic model for the hourly solar radiation process for application in renewable resources management, Advances in Geosciences, 45, 139–145, doi:10.5194/adgeo-45-139-2018, 2018.
30. P. Dimitriadis, K. Tzouka, D. Koutsoyiannis, H. Tyralis, A. Kalamioti, E. Lerias, and P. Voudouris, Stochastic investigation of long-term persistence in two-dimensional images of rocks, Spatial Statistics, 29, 177–191, doi:10.1016/j.spasta.2018.11.002, 2019.
31. G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis, Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes, Stochastic Environmental Research & Risk Assessment, doi:10.1007/s00477-018-1638-6, 2019.
32. D. Koutsoyiannis, Knowable moments for high-order stochastic characterization and modelling of hydrological processes, Hydrological Sciences Journal, 64 (1), 19–33, doi:10.1080/02626667.2018.1556794, 2019.
33. D. Koutsoyiannis, Time’s arrow in stochastic characterization and simulation of atmospheric and hydrological processes, Hydrological Sciences Journal, 64 (9), 1013–1037, doi:10.1080/02626667.2019.1600700, 2019.
34. T. Iliopoulou, and D. Koutsoyiannis, Revealing hidden persistence in maximum rainfall records, Hydrological Sciences Journal, 64 (14), 1673–1689, doi:10.1080/02626667.2019.1657578, 2019.
35. G. Papacharalampous, H. Tyralis, A. Langousis, A. W. Jayawardena, B. Sivakumar, N. Mamassis, A. Montanari, and D. Koutsoyiannis, Probabilistic hydrological post-processing at scale: Why and how to apply machine-learning quantile regression algorithms, Water, doi:10.3390/w11102126, 2019.
36. R. Ioannidis, T. Iliopoulou, C. Iliopoulou, L. Katikas, A. Petsou, M.-E. Merakou, M.-E. Asimomiti, N. Pelekanos, G. Koudouris, P. Dimitriadis, C. Plati, E. Vlahogianni, K. Kepaptsoglou, N. Mamassis, and D. Koutsoyiannis, Solar-powered bus route: introducing renewable energy into a university campus transport system, Advances in Geosciences, 49, doi:10.5194/adgeo-49-215-2019, 2019.
37. D. Koutsoyiannis, Simple stochastic simulation of time irreversible and reversible processes, Hydrological Sciences Journal, 65 (4), 536–551, doi:10.1080/02626667.2019.1705302, 2020.
38. G. Papacharalampous, D. Koutsoyiannis, and A. Montanari, Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: Methodology development and investigation using toy models, Advances in Water Resources, 136, 103471, doi:10.1016/j.advwatres.2019.103471, 2020.
39. G. Papacharalampous, H. Tyralis, D. Koutsoyiannis, and A. Montanari, Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: A large-sample experiment at monthly timescale, Advances in Water Resources, 136, 103470, doi:10.1016/j.advwatres.2019.103470, 2020.
40. D. Koutsoyiannis, Revisiting the global hydrological cycle: is it intensifying?, Hydrology and Earth System Sciences, 24, 3899–3932, doi:10.5194/hess-24-3899-2020, 2020.
41. G.-F. Sargentis, P. Dimitriadis, and D. Koutsoyiannis, Aesthetical issues of Leonardo Da Vinci’s and Pablo Picasso’s paintings with stochastic evaluation, Heritage, 3 (2), 283–305, doi:10.3390/heritage3020017, 2020.
42. T. Iliopoulou, and D. Koutsoyiannis, Projecting the future of rainfall extremes: better classic than trendy, Journal of Hydrology, 588, doi:10.1016/j.jhydrol.2020.125005, 2020.
43. G.-F. Sargentis, T. Iliopoulou, S. Sigourou, P. Dimitriadis, and D. Koutsoyiannis, Evolution of clustering quantified by a stochastic method — Case studies on natural and human social structures, Sustainability, 12 (19), 7972, doi:10.3390/su12197972, 2020.
44. G.-F. Sargentis, R. Ioannidis, T. Iliopoulou, P. Dimitriadis, and D. Koutsoyiannis, Landscape planning of infrastructure through focus points’ clustering analysis. Case study: Plastiras artificial lake (Greece), Infrastructures, 6 (1), 12, doi:10.3390/infrastructures6010012, 2021.
45. G.-F. Sargentis, P. Dimitriadis, T. Iliopoulou, and D. Koutsoyiannis, A stochastic view of varying styles in art paintings, Heritage, 4, 21, doi:10.3390/heritage4010021, 2021.
46. D. Koutsoyiannis, Rethinking climate, climate change, and their relationship with water, Water, 13 (6), 849, doi:10.3390/w13060849, 2021.
47. P. Dimitriadis, D. Koutsoyiannis, T. Iliopoulou, and P. Papanicolaou, A global-scale investigation of stochastic similarities in marginal distribution and dependence structure of key hydrological-cycle processes, Hydrology, 8 (2), 59, doi:10.3390/hydrology8020059, 2021.
48. D. Koutsoyiannis, and P. Dimitriadis, Towards generic simulation for demanding stochastic processes, Sci, 3, 34, doi:10.3390/sci3030034, 2021.
49. D. Koutsoyiannis, and G.-F. Sargentis, Entropy and wealth, Entropy, 23 (10), 1356, doi:10.3390/e23101356, 2021.
50. P. Kossieris, I. Tsoukalas, A. Efstratiadis, and C. Makropoulos, Generic framework for downscaling statistical quantities at fine time-scales and its perspectives towards cost-effective enrichment of water demand records, Water, 13 (23), 3429, doi:10.3390/w13233429, 2021.
51. P. Dimitriadis, A. Tegos, and D. Koutsoyiannis, Stochastic analysis of hourly to monthly potential evapotranspiration with a focus on the long-range dependence and application with reanalysis and ground-station data, Hydrology, 8 (4), 177, doi:10.3390/hydrology8040177, 2021.
52. D. Koutsoyiannis, C. Onof, A. Christofides, and Z. W. Kundzewicz, Revisiting causality using stochastics: 2. Applications, Proceedings of The Royal Society A, 478 (2261), 20210836, doi:10.1098/rspa.2021.0836, 2022.
53. T. Iliopoulou, P. Dimitriadis, A. Siganou, D. Markantonis, K. Moraiti, M. Nikolinakou, I. Meletopoulos, N. Mamassis, D. Koutsoyiannis, and G.-F. Sargentis, Modern use of traditional rainwater harvesting practices: An assessment of cisterns’ water supply potential in West Mani, Greece, Heritage, 5 (4), 2944–2954, doi:10.3390/heritage5040152, 2022.
54. D. Koutsoyiannis, Stochastics of Hydroclimatic Extremes - A Cool Look at Risk, Εκδοση 3, ISBN: 978-618-85370-0-2, 391 pages, doi:10.57713/kallipos-1, Kallipos Open Academic Editions, Athens, 2023.
55. P.E. O’Connell, G. O’Donnell, and D. Koutsoyiannis, On the spatial scale dependence of long-term persistence in global annual precipitation data and the Hurst Phenomenon, Water Resources Research, 59 (4), e2022WR033133, doi:10.1029/2022WR033133, 2023.
56. D. Koutsoyiannis, C. Onof, Z. W. Kundzewicz, and A. Christofides, On hens, eggs, temperatures and CO₂: Causal links in Earth’s atmosphere, Sci, 5 (3), 35, doi:10.3390/sci5030035, 2023.

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar, ResearchGate ή στο ResearchGate (additional)

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

1. Blöschl, G., and A. Montanari, Climate change impacts - throwing the dice?, Hydrological Processes, DOI:10.1002/hyp.7574, 24(3), 374-381, 2010.
2. Alila, Y., R. Hudson, P. K. Kuraś, M. Schnorbus, and K. Rasouli, Reply to comment by Jack Lewis et al. on “Forests and floods: A new paradigm sheds light on age-old controversies,” Water Resour. Res., 46, W05802, doi:10.1029/2009WR009028, 2010.
3. #Weijs, S., and N. van de Giesen, Information theory, uncertainty and risk for evaluating hydrologic forecasts, International Workshop Advances in Statistical Hydrology, International Association of Hydrological Sciences (IAHS/STAHY), Taormina, Italy, 2010.
4. Weijs, S. V., G. Schoups and N. van de Giesen, Why hydrological forecasts should be evaluated using information theory, Hydrol. Earth Syst. Sci., 14, 2545-2558, doi: 10.5194/hess-14-2545-2010, 2010.
5. Ward, J. D., A. D. Werner, W. P. Nel, and S. Beecham, The influence of constrained fossil fuel emissions scenarios on climate and water resource projections, Hydrology and Earth System Sciences, 15, 1879-1893, 2011.
6. Peel, M. C., and G. Blöschl, Hydrological modelling in a changing world, Progress in Physical Geography, 35 (2), 249-261, 2011.
7. Fildes, R., and N. Kourentzes, Validation and forecasting accuracy in models of climate change, International Journal of Forecasting, 27(4), 968-995, 2011.
8. Wagener, T., and A. Montanari, Convergence of approaches toward reducing uncertainty in predictions in ungauged basins, Water Resources Research, 47, W06301, doi: 10.1029/2010WR009469, 2011.
9. Frank, P. Imposed and neglected uncertainty in the global average surface air temperature index, Energy and Environment, 22 (4), 407-424, 2011.
10. #Allen, P.G., What (if anything) can econometric forecasters learn from meteorologists (and vice versa)?, 31st International Symposium on Forecasting , Prague, Czech Republic, 2011.
11. Gudmundsson, L., L. M. Tallaksen, K. Stahl, and A. K. Fleig, Low-frequency variability of European runoff, Hydrol. Earth Syst. Sci., 15, 2853-2869, doi: 10.5194/hess-15-2853-2011, 2011.
12. Castellarin, A., and A. Pistocchi, An analysis of change in alpine annual maximum discharges: implications for the selection of design discharges, Hydrological Processes, 21 (2), 139-168, 2012.
13. Pianosi, F. and L. Raso, Dynamic modeling of predictive uncertainty by regression on absolute errors, Water Resour. Res., 48, W03516, doi: 10.1029/2011WR010603, 2012.
14. Montanari, A., Hydrology of the Po River: looking for changing patterns in river discharge, Hydrol. Earth Syst. Sci., 16, 3739-3747, 2012.
15. #Rianna, M., E. Ridolfi, L. Lorino, L. Alfonso, V. Montesarchio, G. Di Baldassarre, F. Russo and F. Napolitano, Definition of homogeneous regions through entropy theory, 3rd STAHY International Workshop on Statistical Methods for Hydrology and Water Resources Management, Tunis, Tunisia, 2012.
16. #Bierkens, M. F. P., and F. C. van Geer, Stochastic Hydrology, Utrecht University, 2012.
17. Ramos, M. H., S. J. van Andel and F. Pappenberger, Do probabilistic forecasts lead to better decisions?, Hydrol. Earth Syst. Sci., 17, 2219-2232, 10.5194/hess-17-2219-2013, 2013.
18. Beven, K., So how much of your error is epistemic? Lessons from Japan and Italy, Hydrological Processes, 27 (11), 1677-168, 2013.
19. Soja, G., J. Züger, M. Knoflacher, P. Kinner and A.-M. Soja, Climate impacts on water balance of a shallow steppe lake in Eastern Austria (Lake Neusiedl), Journal of Hydrology, 480, 115-124, 2013.
20. Renard, B., K. Kochanek, M. Lang, F. Garavaglia, E. Paquet, L. Neppel, K. Najib, J. Carreau, P. Arnaud, Y. Aubert, F. Borchi, J.-M. Soubeyroux, S. Jourdain, J.-M. Veysseire, E. Sauquet, T. Cipriani and A. Auffray, Data-based comparison of frequency analysis methods: a general framework, Water Resources Research, 49 (2), 825-843,10.1002/wrcr.20087, 2013.
21. Hrachowitz, M., H.H.G. Savenije, G. Blöschl, J.J. McDonnell, M. Sivapalan, J.W. Pomeroy, B. Arheimer, T. Blume, M.P. Clark, U. Ehret, F. Fenicia, J.E. Freer, A. Gelfan, H.V. Gupta, D.A. Hughes, R.W. Hut, A. Montanari, S. Pande, D. Tetzlaff, P.A. Troch, S. Uhlenbrook, T. Wagener, H.C. Winsemius, R.A. Woods, E. Zehe, and C. Cudennec, A decade of Predictions in Ungauged Basins (PUB) — a review, Hydrological Sciences Journal, 58(6), 1198-1255, 2013.
22. Thompson, S. E., M. Sivapalan, C. J. Harman, V. Srinivasan, M. R. Hipsey, P. Reed, A. Montanari and G. and Blöschl, Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene, Hydrol. Earth Syst. Sci., 17, 5013-5039, 2013.
23. Beven, K., and P. Young, A guide to good practice in modelling semantics for authors and referees, Water Resources Research, 10.1002/wrcr.20393, 2013.
24. Legates, D. R., W. Soon, W. M. Briggs and C. Monckton of Brenchley, Climate consensus and ‘misinformation’: a rejoinder to agnotology, scientific consensus, and the teaching and learning of climate change, Science & Education, 10.1007/s11191-013-9647-9, 2013.
25. #Loukas, A., and L. Vasiliades, Review of applied methods for flood-frequency analysis in a changing environment in Greece, In: A review of applied methods in Europe for flood-frequency analysis in a changing environment, Floodfreq COST action ES0901: European procedures for flood frequency estimation (ed. by H. Madsen et al.), Centre for Ecology & Hydrology, Wallingford, UK, 2013.
26. Serinaldi, F., L. Zunino and O. Rosso, Complexity–entropy analysis of daily stream flow time series in the continental United States, Stochastic Environmental Research and Risk Assessment, 28 (7), 1685-1708, 2014.
27. Szolgayova, E., G. Laaha, G. Blöschl and C. Bucher, Factors influencing long range dependence in streamflow of European rivers, Hydrological Processes, 28 (4), 1573-1586, 2014.
28. Ehret, U., H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff and H. C. Winsemius, Advancing catchment hydrology to deal with predictions under change, Hydrol. Earth Syst. Sci., 18, 649-671, 2014.
29. Honti, M., A. Scheidegger, and C. Stamm, The importance of hydrological uncertainty assessment methods in climate change impact studies, Hydrology and Earth System Sciences, 18, 3301-3317, 10.5194/hess-18-3301-2014, 2014.
30. Ridley, D., and P. Ngnepieba, Antithetic time series analysis and the CompanyX data, Journal of the Royal Statistical Society: Series A (Statistics in Society), 177 (1), 83–94, 2014.
31. Berghuijs, W. R., R. A. Woods and M. Hrachowitz, A precipitation shift from snow towards rain leads to a decrease in streamflow, Nature Climate Change, 10.1038/nclimate2246, 2014.
32. Lazri, M., S. Ameur and J. M. Brucker, Analysis of the time trends of precipitation over Mediterranean region, I.J. Information Engineering and Electronic Business, 4, 38-44, 10.5815/ijieeb.2014.04.06, 2014.
33. Tsonis, A., Randomness: a property of the mathematical and physical systems, Hydrological Sciences Journal, 2014.
34. Beven, K., and P. Smith, Concepts of information content and likelihood in parameter calibration for hydrological simulation models, Journal of Hydrologic Engineering, 20 (1), 10.1061/(ASCE)HE.1943-5584.0000991, art. no. A4014010, 2015.
35. Odongo, V.O., C. van der Tol, P.R. van Oel, F.M. Meins, R. Becht, J. Onyando and Z.B. Su, Characterisation of hydroclimatological trends and variability in the Lake Naivasha basin, Kenya, Hydrological Processes, 29 (15), 3276-3293, 10.1002/hyp.10443, 2015.
36. Tsonis, A.A., Randomness: a property of the mathematical and physical systems, Hydrological Sciences Journal, 10.1080/02626667.2014.992434, 2015.
37. Pechlivanidis, I.G., B. Jackson, H. McMillan and H.V. Gupta, Robust informational entropy-based descriptors of flow in catchment hydrology, Hydrological Sciences Journal, 10.1080/02626667.2014.983516, 2015.
38. Serinaldi, F., Can we tell more than we can know? The limits of bivariate drought analyses in the United States, Stochastic Environmental Research and Risk Assessment, 10.1007/s00477-015-1124-3, 2015.
39. Di Baldassarre, G., L. Brandimarte, and K. Beven, The seventh facet of uncertainty: wrong assumptions, unknowns and surprises in the dynamics of human-water systems, Hydrological Sciences Journal, doi:10.1080/02626667.2015.1091460, 2015.

Κατηγορίες: Βιβλιογραφία μαθήματος: Υδρομετεωρολογία, Βιβλιογραφία μαθήματος: Στοχαστικές μέθοδοι, Κλίμα και στοχαστική, Ντετερμινισμός και στοχαστικότητα, Εργασίες που συζητήθηκαν σε ιστολόγια, Εντροπία, Δυναμική Hurst-Kolmogorov, Ομοιοθεσία, Στοχαστική, Αβεβαιότητα