Αριστοτέλης Τέγος

Πολιτικός Μηχανικός, MSc, Δρ. Μηχανικός
tegosaris@yahoo.gr

Συμμετοχή σε ερευνητικά έργα

Συμμετοχή ως ερευνητής

  1. Συντήρηση, αναβάθμιση και επέκταση του Συστήματος Υποστήριξης Αποφάσεων για την διαχείριση του υδροδοτικού συστήματος της ΕΥΔΑΠ
  2. Εκτίμηση και πρόγνωση του πλημμυρικού κινδύνου με τη χρήση υδρολογικών μοντέλων και πιθανοτικών μεθόδων
  3. Διερεύνηση σεναρίων διαχείρισης του ταμιευτήρα Σμοκόβου

Συμμετοχή σε τεχνολογικές μελέτες

  1. Ειδική Τεχνική Μελέτη για την Οικολογική Παροχή από το Φράγμα Στράτου

Δημοσιευμένο έργο

Publications in scientific journals

  1. A. Tegos, S. Stefanidis, J. Cody, and D. Koutsoyiannis, On the sensitivity of standardized-precipitation-evapotranspiration and aridity indexes using alternative potential evapotranspiration models, Hydrology, 10 (3), 64, doi:10.3390/hydrology10030064, 2023.
  2. A. Tegos, N. Malamos, and D. Koutsoyiannis, RASPOTION - A new global PET dataset by means of remote monthly temperature data and parametric modelling, Hydrology, 9 (2), 32, doi:10.3390/hydrology9020032, 2022.
  3. P. Dimitriadis, A. Tegos, and D. Koutsoyiannis, Stochastic analysis of hourly to monthly potential evapotranspiration with a focus on the long-range dependence and application with reanalysis and ground-station data, Hydrology, 8 (4), 177, doi:10.3390/hydrology8040177, 2021.
  4. A. Koskinas, and A. Tegos, StEMORS: A stochastic eco-hydrological model for optimal reservoir sizing, Open Water Journal, 6 (1), 1, 2020.
  5. A. Koskinas, A. Tegos, P. Tsira, P. Dimitriadis, T. Iliopoulou, P. Papanicolaou, D. Koutsoyiannis, and Τ. Williamson, Insights into the Oroville Dam 2017 spillway incident, Geosciences, 9 (37), doi:10.3390/geosciences9010037, 2019.
  6. A. Tegos, W. Schlüter, N. Gibbons, Y. Katselis, and A. Efstratiadis, Assessment of environmental flows from complexity to parsimony - Lessons from Lesotho, Water, 10 (10), 1293, doi:10.3390/w10101293, 2018.
  7. N. Malamos, I. L. Tsirogiannis, A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, Spatial interpolation of potential evapotranspiration for precision irrigation purposes, European Water, 59, 303–309, 2017.
  8. A. Tegos, N. Malamos, A. Efstratiadis, I. Tsoukalas, A. Karanasios, and D. Koutsoyiannis, Parametric modelling of potential evapotranspiration: a global survey, Water, 9 (10), 795, doi:10.3390/w9100795, 2017.
  9. A. Tegos, H. Tyralis, D. Koutsoyiannis, and K. H. Hamed, An R function for the estimation of trend signifcance under the scaling hypothesis- application in PET parametric annual time series, Open Water Journal, 4 (1), 66–71, 6, 2017.
  10. H. Tyralis, A. Tegos, A. Delichatsiou, N. Mamassis, and D. Koutsoyiannis, A perpetually interrupted interbasin water transfer as a modern Greek drama: Assessing the Acheloos to Pinios interbasin water transfer in the context of integrated water resources management, Open Water Journal, 4 (1), 113–128, 12, 2017.
  11. P. Dimitriadis, A. Tegos, A. Oikonomou, V. Pagana, A. Koukouvinos, N. Mamassis, D. Koutsoyiannis, and A. Efstratiadis, Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping, Journal of Hydrology, 534, 478–492, doi:10.1016/j.jhydrol.2016.01.020, 2016.
  12. A. Tegos, A. Efstratiadis, N. Malamos, N. Mamassis, and D. Koutsoyiannis, Evaluation of a parametric approach for estimating potential evapotranspiration across different climates, Agriculture and Agricultural Science Procedia, 4, 2–9, doi:10.1016/j.aaspro.2015.03.002, 2015.
  13. A. Tegos, N. Malamos, and D. Koutsoyiannis, A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman-Monteith formula, Journal of Hydrology, 524, 708–717, doi:10.1016/j.jhydrol.2015.03.024, 2015.
  14. A. Efstratiadis, A. Tegos, A. Varveris, and D. Koutsoyiannis, Assessment of environmental flows under limited data availability – Case study of the Acheloos River, Greece, Hydrological Sciences Journal, 59 (3-4), 731–750, doi:10.1080/02626667.2013.804625, 2014.
  15. D. Koutsoyiannis, N. Mamassis, and A. Tegos, Logical and illogical exegeses of hydrometeorological phenomena in ancient Greece, Water Science and Technology: Water Supply, 7 (1), 13–22, 2007.

Book chapters and fully evaluated conference publications

  1. P. Dimitriadis, A. Tegos, A. Petsiou, V. Pagana, I. Apostolopoulos, E. Vassilopoulos, M. Gini, A. D. Koussis, N. Mamassis, D. Koutsoyiannis, and P. Papanicolaou, Flood Directive implementation in Greece: Experiences and future improvements, 10th World Congress on Water Resources and Environment "Panta Rhei", Athens, European Water Resources Association, 2017.
  2. N. Malamos, I. L. Tsirogiannis, A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, Spatial interpolation of potential evapotranspiration for precision irrigation purposes, 10th World Congress on Water Resources and Environment "Panta Rhei", Athens, European Water Resources Association, 2017.
  3. A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, A parametric model for potential evapotranspiration estimation based on a simplified formulation of the Penman-Monteith equation, Evapotranspiration - An Overview, edited by S. Alexandris, 143–165, doi:10.5772/52927, InTech, 2013.
  4. D. Koutsoyiannis, N. Mamassis, and A. Tegos, Logical and illogical exegeses of hydrometeorological phenomena in ancient Greece, Proceedings of the 1st IWA International Symposium on Water and Wastewater Technologies in Ancient Civilizations, edited by A. N. Angelakis and D. Koutsoyiannis, Iraklio, 135–143, doi:10.13140/RG.2.1.4188.4408, International Water Association, 2006.

Conference publications and presentations with evaluation of abstract

  1. A. Tegos, P. Dimitriadis, and D. Koutsoyiannis, Stochastic investigation of the correlation structure and probability distribution of the global potential evapotranspiration, European Geosciences Union General Assembly 2018, Geophysical Research Abstracts, Vol. 20, Vienna, EGU2018-17849-3, European Geosciences Union, 2018.
  2. N. Malamos, A. Tegos, I. L. Tsirogiannis, A. Christofides, and D. Koutsoyiannis, Implementation of a regional parametric model for potential evapotranspiration assessment, IrriMed 2015 – Modern technologies, strategies and tools for sustainable irrigation management and governance in Mediterranean agriculture, Bari, doi:10.13140/RG.2.1.3992.0725, 2015.
  3. A. Koukouvinos, D. Nikolopoulos, A. Efstratiadis, A. Tegos, E. Rozos, S.M. Papalexiou, P. Dimitriadis, Y. Markonis, P. Kossieris, H. Tyralis, G. Karakatsanis, K. Tzouka, A. Christofides, G. Karavokiros, A. Siskos, N. Mamassis, and D. Koutsoyiannis, Integrated water and renewable energy management: the Acheloos-Peneios region case study, European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-4912, doi:10.13140/RG.2.2.17726.69440, European Geosciences Union, 2015.
  4. A. Tegos, A. Efstratiadis, N. Malamos, N. Mamassis, and D. Koutsoyiannis, Evaluation of a parametric approach for estimating potential evapotranspiration across different climates, IRLA2014 – The Effects of Irrigation and Drainage on Rural and Urban Landscapes, Patras, doi:10.13140/RG.2.2.14004.24966, 2014.
  5. N. Bountas, N. Boboti, E. Feloni, L. Zeikos, Y. Markonis, A. Tegos, N. Mamassis, and D. Koutsoyiannis, Temperature variability over Greece: Links between space and time, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.17739.80164, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.
  6. A. Efstratiadis, A. Koukouvinos, P. Dimitriadis, A. Tegos, N. Mamassis, and D. Koutsoyiannis, A stochastic simulation framework for flood engineering, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.16848.51201, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.
  7. V. Pagana, A. Tegos, P. Dimitriadis, A. Koukouvinos, P. Panagopoulos, and N. Mamassis, Alternative methods in floodplain hydraulic simulation - Experiences and perspectives, European Geosciences Union General Assembly 2013, Geophysical Research Abstracts, Vol. 15, Vienna, EGU2013-10283-2, European Geosciences Union, 2013.
  8. A. Oikonomou, P. Dimitriadis, A. Koukouvinos, A. Tegos, V. Pagana, P. Panagopoulos, N. Mamassis, and D. Koutsoyiannis, Floodplain mapping via 1D and quasi-2D numerical models in the valley of Thessaly, Greece, European Geosciences Union General Assembly 2013, Geophysical Research Abstracts, Vol. 15, Vienna, EGU2013-10366, doi:10.13140/RG.2.2.25165.03040, European Geosciences Union, 2013.
  9. A. Varveris, P. Panagopoulos, K. Triantafillou, A. Tegos, A. Efstratiadis, N. Mamassis, and D. Koutsoyiannis, Assessment of environmental flows of Acheloos Delta, European Geosciences Union General Assembly 2010, Geophysical Research Abstracts, Vol. 12, Vienna, 12046, doi:10.13140/RG.2.2.14849.66404, European Geosciences Union, 2010.
  10. A. Tegos, N. Mamassis, and D. Koutsoyiannis, Estimation of potential evapotranspiration with minimal data dependence, European Geosciences Union General Assembly 2009, Geophysical Research Abstracts, Vol. 11, Vienna, 1937, doi:10.13140/RG.2.2.27222.86089, European Geosciences Union, 2009.
  11. A. Efstratiadis, A. Tegos, I. Nalbantis, E. Rozos, A. Koukouvinos, N. Mamassis, S.M. Papalexiou, and D. Koutsoyiannis, Hydrogeios, an integrated model for simulating complex hydrographic networks - A case study to West Thessaly region, 7th Plinius Conference on Mediterranean Storms, Rethymnon, Crete, doi:10.13140/RG.2.2.25781.06881, European Geosciences Union, 2005.

Presentations and publications in workshops

  1. Α. Τέγος, Α. Ευστρατιάδης, Α. Βαρβέρης, Ν. Μαμάσης, Α. Κουκουβίνος, και Δ. Κουτσογιάννης, Εκτίμηση και υλοποίηση περιορισμών οικολογικής παροχής σε μεγάλα Υ/Η έργα: Η περίπτωση του Αχελώου, Η οικολογική παροχή των ποταμών και η σημασία της ορθής εκτίμησής της, Κτήριο "Κωστής Παλαμάς" Πανεπιστημίου Αθηνών, 2014.
  2. Δ. Κουτσογιάννης, Ν. Μαμάσης, και Α. Τέγος, Υδρομετεωρολογικά ζητήματα στην αρχαία ελληνική επιστήμη και φιλοσοφία, Η Οικο-νομία του Νερού, επιμέλεια Η. Ευθυμιόπουλος και Μ. Μοδινός, Ύδρα, doi:10.13140/RG.2.2.25574.63040, Ελληνικά Γράμματα, 2009.

Various publications

  1. Α. Τέγος, Αχελώος κι εκείνα που δεν λέγονται, 2009.
  2. Α. Τέγος, Αχελώος: Το νερό ανήκει μόνο στα ψάρια;, Νέος Αγώνας Καρδίτσας, Μάρτιος 2009.

Academic works

  1. A. Tegos, State-of-the-art approach for potential evapotranspiration assessment, PhD thesis, 123 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, Νοέμβριος 2019.
  2. Α. Τέγος, Απλοποίηση της εκτίμησης της εξατμοδιαπνοής στην Ελλάδα, Μεταπτυχιακή εργασία, Τομέας Υδατικών Πόρων και Περιβάλλοντος – Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, 2007.
  3. Α. Τέγος, Συνδυασμένη προσομοίωση υδρολογικών-υδρογεωλογικών διεργασιών και λειτουργίας υδροσυστήματος Δυτικής Θεσσαλίας, Διπλωματική εργασία, 132 pages, Τομέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων – Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, Σεπτέμβριος 2005.

Research reports

  1. Α. Κουκουβίνος, Α. Ευστρατιάδης, Δ. Νικολόπουλος, Χ. Τύραλης, Α. Τέγος, Ν. Μαμάσης, και Δ. Κουτσογιάννης, Πιλοτική εφαρμογή στο σύστημα Αχελώου-Θεσσαλίας, Συνδυασμένα συστήματα ανανεώσιμων πηγών για αειφoρική ενεργειακή ανάπτυξη (CRESSENDO), 98 pages, Τομέας Υδατικών Πόρων και Περιβάλλοντος – Εθνικό Μετσόβιο Πολυτεχνείο, Οκτώβριος 2015.
  2. Ν. Μαμάσης, Ρ. Μαυροδήμου, Α. Ευστρατιάδης, Μ. Χαϊνταρλής, Α. Τέγος, Α. Κουκουβίνος, Π. Λαζαρίδου, Μ. Μαγαλιού, και Δ. Κουτσογιάννης, Διερεύνηση εναλλακτικών τρόπων οργάνωσης και λειτουργίας Φορέα Διαχείρισης έργων Σμοκόβου, Διερεύνηση σεναρίων διαχείρισης του ταμιευτήρα Σμοκόβου, Τεύχος 2, 73 pages, Τομέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων – Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, Μάρτιος 2007.
  3. Α. Ευστρατιάδης, Α. Τέγος, Γ. Καραβοκυρός, Ι. Κυριαζοπούλου, και Ι. Βαζίμας, Σχέδιο διαχείρισης των υδατικών πόρων περιοχής Καρδίτσας, Ολοκληρωμένη Διαχείριση Υδατικών Συστημάτων σε Σύζευξη με Εξελιγμένο Υπολογιστικό Σύστημα (ΟΔΥΣΣΕΥΣ), Τεύχος 16, 132 pages, ΝΑΜΑ Σύμβουλοι Μηχανικοί και Μελετητές Α.Ε., Αθήνα, Δεκέμβριος 2006.
  4. Α. Ευστρατιάδης, Α. Κουκουβίνος, Ε. Ρόζος, Α. Τέγος, και Ι. Ναλμπάντης, Θεωρητική τεκμηρίωση μοντέλου προσομοίωσης υδρολογικών-υδρογεωλογικών διεργασιών λεκάνης απορροής «Υδρόγειος», Ολοκληρωμένη Διαχείριση Υδατικών Συστημάτων σε Σύζευξη με Εξελιγμένο Υπολογιστικό Σύστημα (ΟΔΥΣΣΕΥΣ), Ανάδοχος: ΝΑΜΑ Σύμβουλοι Μηχανικοί και Μελετητές Α.Ε., Τεύχος 4a, 103 pages, Τομέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων – Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, Δεκέμβριος 2006.

Ανάλυση ερευνητικών έργων

Συμμετοχή ως ερευνητής

  1. Συντήρηση, αναβάθμιση και επέκταση του Συστήματος Υποστήριξης Αποφάσεων για την διαχείριση του υδροδοτικού συστήματος της ΕΥΔΑΠ

    Περίοδος εκτέλεσης: Οκτώβριος 2008–Νοέμβριος 2011

    Προϋπολογισμός: €72 000

    Project director: Ν. Μαμάσης

    Κύριος ερευνητής: Δ. Κουτσογιάννης

    Το ερευνητικό έργο περιλαμβάνει την αναβάθμιση, συντήρηση και επέκταση του Συστήματος Υποστήριξης Αποφάσεων (ΣΥΑ) που ανέπτυξε το ΕΜΠ για την ΕΥΔΑΠ στα πλαίσια του ερευνητικού έργου Εκσυγχρονισμός της εποπτείας και διαχείρισης του συστήματος των υδατικών πόρων ύδρευσης της Αθήνας (1999-2003). Οι εργασίες αφορούν (α) στη Βάση Δεδομένων (αναβάθμιση λογισμικού, διαχείριση χρονοσειρών ποιοτικών παραμέτρων), (β) στο μετρητικό δίκτυο (επέκταση-βελτίωση- συντήρηση, εκτίμηση απωλειών υδραγωγείων), (γ) στην αναβάθμιση λογισμικού διαχείρισης δεδομένων και την προσθήκη αυτόματης επεξεργασίας τηλεμετρικών δεδομένων, (δ) στο λογισμικό Υδρονομέας (επικαιροποίηση του μοντέλου του υδροσυστήματος, επέκταση του μοντέλου προσομοίωσης και βελτιστοποίησης, αναβάθμιση λειτουργικών χαρακτηριστικών λογισμικού), (ε) σε υδρολογικές αναλύσεις (συλλογή και επεξεργασία δεδομένων, επικαιροποίηση χαρακτηριστικών υδρολογικών μεγεθών) και (στ) στα ετήσια διαχειριστικά σχέδια (υποστήριξη στην εκπόνηση).

  1. Εκτίμηση και πρόγνωση του πλημμυρικού κινδύνου με τη χρήση υδρολογικών μοντέλων και πιθανοτικών μεθόδων

    Περίοδος εκτέλεσης: Φεβρουάριος 2007–Αύγουστος 2008

    Προϋπολογισμός: €15 000

    Ανάθεση: Εθνικό Μετσόβιο Πολυτεχνείο

    Ανάδοχος: Τομέας Υδατικών Πόρων και Περιβάλλοντος

    Συνεργαζόμενοι: Hydrologic Research Center

    Project director: Δ. Κουτσογιάννης

    Κύριος ερευνητής: Σ.Μ. Παπαλεξίου

    Πλαίσιο: Πρόγραμμα Βασικής Έρευνας ΕΜΠ "Κωνσταντίνος Καραθεοδωρή"

    Αντικείμενο του έργου είναι η ανάπτυξη ενός ολοκληρωμένου πλαισίου εκτίμησης και πρόγνωσης του πλημμυρικού κινδύνου με τη σύζευξη στοχαστικών, υδρολογικών και υδραυλικών μοντέλων. Η περιοχή μελέτης είναι η λεκάνη απορροής του Βοιωτικού Κηφισού. Το έργο περιλαμβάνει ανάλυση των ισχυρών επεισοδίων βροχής στη λεκάνη, την κατανόηση των μηχανισμών γένεσης των πλημμυρών σε αυτή την καρστική λεκάνη και την εκτίμηση του πλημμυρικού κινδύνου σε χαρακτηριστικές θέσεις του υδροσυστήματος.

  1. Διερεύνηση σεναρίων διαχείρισης του ταμιευτήρα Σμοκόβου

    Περίοδος εκτέλεσης: Νοέμβριος 2005–Δεκέμβριος 2006

    Προϋπολογισμός: €60 000

    Ανάθεση: Ειδική Υπηρεσία Διαχείρισης Επιχειρησιακών Προγραμμάτων Θεσσαλίας

    Ανάδοχος: Τομέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων

    Project director: Δ. Κουτσογιάννης

    Κύριος ερευνητής: Ν. Μαμάσης

    Πλαίσιο: Επιχειρησιακά Σχέδια Διαχείρισης Δικτύων Σμοκόβου

    Αντικείμενο του έργου είναι: (α) η συλλογή υδρολογικών δεδομένων, δεδομένων χρήσεων νερού και τεχνικών χαρακτηριστικών του συστήματος (ταμιευτήρας και συναφή έργα), (β) η διερεύνηση του νομικού, οικονομικού και κοινωνικού πλαισίου που διέπει τη λειτουργία και διαχείριση του ταμιευτήρα, (γ) η διερεύνηση του νομικού και οικονομικού πλαισίου λειτουργίας άλλων ταμιευτήρων, (δ) η διερεύνηση εναλλακτικών τρόπων οργάνωσης και λειτουργίας του Φορέα Διαχείρισης, (ε) η κατάρτιση επιχειρησιακού σχεδίου διαχείρισης των υδατικών αποθεμάτων του ταμιευτήρα, (στ) η σύνταξη εναλλακτικών σεναρίων διαχείρισης και βέλτιστης λειτουργίας του ταμιευτήρα για διάφορα επίπεδα ολοκλήρωσης των έργων, και (ζ) η ολοκλήρωση δεδομένων και επεξεργασιών σε πληροφοριακό σύστημα.

Ανάλυση τεχνολογικών μελετών

  1. Ειδική Τεχνική Μελέτη για την Οικολογική Παροχή από το Φράγμα Στράτου

    Περίοδος εκτέλεσης: Ιανουάριος 2009–Ιούνιος 2009

    Ανάθεση: Δημόσια Επιχείρηση Ηλεκτρισμού

    Ανάδοχος: ECOS Μελετητική Α.Ε.

Ανάλυση δημοσιευμένου έργου

Publications in scientific journals

  1. A. Tegos, S. Stefanidis, J. Cody, and D. Koutsoyiannis, On the sensitivity of standardized-precipitation-evapotranspiration and aridity indexes using alternative potential evapotranspiration models, Hydrology, 10 (3), 64, doi:10.3390/hydrology10030064, 2023.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/2276/1/documents/hydrology-10-00064-v2.pdf (2598 KB)

  1. A. Tegos, N. Malamos, and D. Koutsoyiannis, RASPOTION - A new global PET dataset by means of remote monthly temperature data and parametric modelling, Hydrology, 9 (2), 32, doi:10.3390/hydrology9020032, 2022.

    Σημείωση:

    Τα δεδομένα που συνοδεύουν το άρθρο είναι ανοιχτά και διαθέσιμα δωρεάν: https://ntuagr-my.sharepoint.com/:f:/g/personal/dkoutsog_ntua_gr/EvSuyFR7zl1Jiax1YKbPhW0BT9-swkLHdw-LuhGE4gd5Cg?e=OtYQMn

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/2167/1/documents/hydrology-09-00032-v2.pdf (4154 KB)

  1. P. Dimitriadis, A. Tegos, and D. Koutsoyiannis, Stochastic analysis of hourly to monthly potential evapotranspiration with a focus on the long-range dependence and application with reanalysis and ground-station data, Hydrology, 8 (4), 177, doi:10.3390/hydrology8040177, 2021.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/2168/1/documents/hydrology-08-00177.pdf (3107 KB)

  1. A. Koskinas, and A. Tegos, StEMORS: A stochastic eco-hydrological model for optimal reservoir sizing, Open Water Journal, 6 (1), 1, 2020.

    [StEMORS: Στοχαστικό οικο-υδρολογικό μοντέλο για βέλτιστη διαστασιολόγηση ταμιευτήρα]

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/2041/1/documents/StEMORS.pdf (1256 KB)

    Βλέπε επίσης: https://scholarsarchive.byu.edu/openwater/vol6/iss1/1

  1. A. Koskinas, A. Tegos, P. Tsira, P. Dimitriadis, T. Iliopoulou, P. Papanicolaou, D. Koutsoyiannis, and Τ. Williamson, Insights into the Oroville Dam 2017 spillway incident, Geosciences, 9 (37), doi:10.3390/geosciences9010037, 2019.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/1926/1/documents/geosciences-09-00037-2.pdf (6834 KB)

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

  1. A. Tegos, W. Schlüter, N. Gibbons, Y. Katselis, and A. Efstratiadis, Assessment of environmental flows from complexity to parsimony - Lessons from Lesotho, Water, 10 (10), 1293, doi:10.3390/w10101293, 2018.

    [Εκτίμηση περιβαλλοντικών ροών από την πολυπλοκότητα στη φειδωλότητα - Μαθήματα από το Λεσότο]

    Στη διάρκεια της τελευταίας δεκαετίας, η εκτίμηση των περιβαλλοντικών ροών εστίαστε την εποσημονική της προσοχή στα ισχυρά τροποποιημένα υδροσυστήματα, όπως στις ρυθμιζόμενες εκροές κατάντη φραγμάτων. Υπό το πρίσμα αυτό, αναπτύχθηκαν πολυάριθμες προσεγγίσεις διαφορετικής πολυπλοκότητας, οι πιο ολιστικ΄ςς εκ των οποίων ενσωματώνουν υδρολογικά, υδραυλικά και βιολογικά δεδομένα και δεδομλενα ποιότητας νερού, καθώς και κοινωνικοοικονομικά ζητήματα. Συχνά, ο βασικός στόχος είναι να βρεθούν οι βέλτιστες εκροές νερού, να ενσημερωθεί η πολιτική, και να προσδιοριστεί ένα βέλτιστο πλαίσιο. Η εργασία αυτή υλοποιεί μια απολποίηση του πλαισίου DRIFT, το οποίο αναφέρεται ως η πρώτη ολιστική προσέγγιση, και περιλαμβάνει τρεις συνιστώσες, ήτοι υδρολογική, υδραυλική και ποιότητας ψαριών. Προτείνεται μια καινοτόμος εννοιολογική κατηγοριοποίηση της ποιότητας των ψαριών, που συσχετίζει τις απαιτήσεις της ισχυοπανίδας με υδραυλικά χαρακτηριστικά που εξάγονται από αναλύσεις δειγματοληψίας ψαριών. Η νέα μεθοδολογία εφαρμόστηκε και επαληθεύτηκε επιτυχώς σε τριες θέσεις ποταμών του Λεσότο, όπου προτύτερα είχε εφαρμοστεί η μέθοδος DRIFT.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/1878/1/documents/water-10-01293.pdf (2633 KB)

    Βλέπε επίσης: http://www.mdpi.com/2073-4441/10/10/1293/htm

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. Yang, Z., K. Yang, L. Su, and H. Hu, The multi-objective operation for cascade reservoirs using MMOSFLA with emphasis on power generation and ecological benefit, Journal of Hydroinformatics, 21(2), 257-278, doi:10.2166/hydro.2019.064, 2019.
    2. Langat, P. K., L. Kumar, and R. Koech, Identification of the most suitable probability distribution models for maximum, minimum, and mean streamflow, Water, 11, 734, doi:10.3390/w11040734, 2019.
    3. Sahoo, B. B., R. Jha, A. Singh, A. and D. Kumar, Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting, Acta Geophysica, 67, 1471-1481, doi:10.1007/s11600-019-00330-1, 2019.
    4. Ding, L., Q. Li, J. Tang, J. Wang, and X. Chen, Linking land use metrics measured in aquatic-terrestrial interfaces to water quality of reservoir-based water sources in Eastern China, Sustainability, 11(18), 4860, doi:10.3390/su11184860, 2019.
    5. Koskinas, A., Stochastics and ecohydrology: A study in optimal reservoir design, Dams and Reservoirs, 30(2), 53-59, doi:10.1680/jdare.20.00009, 2020.
    6. Jo, Y.-J., J.-H. Song, Y. Her, G. Provolo, J. Beom, M. Jeung, Y.-J. Kim, S.-H. Yoo, and K.-S. Yoon, Assessing the potential of agricultural reservoirs as the source of environmental flow, Water; 13(4), 508, doi:10.3390/w13040508, 2021.
    7. Wu, M., H. Wu, A. T. Warner, H. Li, and Z. Liu, Informing environmental flow planning through landscape evolution modeling in heavily modified urban rivers in China, Water, 13(22), 3244, doi:10.3390/w13223244, 2021.
    8. Hoque, M. M., A. Islam, and S. Ghosh, Environmental flow in the context of dams and development with special reference to the Damodar Valley Project, India: a review, Sustainable Water Resources Management, 8, 62, doi:10.1007/s40899-022-00646-9, 2022.
    9. Owusu, A., M. Mul, M. Strauch, P. van der Zaag, M. Volk, and J. Slinger, The clam and the dam: A Bayesian belief network approach to environmental flow assessment in a data scarce region, Science of The Total Environment, 810, 151315, doi:10.1016/j.scitotenv.2021.151315, 2022.
    10. Liu, S., Q. Zhang, Y. Xie, P. Xu, and H. Du, Evaluation of minimum and suitable ecological flows of an inland basin in China considering hydrological variation, Water, 15(4), 649, doi:10.3390/w15040649, 2023.
    11. Nasiri Khiavi, A., R. Mostafazadeh, and F. Ghanbari Talouki, Using game theory algorithm to identify critical watersheds based on environmental flow components and hydrological indicators, Environment, Development and Sustainability, doi:10.1007/s10668-023-04390-8, 2024.

  1. N. Malamos, I. L. Tsirogiannis, A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, Spatial interpolation of potential evapotranspiration for precision irrigation purposes, European Water, 59, 303–309, 2017.

    [Χωρική παρεμβολή δυνητικής εξατμοδιαπνοής για σκοπούς ακριβούς άρδευσης]

    Η ακριβής άρδευση αποτελεί μια καινοτομία στη διαχείριση του αρδευτικού νερού, καθώς παρέχει τα μέσα για τη βέλτιστη χρήση του. Τα πρόσφατα χρόνια, έχουν υλοποιηθεί διάφορες εφαρμογές ακριβούς άρδευσης, βασισμένες σε χωρικά δεδομένα από διαφορετικές πηγές, π.χ. δίκτυα μετεωρολογικών σταθμών, δεδομένα τηλεπισκόπησης, και μετρήσεις πεδίου. Ένας από τους παράγοντες που επηρεάζουν τον σχεδιασμό και διαχείριση των συστημάτων βέλτιστης άρδευσης είναι η ημερήσια δυνητική εξατμοδιαπνοή (ΡΕΤ). Μια συνηθισμένη προσέγγιση είναι η την εκτίμηση της ημερήσιας ΡΕΤ της αντιπροσωπευτικής ημέρας κάθε μήνα, στη διάρκεια της αρδευτικής περιόδου. Στην παρούσα μελέτη, παρουσιάζεται η εφαρμογή της πρόσφατα εισηγμένης μη παραμετρικής μεθοδολογίας BSS (bilinear surface smoothing) για τη χωρική παρεμβολή της ημερήσιας ΡΕΤ. Η περιοχή μελέτης είναι η πεδιάδα της Άρτας, η οποία βρίσκεται στην περιοχή της Ηπείρου στη ΒΔ Ελλάδα. Η ημερήσια ΡΕΤ εκτιμήθηκε με βάση τη μεθοδολογία FAO Penman-Monteith, με δεδομένα που συλλέχθηκαν από ένα δίκτυο έξι αγρομετεωρολογικών σταθμών, που εγκαταστάθηκαν στις αρχές του 2015 σε επιλεγμένες θέσεις της περιοχής μελέτης. Για λόγους διερεύνησης, παράξαμε χάρτες για τις Ιουλιανές ημέρες 105, 135, 162, 199, 229 και 259, καλύπτοντας έτσι την πλήρη αρδευτική περίοδο του 2015. Ακόμη, σε κάθε σταθμό έγιναν συγκρίσεις και επαληθεύσεις έναντι της υπολογισθείσας, με τη μέθοδο FAO Penman-Monteith, PET, με χρήση της BSS και μια κοινά εφαρμοζόμενης μεθόδου παρεμβολής, ήτοι της μεθόδου των αντίστροφων αποστάσεων (IDW). Κατά τη διάρκεια της διαδικασία επαλήθευσης, με απομάκρυνση ενός σταθμού κάθε φορά, η μέθοδος BSS παρήγαγε πολύ καλά αποτελέσματα, υπερβαίνοντας IDW. Δεδομένης της απλότητας της BSS, η ολική της επίδοση είναι ικανοποιητική, παρέχοντας χάρτες που αντιπροσωπεύουν τη χωρική και χρονική μεταβολή της ημερήσιας ΡΕΤ.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/1776/1/documents/EW_2017_59_41_2HOxTxv.pdf (4259 KB)

    Βλέπε επίσης: http://ewra.net/ew/pdf/EW_2017_59_41.pdf

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. Ndiaye, P. M., A. Bodian, L. Diop, A. Deme, A. Dezetter, K. Djaman, and A. Ogilvie, Trend and sensitivity analysis of reference evapotranspiration in the Senegal river basin using NASA meteorological data, Water, 12(7), 1957, doi:10.3390/w12071957, 2020.
    2. Ndiaye, P. M., A. Bodian, L. Diop, A. Dezetter, E. Guilpart, A. Deme, and A. Ogilvie, Future trend and sensitivity analysis of evapotranspiration in the Senegal River Basin, Journal of Hydrology: Regional Studies, 35, 100820, doi:10.1016/j.ejrh.2021.100820, 2021.
    3. Dimitriadou S., and K. G. Nikolakopoulos, Reference evapotranspiration (ETo) methods implemented as ArcMap models with remote-sensed and ground-based inputs, examined along with MODIS ET, for Peloponnese, Greece, ISPRS International Journal of Geo-Information, 10(6), 390, doi:10.3390/ijgi10060390, 2021.
    4. #Dimitriadou, S., and K. G. Nikolakopoulos, Development of GIS models via optical programming and python scripts to implement four empirical methods of reference and actual evapotranspiration (ETo, ETa) incorporating MODIS LST inputs, Proc. SPIE 11856, Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIII, 118560K, doi:10.1117/12.2597724, 2021.
    5. Dimitriadou, S., and K. G. Nikolakopoulos, Evapotranspiration trends and interactions in light of the anthropogenic footprint and the climate crisis: A review, Hydrology, 8(4), 163, doi:10.3390/hydrology8040163, 2021.
    6. Dimitriadou, S., and K. G. Nikolakopoulos, Artificial neural networks for the prediction of the reference evapotranspiration of the Peloponnese Peninsula, Greece, Water, 14(13), 2027, doi:10.3390/w14132027, 2022.
    7. Fotia, K., G. Nanos, N. Malamos, M. Giannelos, P. Mpeza, and I. Tsirogiannis, Water footprint and performance assessment of a table olive cultivar (Olea europaea L. “Konservolea”) under various irrigation strategies, Acta Horticulturae, 1373, 57-64, doi:10.17660/ActaHortic.2023.1373.9, 2023.

  1. A. Tegos, N. Malamos, A. Efstratiadis, I. Tsoukalas, A. Karanasios, and D. Koutsoyiannis, Parametric modelling of potential evapotranspiration: a global survey, Water, 9 (10), 795, doi:10.3390/w9100795, 2017.

    [Παραμετρικό μοντέλο δυνητικής εξατμοδιαπνοής: μια παγκόσμια έρευνα]

    Παρουσιάζουμε και επαληθεύουμε ένα παγκόσμιο παραμετρικό μοντέλο δυνητικής εξατμοδιαπνοής (ΡΕΤ) δύο παραμέτρων, οι οποίες εκτιμώνται μέσω βαθμονόμησης, χρησμοποιώντας ως επεξηγηματικές μεταβλητές τη θερμοκρασία και εξωγήινη ακτινοβολία. Το μοντέλο αι η διαδικασία εκτίμησης των παραμέτρων του ελέγχονται σε όλο τον πλανήτη, με χρήση της βάσης δεδομένων FAO CLIMWAT που παρέχει μέσες μηνιαίες τιμές των μετεωρολογικών εισόδων σε 4300 θέσεις παγκοσμίως. Μια προκαταρκτική ανάλυση των δεδομένων αυτών επέτρεψε την εξήγηση των κύριων μηχανισμών της ΡΕΤ παγοσμίως και εποχιακά. Στη συνέχεια , αναπτύξαμε ένα εργαλείο αυτόματης βελτιστοποίησης για τη βαθμονόμηση του μοντέλου και την παραγωγή σημειακών εκτιμήσεων της δυνητικής εξατμοδιαπνοής έναντι εκτιμήσεων με τη μέθοδο Penman-Monteith. Επίσης, πραγματοποιήσαμε εκτενείς αναλύσεις των δεδομένων εισόδου και εξόδου του μοντέλου, περιλαμβανομένης και της παραγωγής παγκόσμιων χαρτών των βελτιστοποιημένων παραμέτρων και σχετικών μέτρων επίδοσης. Ακόμη, εφαρμόσαμε τιμές των βελτιστοποιημένων παραμέτρων από παρεμβολή για να επαληθεύσουμε την προγνωστική ιακνότητα του μοντέλου μας έναντι μηνιαίων μετεωρολογικών χρονοσειρών, σε διάφορους σταθμούς στον κόσμο. Τα αποτελέσματα είναι πολύ ενθαρρυντικά, καθώς ακόμα και με τη χρήση περιληπτικής λκλιματικής πληροφορίας για τη βαθμονόμηση του μοντέλου και τη χρήση παραμέτρων από παρεμβολή ως τοπικών εκτιμητριών, το μοντέλο γενικά εξασφαλίζει αξιόπιστες εκτιμήσεις της ΡΕΤ. Σε κάποιες περιπτώσεις το μοντέλο έχει φτωχή συμπεριφορά ως προς την εκτίμηση της ΡΕΤ αναφοράς, λόγω μη ομαλών αλληλεπιδράσεων μεταξύ της θερμοκρασίας και εξωγήινης ακτινοβολίας, καθώς και επειδή οι σχετικές διεργασίες επηρεάζονται από επιπρόσθετα αίτια, π.χ. τη σχετική υγρασία και την ταχύτητα ανέμου. Ωστόσο, η ανάλυση των υπολοίπων έδειξε ότι το μοντέλο είναι συνεπές σε όρους ετίμησης παραμέτρων και εαλήθευσης. Οι εξαγόμενοι χάρτες παραμέτρων επιτρέπουν την άμεση χρήση του παραμετρικού μοντέλου οπουδήποτε στον κόσμο, παρέχοντας εκτιμήσεις της ΡΕΤ στην περίπτωση ελλιπών δεδομένων, που μποτούν να βελτιωθούν περαιτέρων με τη χρήση ενός μετεωρολογικών δειγμάτων μικρού μήκους.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/1738/2/documents/water-09-00795.pdf (6428 KB)

    Συμπληρωματικό υλικό:

    Βλέπε επίσης: http://www.mdpi.com/2073-4441/9/10/795

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. Elferchichi, A., G. A. Giorgio, N. Lamaddalena, M. Ragosta, and V. Telesca, Variability of temperature and its impact on reference evapotranspiration: the test case of the Apulia region (Southern Italy), Sustainability, 9(12), 2337, doi:10.3390/su9122337, 2017.
    2. Li, M., R. Chu, S. Shen, and A. R. T. Islam, Quantifying climatic impact on reference evapotranspiration trends in the Huai River Basin of Eastern China, Water, 10(2), 144, doi:10.3390/w10020144, 2018.
    3. Yan, N., F. Tian, B. Wu, W. Zhu, and M. Yu, Spatiotemporal analysis of actual evapotranspiration and its causes in the Hai basin, Remote Sensing, 10(2), 332; doi:10.3390/rs10020332, 2018.
    4. Li, M., R. Chu, A.R.M.T. Islam, and S. Shen, Reference evapotranspiration variation analysis and its approaches evaluation of 13 empirical models in sub-humid and humid regions: A case study of the Huai River Basin, Eastern China, Water, 10(4), 493, doi:10.3390/w10040493, 2018.
    5. Hao, X., S. Zhang, W. Li, W. Duan, G. Fang, Y. Zhang , and B. Guo, The uncertainty of Penman-Monteith method and the energy balance closure problem, Journal of Geophysical Research – Atmospheres, 123(14), 7433-7443, doi:10.1029/2018JD028371, 2018.
    6. Giménez, P. O., and S. G. García-Galiano, Assessing Regional Climate Models (RCMs) ensemble-driven reference evapotranspiration over Spain, Water, 10(9), 1181, doi:10.3390/w10091181, 2018.
    7. Storm, M. E., R. Gouws, and L. J. Grobler, Novel measurement and verification of irrigation pumping energy conservation under incentive-based programmes, Journal of Energy in Southern Africa, 29(3), 10–21, doi:10.17159/2413-3051/2018/v29i3a3058, 2018.
    8. Tam, B. Y., K. Szeto, B. Bonsal, G. Flato, A. J. Cannon, and R. Rong, CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index, Canadian Water Resources Journal, 44(1), 90-107, doi:10.1080/07011784.2018.1537812, 2019.
    9. Dalezios, N. R., N. Dercas, A. Blanta, and I. N. Faraslis, Remote sensing in water balance modelling for evapotranspiration at a rural watershed in Central Greece, International Journal of Sustainable Agricultural Management and Informatics, 4(3-4), 306-337, doi:10.1504/IJSAMI.2018.099219, 2019.
    10. Gan, G., Y. Liu, X. Pan, X. Zhao, M. Li, and S. Wang, Testing the symmetric assumption of complementary relationship: A comparison between the linear and nonlinear advection-aridity models in a large ephemeral lake, Water, 11(8), 1574, doi:10.3390/w11081574, 2019.
    11. Zhang, T., Y. Chen, and K. Tha Paw U, Quantifying the impact of climate variables on reference evapotranspiration in Pearl River Basin, China, Hydrological Sciences Journal, 64(16), 1944-1956, doi:10.1080/02626667.2019.1662021, 2019.
    12. Hua, D., X. Hao, Y. Zhang, and J. Qin, Uncertainty assessment of potential evapotranspiration in arid areas, as estimated by the Penman-Monteith method, Journal of Arid Land, 12, 166–180, doi:10.1007/s40333-020-0093-7, 2020.
    13. Shirmohammadi-Aliakbarkhani, Z., and S. F. Saberali, Evaluating of eight evapotranspiration estimation methods in arid regions of Iran, Agricultural Water Management, 239, 106243, doi:10.1016/j.agwat.2020.106243, 2020.
    14. Kim, C.-G., J. Lee, J. E. Lee, and H. Kim, Evaluation of improvement effect on the spatial-temporal correction of several reference evapotranspiration methods, Journal of Korea Water Resources Association, 53(9), 701-715, doi:10.3741/JKWRA.2020.53.9.701, 2020.
    15. Gui, Y., Q. Wang, Y. Zhao, Y. Dong, H. Li, S. Jiang, X. He, and K. Liu, Attribution analyses of reference evapotranspiration changes in China incorporating surface resistance change response to elevated CO2, Journal of Hydrology, 599, 126387, doi:10.1016/j.jhydrol.2021.126387, 2021.
    16. Mohanasundaram, S., M. M. Mekonnen, E. Haacker, C. Ray, S. Lim, and S. Shrestha, An application of GRACE mission datasets for streamflow and baseflow estimation in the Conterminous United States basins, Journal of Hydrology, 601, 126622, doi:10.1016/j.jhydrol.2021.126622, 2021.
    17. Gentilucci, M., M. Bufalini, M. Materazzi, M. Barbieri, D. Aringoli, P. Farabollini, and G. Pambianchi, Calculation of potential evapotranspiration and calibration of the Hargreaves equation using geostatistical methods over the last 10 years in Central Italy, Geosciences, 11(8), 348, doi:10.3390/geosciences11080348, 2021.
    18. Dos Santos, A. A., J. L. M. de Souza, and S. L. K. Rosa, Evapotranspiration with the Moretti-Jerszurki-Silva model for the Brazilian subtropical climate, Hydrological Sciences Journal, 66(16), 2267-2279, doi:10.1080/02626667.2021.1988610, 2021.
    19. Stefanidis, S., and V. Alexandridis, Precipitation and potential evapotranspiration temporal variability and their relationship in two forest ecosystems in Greece, Hydrology, 8(4), 160, doi:10.3390/hydrology8040160, 2021.
    20. Saggi, M. K., and S. A. Jain, Survey towards decision support system on smart irrigation scheduling using machine learning approaches, Archives of Computational Methods in Engineering, 29, 4455-4478, doi:10.1007/s11831-022-09746-3, 2022.
    21. Urban, G., L. Kuchar, M. Kępińska-Kasprzak, and E. Z. Łaszyca, A climatic water balance variability during the growing season in Poland in the context of modern climate change, Meteorologische Zeitschrift, 31(5), 349-365, doi:10.1127/metz/2022/1128, 2022.
    22. Hajek, O. L., and A. K. Knapp, Shifting seasonal patterns of water availability: ecosystem responses to an unappreciated dimension of climate change, New Phytologist, 233(1), 119-125, doi:10.1111/nph.17728, 2022.
    23. Al-Asadi, K., A. A. Abbas, A. S. Dawood, and J. G. Duan, Calibration and modification of the Hargreaves–Samani equation for estimating daily reference evapotranspiration in Iraq, Journal of Hydrologic Engineering, 28(5), doi:10.1061/JHYEFF.HEENG-5877, 2023.
    24. Islam, S., and A. K. M. R. Alam, Quantifying spatiotemporal variation of reference evapotranspiration and its contributing climatic factors in Bangladesh during 1981–2018, Russian Meteorology and Hydrology, 48(3), 253-266, doi:10.3103/S1068373923030081, 2023.
    25. Stefanidis, S., A. Tegos, and V. Alexandridis, How has aridity changed at a fir (Abies Borisii-Regis) forest site in Central Greece during the past six decades? Environmental Sciences Proceedings, 26(1), 121, doi:10.3390/environsciproc2023026121, 2023.
    26. Maas, E. D.v.L., and R. A. Lal, A case study of the RothC soil carbon model with potential evapotranspiration and remote sensing model inputs, Remote Sensing Applications: Society and Environment, 29, 100876, doi:10.1016/j.rsase.2022.100876, 2023.
    27. Ruiz-Ortega, F. J., E. Clemente, A. Martínez-Rebollar, and J. J. Flores-Prieto, An evolutionary parsimonious approach to estimate daily reference evapotranspiration, Scientific Reports, 14, 6736, doi:10.1038/s41598-024-56770-3, 2024.

  1. A. Tegos, H. Tyralis, D. Koutsoyiannis, and K. H. Hamed, An R function for the estimation of trend signifcance under the scaling hypothesis- application in PET parametric annual time series, Open Water Journal, 4 (1), 66–71, 6, 2017.

    [Μια συνάρτηση R για την εκτίμηση της σημαντικότητας τάσεων υπό την υπόθεση ομοιοθεσίας - εφαρμογή στην παραμετρική εκτίμηση δυνητικής εξατμοδιαπνοής σε ετήσιες χρονοσειρές]

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/1703/1/documents/2017OW_An_R_FunctionForTrendSignificance.pdf (326 KB)

    Συμπληρωματικό υλικό:

    Βλέπε επίσης: http://scholarsarchive.byu.edu/openwater/vol4/iss1/6/

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

  1. H. Tyralis, A. Tegos, A. Delichatsiou, N. Mamassis, and D. Koutsoyiannis, A perpetually interrupted interbasin water transfer as a modern Greek drama: Assessing the Acheloos to Pinios interbasin water transfer in the context of integrated water resources management, Open Water Journal, 4 (1), 113–128, 12, 2017.

    [Ένα διαρκώς διακοπτόμενο έργο μεταφοράς νερού μεταξύ λεκανών απορροής ως ένα σύγχρονο ελληνικό δράμα: Αξιολόγηση του έργου μεταφοράς νερού από τον Αχελώο προς τον Πηνειό στο πλαίσιο της ολοκληρωμένης διαχείρισης των υδατικών πόρων]

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/1702/1/documents/2017OW_AcheloosToPiniosInterbasinWaterTransfer.pdf (2744 KB)

    Βλέπε επίσης: http://scholarsarchive.byu.edu/openwater/vol4/iss1/11/

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

  1. P. Dimitriadis, A. Tegos, A. Oikonomou, V. Pagana, A. Koukouvinos, N. Mamassis, D. Koutsoyiannis, and A. Efstratiadis, Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping, Journal of Hydrology, 534, 478–492, doi:10.1016/j.jhydrol.2016.01.020, 2016.

    [Συγκριτική αξιολόγηση μονοδιάστατων και ψευδο-διδιάστατων υδραυλικών μοντέλων με βάση θεωρητικές και πραγματικές εφαρμογές για την εκτίμηση της αβεβαιότητας στην αποτύπωση των πλημμυρών]

    Τα μονοδιάστατα και ψευδο-διδιάστατα υδραυλικά μοντέλα που είναι ελεύθερα διαθέσιμα (HEC-RAS, LISFLOOD-FP και FLO-2d) χρησιμοποιούναι ευρέως στην αποτύπωση της πλημμυρικής κατάκλυσης. Τα μοντέλα αυτά ελέγχονται σε ένα θεωρητικό πρόβλημα αναφοράς, θεωρώντας μια μικτή ορθογωνική-τριγωνική διατομή καναλιού. Εφαρμόζοντας μια προσέγγιση Monte-Carlo, υλοποιούμε εκτενείς αναλύσεις ευαισθησίας, μεταβάλλοντας ταυτόχρονα την παροχή εισόδου, την κατά μήκος και την εγκάρσια κλίση, τον συντελεστή τραχύτητας καθώς και το μέγεθος φατνίου του υπολογιστικού κανάβου. Με βάση στατιστικές αναλύσεις των τριών μεταβλητών εξόδου ενδιαφέροντος, δηλαδή του βάθους ροής στις θέσεις εισροής και εκροής, και τον συνολικό πλημμυρικό όγκο, διερευνούμε την αβεβαιότητα που εμπεριέχεται σε διαφορετικές διαμορφώσεις του μοντέλου και των συνθηκών ροής, χωρίς την επίδραση σφαλμάτων και άλλων παραδοχών σχετικών με την τοπογραφία, τη γεωμετρία του αγωγού και τις οριακές συνθήκες. Ακόμη, εκτιμούμε την αβεβαιότητα που σχετίζεται με κάθε μεταβλητή εισόδου, την οποία συγκρίνουμε με την ολική αβεβαιότητα. Τα συμπεράσματα των θεωρητικών αναλύσεων διαφωτίζονται επιπλέον με την εφαρμογή των τριών μοντέλων σε πραγματικά προβλήματα διόδευσης πλημμύρας, στο πλαίσιο δύο ιδιαίτερα απαιτητικών μελετών περίπτωσης στην Ελλάδα.

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. Apel, H., O. Martínez Trepat, N. N. Hung, D. T. Chinh, B. Merz, and N. V. Dung, Combined fluvial and pluvial urban flood hazard analysis: concept development and application to Can Tho city, Mekong Delta, Vietnam, Natural Hazards and Earth System Sciences, 16, 941-961, doi:10.5194/nhess-16-941-2016, 2016.
    2. Papaioannou , G., A. Loukas, L. Vasiliades, and G. T. Aronica, Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach, Natural Hazards, 83, 117-132, doi:10.1007/s11069-016-2382-1, 2016.
    3. #Santillan, J. R., A. M. Amora, M. Makinano-Santillan, J. T. Marqueso, L. C. Cutamora, J. L. Serviano, and R. M. Makinano, Assessing the impacts of flooding caused by extreme rainfall events through a combined geospatial and numerical modeling approach, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLI-B8, 2016, XXIII ISPRS Congress, Prague, doi:10.5194/isprs-archives-XLI-B8-1271-2016, 2016.
    4. Cheviron, B. and R. Moussa, Determinants of modelling choices for 1-D free-surface flow and morphodynamics in hydrology and hydraulics: a review, Hydrology and Earth System Sciences, 20, 3799-3830, doi:10.5194/hess-20-3799-2016, 2016.
    5. Anees, M.T., K. Abdullah, M.N.M. Nawawi, N. N. N. Ab Rahman, A. R. Mt. Piah, N. A. Zakaria, M.I. Syakir, and A.K. Mohd. Omar, Numerical modeling techniques for flood analysis, Journal of African Earth Sciences, 124, 478–486, doi:10.1016/j.jafrearsci.2016.10.001, 2016.
    6. Skublics, D., G. Blöschl, and P. Rutschmann, Effect of river training on flood retention of the Bavarian Danube, Journal of Hydrology and Hydromechanics, 64(4), 349-356, doi:10.1515/johh-2016-0035, 2016.
    7. Doong, D.-J., W. Lo, Z. Vojinovic, W.-L. Lee, and S.-P. Lee, Development of a new generation of flood inundation maps—A case study of the coastal City of Tainan, Taiwan, Water, 8(11), 521, doi:10.3390/w8110521, 2016.
    8. #Cartaya, S., and R. Mantuano-Eduarte, Identificación de zonas en riesgo de inundación mediante la simulación hidráulica en un segmento del Río Pescadillo, Manabí, Ecuador, Revista de Investigación, 40(89), 158-170, 2016.
    9. Javadnejad, F., B. Waldron, and A. Hill, LITE Flood: Simple GIS-based mapping approach for real-time redelineation of multifrequency floods, Natural Hazards Review, 18(3), doi:10.1061/(ASCE)NH.1527-6996.0000238, 2017.
    10. Shrestha, A., M. S. Babel, S. Weesakul, and Z. Vojinovic, Developing intensity–duration–frequency (IDF) curves under climate change uncertainty: The case of Bangkok, Thailand, Water, 9(2), 145, doi:10.3390/w9020145, 2017.
    11. Roushangar, K., M. T. Alami, V. Nourani, and A. Nouri, A cost model with several hydraulic constraints for optimizing in practice a trapezoidal cross section, Journal of Hydroinformatics, 19(3), 456-468, doi:10.2166/hydro.2017.081, 2017.
    12. Papaioannou, G., L. Vasiliades, A. Loukas, and G. T. Aronica, Probabilistic flood inundation mapping at ungauged streams due to roughness coefficient uncertainty in hydraulic modelling, Advances in Geosciences, 44, 23-34, doi:10.5194/adgeo-44-23-2017, 2017.
    13. Anees, M. T., K. Abdullah, M. N. M. Nawawi, N. N. N. Ab Rahman, A. R. Mt. Piah, M. I. Syakir, A. K. M. Omar, and K. Hossain, Applications of remote sensing, hydrology and geophysics for flood analysis, Indian Journal of Science and Technology, 10(17), doi:10.17485/ijst/2017/v10i17/111541, 2017.
    14. Fuentes-Andino, D., K. Beven, S. Halldin, C.-Y. Xu, J. E. Reynolds, and G. Di Baldassarre, Reproducing an extreme flood with uncertain post-event information, Hydrology and Earth System Sciences, 21, 3597-3618, doi:10.5194/hess-21-3597-2017, 2017.
    15. #Anees, M. T., K. Abdullah, M. N. M. Nordin, N. N. N. Ab Rahman, M. I. Syakir, and M. O. A. Kadir, One- and two-dimensional hydrological modelling and their uncertainties, Flood Risk Management, T. Hromadka and P. Rao (editors), Chapter 11, doi:10.5772/intechopen.68924, 2017.
    16. #Papaioannou, G., A. Loukas, L. Vasiliades, and G. T. Aronica, Sensitivity analysis of a probabilistic flood inundation mapping framework for ungauged catchments, Proceedings of the 10th World Congress of EWRA “Panta Rhei”, European Water Resources Association, Athens, 2017.
    17. Bangira, T., S. M. Alfieri , M. Menenti, A. van Niekerk, and Z. Vekerdy, A spectral unmixing method with ensemble estimation of endmembers: Application to flood mapping in the Caprivi floodplain, Remote Sensing, 9, 1013, doi:10.3390/rs9101013, 2017.
    18. Carisi, F., A. Domeneghetti, M. G. Gaeta, and A. Castellarin, Is anthropogenic land subsidence a possible driver of riverine flood-hazard dynamics? A case study in Ravenna, Italy, Hydrological Sciences Journal, 62(15), 2440-2455, doi:10.1080/02626667.2017.1390315, 2017.
    19. Podhoranyi, M., P. Veteska, D. Szturcova, L. Vojacek, and A. Portero, A web-based modelling and monitoring system based on coupling environmental models and hydrological-related data, Journal of Communications, 12(6), 340-346, doi:10.12720/jcm.12.6.340-346, 2017.
    20. Bhuyian, N. M., A. Kalyanapu, and F. Hossain, Evaluating conveyance-based DEM correction technique on NED and SRTM DEMs for flood impact assessment of the 2010 Cumberland river flood, Geosciences, 7(4), 132; doi:10.3390/geosciences7040132, 2017.
    21. Zin, W., A. Kawasaki, W. Takeuchi, Z. M. L. T. San, K. Z. Htun, T. H. Aye, and S. Win, Flood hazard assessment of Bago river basin, Myanmar, Journal of Disaster Research, 13(1), 14-21, doi:10.20965/jdr.2018.p0014, 2018.
    22. #Siregar, R. I., Hydraulic modeling of flow impact on bridge structures: a case study on Citarum bridge, IOP Conference Series: Materials Science and Engineering, 309, 012015, doi:10.1088/1757-899X/309/1/012015, 2018.
    23. Miranda, D., R. F. Camacho, S. Lousada, and R. A. Castanho, Hydraulic studies and their influence for regional urban planning: a practical approach to Funchal’s rivers, Revista Brasiliera de Planejamento e Desenvolvimento, 7(1), 145-164, doi:10.3895/rbpd.v7n1.7179, 2018.
    24. Liu, W., and H. Liu, Integrating Monte Carlo and the hydrodynamic model for predicting extreme water levels in river systems, Preprints 2018, 2018030088, doi:10.20944/preprints201803.0088.v1, 2018.
    25. #Indrawan, I., and R. I. Siregar, Analysis of flood vulnerability in urban area: a case study in Deli watershed, Journal of Physics Conference Series, 978(1), 012036, doi:10.1088/1742-6596/978/1/012036, 2018.
    26. #Siregar, R. I., Land cover change impact on urban flood modeling (case study: Upper Citarum watershed), IOP Conference Series: Earth and Environmental Science, 126(1), 012027, doi:10.1088/1755-1315/126/1/012027, 2018.
    27. #Ng, Z. F.., J. I. Gisen, and A. Akbari, Flood inundation modelling in the Kuantan river basin using 1D-2D flood modeller coupled with ASTER-GDEM, IOP Conference Series: Materials Science and Engineering, 318(1), 012024, doi:10.1088/1757-899X/318/1/012024, 2018.
    28. Chang, M.-J., H.-K. Chang, Y.-C. Chen, G.-F. Lin, P.-A. Chen, J.-S. Lai, and Y.-C. Tan, A support vector machine forecasting model for typhoon flood inundation mapping and early flood warning systems, Water, 10, 1734, doi:10.3390/w10121734, 2018.
    29. Dysarz, T., Application of Python scripting techniques for control and automation of HEC-RAS simulations, Water, 10(10):1382, doi:10.3390/w10101382, 2018.
    30. Hdeib, R., C. Abdallah, F. Colin, L. Brocca, and R. Moussa, Constraining coupled hydrological-hydraulic flood model by past storm events and post-event measurements in data-sparse regions, Journal of Hydrology, 565, 160-175, doi:10.1016/j.jhydrol.2018.08.008, 2018.
    31. Tan, F. J., E. J. R. Rarugal, and F. A. A. Uy, One-dimensional (1D) river analysis of a river basin in Southern Luzon Island in the Philippines using Lidar Digital Elevation Model, International Journal of Engineering & Technology, 7(3.7), 29-33, doi:10.14419/ijet.v7i3.7.16200, 2018.
    32. Luo, P., D. Mu, H. Xue, T. Ngo-Duc, K. Dang-Dinh, K. Takara, D. Nover, and G. Schladow, Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions, Scientific Reports, 8, 12623, doi:10.1038/s41598-018-30024-5, 2018.
    33. Indrawan, I., and R. I. Siregar, Pemodelan Penerapan Terowongan Air (Tunnel) dalam Mengatasi Banjir Akibat Luapan Sungai Deli, Jurnal Teknik Sipil, 25(2), 113-120, doi:10.5614/jts.2018.25.2.4, 2018.
    34. Petroselli, A., M. Vojtek, and J. Vojteková, Flood mapping in small ungauged basins: A comparison of different approaches for two case studies in Slovakia, Hydrology Research, 50(1), 379-392, doi:10.2166/nh.2018.040, 2018.
    35. Agudelo-Otálora, L. M., W. D. Moscoso-Barrera, L. A. Paipa-Galeano, and C. Mesa-Sciarrotta, Comparison of physical models and artificial intelligence for prediction of flood levels, Water Technology and Sciences, 9(4), 209-236, doi:10.24850/j-tyca-2018-04-09, 2018.
    36. Kaya, C. M., G. Tayfur, and O. Gungor, Predicting flood plain inundation for natural channels having no upstream gauged stations, Journal of Water and Climate Change, 10(2), 360-372, doi:10.2166/wcc.2017.307, 2019.
    37. Liu, Z., V. Merwade, and K. Jafarzadegan, Investigating the role of model structure and surface roughness in generating flood inundation extents using 1D and 2D hydraulic models, Journal of Flood Risk Management, 12(1), e12347, doi:10.1111/jfr3.12347, 2019.
    38. Tscheikner-Gratl, F., V. Bellos, A. Schellart, A. Moreno-Rodenas, M. Muthusamy, J. Langeveld, F. Clemens, L. Benedetti, M.A. Rico-Ramirez, R. Fernandes de Carvalho, L. Breuer, J. Shucksmith, G.B.M. Heuvelink, and S. Tait, Recent insights on uncertainties present in integrated catchment water quality modelling, Water Research, 150, 368-379, doi:10.1016/j.watres.2018.11.079, 2019.
    39. Zeleňáková, M., R. Fijko, S. Labant, E. Weiss, G. Markovič, and R. Weiss, Flood risk modelling of the Slatvinec stream in Kružlov village, Slovakia, Journal of Cleaner Production, 212, 109-118, doi:10.1016/j.jclepro.2018.12.008, 2019.
    40. Wang, P., G. Zhang, and H. Leung, Improving super-resolution flood inundation mapping for multispectral remote sensing image by supplying more spectral information, IEEE Geoscience and Remote Sensing Letters, 16(5), 771-775, doi:10.1109/LGRS.2018.2882516, 2019.
    41. Tehrany, M. S., S. Jones, and F. Shabani, Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques, Catena, 175, 174-192, doi:10.1016/j.catena.2018.12.011, 2019.
    42. Škarpich, V., T. Galia, S. Ruman, and Z. Máčka, Variations in bar material grain-size and hydraulic conditions of managed and re-naturalized reaches of the gravel-bed Bečva River (Czech Republic), Science of The Total Environment, 649, 672-685, doi:10.1016/j.scitotenv.2018.08.329, 2019.
    43. Yang, Z., K. Yang, L. Su, and H. Hu, The multi-objective operation for cascade reservoirs using MMOSFLA with emphasis on power generation and ecological benefit, Journal of Hydroinformatics, 21(2), 257-278, doi:10.2166/hydro.2019.064, 2019.
    44. Dysarz, T., J. Wicher-Dysarz, M. Sojka, and J. Jaskuła, Analysis of extreme flow uncertainty impact on size of flood hazard zones for the Wronki gauge station in the Warta river, Acta Geophysica, 67(2), 661-676, doi:10.1007/s11600-019-00264-8, 2019.
    45. Fleischmann, A., R. Paiva, and W. Collischonn, Can regional to continental river hydrodynamic models be locally relevant? A cross-scale comparison, Journal of Hydrology X, 3, 100027, doi:10.1016/j.hydroa.2019.100027, 2019.
    46. Gyasi-Agyei, Y., Propagation of uncertainties in interpolated rain fields to runoff errors, Hydrological Sciences Journal, 64(5), 587-606, doi:10.1080/02626667.2019.1593989. 2019.
    47. Langat, P. K., L. Kumar, and R. Koech, Identification of the most suitable probability distribution models for maximum, minimum, and mean streamflow, Water, 11, 734, doi:10.3390/w11040734, 2019.
    48. Papaioannou, G., A. Loukas, and L. Vasiliades, Flood risk management methodology for lakes and adjacent areas: The lake Pamvotida paradigm, Proceedings, 7, 21, doi:10.3390/ECWS-3-05825, 2019.
    49. Hosseini, D., M. Torabi, and M. A. Moghadam, Preference assessment of energy and momentum equations over 2D-SKM method in compound channels, Journal of Water Resource Engineering and Management, 6(1), 24-34, 2019.
    50. Oubennaceur, K., K. Chokmani, M. Nastev, Y. Gauthier, J. Poulin, M. Tanguy, S. Raymond, and R. Lhissou, New sensitivity indices of a 2D flood inundation model using Gauss quadrature sampling, Geosciences, 9(5), 220, doi:10.3390/geosciences9050220, 2019.
    51. Pinho, J. L. S., L. Vieira, J. M. P. Vieira, S. Venâncio, N. E. Simões, J. A. Sá Marques, and F. S. Santos, Assessing causes and associated water levels for an urban flood using hydroinformatic tools, Journal of Hydroinformatics, jh2019019, doi:10.2166/hydro.2019.019, 2019.
    52. Saksena, S., V. Merwade, and P. J. Singhofen, Flood inundation modeling and mapping by integrating surface and subsurface hydrology with river hydrodynamics, Journal of Hydrology, 575, 1155-1177, doi:10.1016/j.jhydrol.2019.06.024, 2019.
    53. #Fijko, R., and M., Zelenakova, Verification of the hydrodynamic model of the Slatvinec River in Kružlov, Air and Water Components of the Environment Conference Proceedings, 91-98, Cluj-Napoca, Romania, doi:10.24193/AWC2019_09, 2019.
    54. Luppichini, M., M. Favalli, I. Isola, L. Nannipieri, R. Giannecchini, and M. Bini, Influence of topographic resolution and accuracy on hydraulic channel flow simulations: Case study of the Versilia River (Italy), Remote Sensing, 11(13), 1630, doi:10.3390/rs11131630, 2019.
    55. Liu, Z., and V. Merwade, Separation and prioritization of uncertainty sources in a raster based flood inundation model using hierarchical Bayesian model averaging, Journal of Hydrology, 578, 124100, doi:10.1016/j.jhydrol.2019.124100, 2019.
    56. #Huțanu, E., A. Urzică, L. E. Paveluc, C. C. Stoleriu, and A. Grozavu, The role of hydro-technical works in diminishing flooded areas. Case study: the June 1985 flood on the Miletin River, 16th International Conference on Environmental Science and Technology, Rhodes, 2019.
    57. Chen, Y.-M., C.-H. Liu, H.-J. Shih, C.-H. Chang, W.-B. Chen, Y.-C. Yu, W.-R. Su, and L.-Y. Lin, An operational forecasting system for flash floods in mountainous areas in Taiwan, Water, 11, 2100, doi:10.3390/w11102100, 2019.
    58. Shustikova, I., A. Domeneghetti, J. C. Neal, P. Bates, and A. Castellarin, Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography, Hydrological Sciences Journal, 64(14), 1769-1782, doi:10.1080/02626667.2019.1671982, 2019.
    59. Papaioannou, G., G. Varlas, G. Terti, A. Papadopoulos, A. Loukas, Y. Panagopoulos, and E. Dimitriou, Flood inundation mapping at ungauged basins using coupled hydrometeorological-hydraulic modelling: The catastrophic case of the 2006 flash flood in Volos City, Greece, Water, 11, 2328, doi:10.3390/w11112328, 2019.
    60. Liu, W.-C., and H.-M. Liu, Integrating hydrodynamic model and Monte Carlo simulation for predicting extreme water levels in a river system, Terrestrial, Atmospheric & Oceanic Sciences, 30(4), 589-604, doi:10.3319/TAO.2019.01.18.01, 2019.
    61. Costabile, P., C. Costanzo, G. De Lorenzo, and F. Macchione, Is local flood hazard assessment in urban areas significantly influenced by the physical complexity of the hydrodynamic inundation model?, Journal of Hydrology, 580, 124231, doi:10.1016/j.jhydrol.2019.124231, 2020.
    62. Stephens, T. A., and B. P. Bledsoe, Probabilistic mapping of flood hazards: depicting uncertainty in streamflow, land use, and geomorphic adjustment, Anthropocene, 29, 100231, doi:10.1016/j.ancene.2019.100231, 2020.
    63. Papaioannou, G., C. Papadaki, and E. Dimitriou, Sensitivity of habitat hydraulic model outputs to DTM and computational mesh resolution, Ecohydrology, 13(2), e2182, doi:10.1002/eco.2182, 2020.
    64. Saksena, S., S. Dey, V. Merwade, and P. J. Singhofen, A computationally efficient and physically based approach for urban flood modeling using a flexible spatiotemporal structure, Water Resources Research, 56(1), e2019WR025769, doi:10.1029/2019WR025769, 2020.
    65. Annis, A., F. Nardi, E. Volpi, and A. Fiori, Quantifying the relative impact of hydrological and hydraulic modelling parameterizations on uncertainty of inundation maps, Hydrological Sciences Journal, 65(4), 507-523, doi:10.1080/02626667.2019.1709640, 2020.
    66. Syafri, R. R., M. P. Hadi, and S. Suprayogi, Hydrodynamic modelling of Juwana river flooding using HEC-RAS 2D, IOP Conference Series Earth and Environmental Science, 412, 012028, doi:10.1088/1755-1315/412/1/012028, 2020.
    67. Gergeľová, M. B., Ž. Kuzevičová, S. Labant, J. Gašinec, S. Kuzevič, J. Unucka, and P. Liptai, Evaluation of selected sub-elements of spatial data quality on 3D flood event modeling: Case study of Prešov City, Slovakia, Applied Sciences, 10(3), 820, doi:10.3390/app10030820, 2020.
    68. Shaw, J., G. Kesserwani, and P. Pettersson, Probabilistic Godunov-type hydrodynamic modelling under multiple uncertainties: robust wavelet-based formulations, Advances in Water Resources, 137, 103526, doi:10.1016/j.advwatres.2020.103526, 2020.
    69. Li, X., C. Huang, Y. Zhang, J. Pang, and Y. Ma, Hydrological reconstruction of extreme palaeoflood events 9000–8500 a BP in the Danjiang River Valley, tributary of the Danjiangkou Reservoir, China, Arabian Journal of Geosciences, 13, 137, doi:10.1007/s12517-020-5132-3, 2020.
    70. Lousada, S., and L. Loures, Modelling torrential rain flows in urban territories: floods - natural channels (the case study of Madeira island), American Journal of Water Science and Engineering, 6(1), 17-30, doi:10.11648/j.ajwse.20200601.13, 2020.
    71. Pariartha, G., A. Goonetilleke, P. Egodawatta, and H. Mirfenderesk, The prediction of flood damage in coastal urban areas, IOP Conference Series Earth and Environmental Science, 419, 012136, doi:10.1088/1755-1315/419/1/012136, 2020.
    72. Lousada, S., Estudos hidráulicos e a sua influência no planeamento urbano regional: Aplicação prática às Ribeiras do Funchal – Portugal, Revista Americana de Empreendedorismo e Inovação, 2(2), 7-21, 2020.
    73. Gan, B.-R., X.-G. Yang, H.-M. Liao, and J.-W. Zhou, Flood routing process and high dam interception of natural discharge from the 2018 Baige landslide-dammed lake, Water, 12(2), 605, doi:10.3390/w12020605, 2020.
    74. Bellos, V., I. Papageorgaki, I. Kourtis, H. Vangelis, and G. Tsakiris, Reconstruction of a flash flood event using a 2D hydrodynamic model under spatial and temporal variability of storm, Natural Hazards, 101, 711-726, doi:10.1007/s11069-020-03891-3, 2020.
    75. Yalcin, E., Assessing the impact of topography and land cover data resolutions on two-dimensional HEC-RAS hydrodynamic model simulations for urban flood hazard analysis, Natural Hazards, 101, 995-1017, doi:10.1007/s11069-020-03906-z, 2020.
    76. Mateo-Lázaro, J., J. Castillo-Mateo, A. García-Gil, J. A. Sánchez-Navarro, V. Fuertes-Rodríguez, V. Edo-Romero, Comparative hydrodynamic analysis by using two−dimensional models and application to a new bridge, Water, 12(4), 997; doi:10.3390/w12040997, 2020.
    77. Albu, L.-M., A. Enea, M. Iosub, and I.-G. Breabăn, Dam breach size comparison for flood simulations. A HEC-RAS based, GIS approach for Drăcșani lake, Sitna river, Romania, Water, 12(4), 1090, doi:10.3390/w12041090, 2020.
    78. Pal, S., S. Talukdar, and R. Ghosh, Damming effect on habitat quality of riparian corridor, Ecological Indicators, 114, 106300, doi:10.1016/j.ecolind.2020.106300, 2020.
    79. Sarchani, S. K. Seiradakis, P. Coulibaly, and I. Tsanis, Flood inundation mapping in an ungauged basin, Water, 12(6), 1532, doi:10.3390/w12061532, 2020.
    80. Huţanu, E., A. Mihu-Pintilie, A. Urzica, L. E. Paveluc, C. C. Stoleriu, and A. Grozavu, Using 1D HEC-RAS modeling and LiDAR data to improve flood hazard maps’ accuracy: A case study from Jijia floodplain (NE Romania), Water, 12(6), 1624, doi:10.3390/w12061624, 2020.
    81. Fleischmann, A. S., R. C. D. Paiva, W. Collischonn, V. A. Siqueira, A. Paris, D. M. Moreira, F. Papa, A. A. Bitar, M. Parrens, F. Aires, and P. A. Garambois, Trade‐offs between 1D and 2D regional river hydrodynamic models, Water Resources Research, 56(8), e2019WR026812, doi:10.1029/2019WR026812, 2020.
    82. Gralepois, M., What can we learn from planning instruments in flood prevention? Comparative illustration to highlight the challenges of governance in Europe, Water, 12(6), 1841, doi:10.3390/w12061841, 2020.
    83. Rampinelli, C. G., I. Knack, and T. Smith, Flood mapping uncertainty from a restoration perspective: a practical case study, Water, 12(7), 1948, doi:10.3390/w12071948, 2020.
    84. Kalinina, A., M. Spada, D. F. Vetsch, S. Marelli, C. Whealton, P. Burgherr, and B. Sudret, Metamodeling for uncertainty quantification of a flood wave model for concrete dam breaks, Energies, 13(14), 3685, doi:10.3390/en13143685, 2020.
    85. Kitsikoudis, V., B. P. J., Becker, Y. Huismans, P. Archambeau, S. Erpicum, M. Pirotton, and B. Dewals, Discrepancies in flood modelling approaches in transboundary river systems: Legacy of the past or well-grounded choices?, Water Resources Management, 34, 3465-3478, doi:10.1007/s11269-020-02621-5, 2020.
    86. Piacentini, T., C. Carabella, F. Boccabella, S. Ferrante, C. Gregori, V. Mancinelli, A. Pacione, T. Pagliani, and E. Miccadei, Geomorphology-based analysis of flood critical areas in small hilly catchments for civil protection purposes and early warning systems: The case of the Feltrino stream and the Lanciano urban area (Abruzzo, Central Italy), Water, 12(8), 2228, doi:10.3390/w12082228, 2020.
    87. Arseni, M., A. Rosu, M. Calmuc, V. A. Calmuc, C. Iticescu, and L. P. Georgescu, Development of flood risk and hazard maps for the lower course of the Siret river, Romania, Sustainability, 12(16), 6588, doi:10.3390/su12166588, 2020.
    88. Ahmed, M. I., A. Elshorbagy, and A. Pietroniro, A novel model for storage dynamics simulation and inundation mapping in the Prairies, Environmental Modelling & Software, 133, 104850, doi:10.1016/j.envsoft.2020.104850, 2020.
    89. Bellos, V., V. K. Tsakiris, G. Kopsiaftis, and G. Tsakiris, Propagating dam breach parametric uncertainty in a river reach using the HEC-RAS software, Hydrology, 7(4), 72, doi:10.3390/hydrology7040072, 2020.
    90. Demir, V., and A. Ü. Keskin, Obtaining the Manning roughness with terrestrial-remote sensing technique and flood modeling using FLO-2D: A case study Samsun from Turkey, Geofizika, 37, 131-156, doi:10.15233/gfz.2020.37.9, 2020.
    91. Petroselli, A., J. Florek, D. Młyński, L. Książek, and A. Wałęga, New insights on flood mapping procedure: Two case studies in Poland, Sustainability, 12(20), 8454, doi:10.3390/su12208454, 2020.
    92. Beden, N., and A. Ulke Keskin, Flood map production and evaluation of flood risks in situations of insufficient flow data, Natural Hazards, 105, 2381-2408, doi:10.1007/s11069-020-04404-y, 2020.
    93. #Malakeel G. S., K. U. Abdu Rahiman, and S. Vishnudas, Flood risk assessment methods – A review, in: Thomas J., Jayalekshmi B., Nagarajan P. (eds), Current Trends in Civil Engineering. Lecture Notes in Civil Engineering, Vol. 104, Springer, Singapore, doi:10.1007/978-981-15-8151-9_19, 2021.
    94. Musiyam, M., J. Jumadi, Y. A. Wibowo, W. Widiyatmoko, and S. H. Nur Hafida, Analysis of flood-affected areas due to extreme weather in Pacitan, Indonesia, International Journal of GEOMATE, 19(75), 27-34, doi:10.21660/2020.75.25688, 2020.
    95. Ghimire, E., S. Sharma, and N. Lamichhane, Evaluation of one-dimensional and two-dimensional HEC-RAS models to predict flood travel time and inundation area for flood warning system, ISH Journal of Hydraulic Engineering, doi:10.1080/09715010.2020.1824621, 2020.
    96. Lin, X., G. Huang, J. M. Piwowar, X. Zhou, and Y. Zhai, Risk of hydrological failure under the compound effects of instant flow and precipitation peaks under climate change: a case study of Mountain Island Dam, North Carolina, Journal of Cleaner Production, 284, 125305, doi:10.1016/j.jclepro.2020.125305, 2021.
    97. Daksiya, V., P. V. Mandapaka, and E. Y. M. Lo, Effect of climate change and urbanisation on flood protection decision‐making, Journal of Flood Risk Management, 14(1), e12681, doi:10.1111/jfr3.12681, 2021.
    98. Urzică, A., A. Mihu-Pintilie, C. C. Stoleriu, C. I. Cîmpianu, E. Huţanu, C. I. Pricop, and A. Grozavu, Using 2D HEC-RAS modeling and embankment dam break scenario for assessing the flood control capacity of a multi-reservoir system (NE Romania), Water, 13(1), 57, doi:10.3390/w13010057, 2021.
    99. Elhag, M., and N. Yilmaz, Insights of remote sensing data to surmount rainfall/runoff data limitations of the downstream catchment of Pineios River, Greece, Environmental Earth Sciences, 80, 35, doi:10.1007/s12665-020-09289-5, 2021.
    100. Hdeib, R., R. Moussa, F. Colin, and C. Abdallah, A new cost-performance grid to compare different flood modelling approaches, Hydrological Sciences Journal, 66(3), 434-449, doi:10.1080/02626667.2021.1873346, 2021.
    101. Sharma, V. C., and S. K. Regonda, Two-dimensional flood inundation modeling in the Godavari river basin, India – Insights on model output uncertainty, Water, 13(2), 191, doi:10.3390/w13020191, 2021.
    102. Santos, E. D. S., H. S. K. Pinheiro, and H. G. Junior, Height above the nearest drainage to predict flooding areas in São Luiz do Paraitinga, São Paulo, Floresta e Ambiente, 28(2), doi:10.1590/2179-8087-floram-2020-0070, 2021.
    103. Chang, T.-Y., H. Chen, H.-S. Fu, W.-B. Chen, Y.-C. Yu, W.-R. Su, and L.-Y. Lin, An operational high-performance forecasting system for city-scale pluvial flash floods in the southwestern plain areas of Taiwan, Water, 13(4), 405, doi:10.3390/w13040405, 2021.
    104. Naeem, B., M. Azmat, H. Tao, S. Ahmad, M. U. Khattak, S. Haider, S. Ahmad, Z. Khero, and C. R. Goodell, Flood hazard assessment for the Tori levee breach of the Indus river basin, Pakistan, Water; 13(5), 604, doi:10.3390/w13050604, 2021.
    105. Zhu, Y., X. Niu, C. Gu, B. Dai, and L. Huang, A fuzzy clustering logic life loss risk evaluation model for dam-break floods, Complexity, 2021, 7093256, doi:10.1155/2021/7093256, 2021.
    106. #Malakeel, G. S., K. U.Abdu Rahiman, and S. Vishnudas, Flood risk assessment methods—A review, In: Thomas J., Jayalekshmi B., Nagarajan P. (eds), Current Trends in Civil Engineering, Lecture Notes in Civil Engineering, Vol. 104. Springer, Singapore, doi:10.1007/978-981-15-8151-9_19, 2021, 2021.
    107. Liu, W.-C., T.-H. Hsieh, and H.-M. Liu, Flood risk assessment in urban areas of southern Taiwan, Sustainability, 13(6), 3180, doi:10.3390/su13063180, 2021.
    108. Kumar, S., A. Agarwal, V. G. K. Villuri, S. Pasupuleti, D. Kumar, D. R. Kaushal, A. K. Gosain, A. Bronstert, and B. Sivakumar, Constructed wetland management in urban catchments for mitigating floods, Stochastic Environmental Research and Risk Assessment, 35, 2105-2124, doi:10.1007/s00477-021-02004-1, 2021.
    109. Mourato, S., P. Fernandez, F. Marques, A. Rocha, and L. Pereira, An interactive Web-GIS fluvial flood forecast and alert system in operation in Portugal, International Journal of Disaster Risk Reduction, 58, 102201, doi:10.1016/j.ijdrr.2021.102201, 2021.
    110. Dubey, A. K., P. Kumar, V. Chembolu, S. Dutta, R. P. Singh, and A. S. Rajawata, Flood modeling of a large transboundary river using WRF-Hydro and microwave remote sensing, Journal of Hydrology, 598, 126391, doi:10.1016/j.jhydrol.2021.126391, 2021.
    111. de Arruda Gomes, M. M., L. F. de Melo Verçosa, and J. A. Cirilo, Hydrologic models coupled with 2D hydrodynamic model for high-resolution urban flood simulation, Natural Hazards, 108, 3121-3157, doi:10.1007/s11069-021-04817-3, 2021.
    112. Gao, P., W. Gao, and N. Ke, Assessing the impact of flood inundation dynamics on an urban environment, Natural Hazards, 109, 1047-1072, doi:10.1007/s11069-021-04868-6, 2021.
    113. Zhang, X., T. Wang, and B. Duan, Study on the effect of morphological changes of bridge piers on water movement properties, Water Practice and Technology, 16(4), 1421-1433, doi:10.2166/wpt.2021.08, 2021.
    114. Fadilah, S., Istiarto, and D. Legono, Investigation and modelling of the flood control system in the Aerotropolis of Yogyakarta International Airport, IOP Conference Series Materials Science and Engineering, 1173(1), 012015, doi:10.1088/1757-899X/1173/1/012015, 2021.
    115. Baran-Zgłobicka, B., D. Godziszewska, and W. Zgłobicki, The flash floods risk in the local spatial planning (case study: Lublin Upland, E. Poland), Resources, 10(2), 14, doi:10.3390/resources10020014, 2021.
    116. Liang, C.-Y., Y.-H. Wang, G. J.-Y. You, P.-C. Chen, and E. Lo, Evaluating the cost of failure risk: A case study of the Kang-Wei-Kou stream diversion project, Water, 13(20), 2881, doi:10.3390/w13202881, 2021.
    117. Uciechowska-Grakowicz, A., and O. Herrera-Granados, Riverbed mapping with the usage of deterministic and geo-statistical interpolation methods: The Odra River case study, Remote Sensing, 13(21), 4236, doi:10.3390/rs13214236, 2021.
    118. Viquez, S. G., Mesurer le risque d’inondation en ville: Une modélisation sous contraintes, Terrains & Travaux, 38(1), 47-70, doi:10.3917/tt.038.0047, 2021.
    119. Singh G., V. B. S. Chandel, and S. Kahlon, Flood hazard modelling in Upper Mandakini Basin of Uttarakhand, Current World Environment, 16(3), 880-889, doi:10.12944/CWE.16.3.18, 2021.
    120. Liu, J., J. Wang, J. Xiong, W. Cheng, Y. Li, Y. Cao, Y. He, Y. Duan, W. He, and G. Yang, Assessment of flood susceptibility mapping using support vector machine, logistic regression and their ensemble techniques in the Belt and Road region, Geocarto International, doi:10.1080/10106049.2022.2025918, 2022.
    121. Yang, S. Y., C. H. Chang, C. T. Hsu, and S. J. Wu, Variation of uncertainty of drainage density in flood hazard mapping assessment with coupled 1D–2D hydrodynamics model, Natural Hazards, 111, 2297-2315, doi:10.1007/s11069-021-05138-1, 2022.
    122. Yoshida, K., S. Pan, J. Taniguchi, S. Nishiyama, T. Kojima, and T. Islam, Airborne LiDAR-assisted deep learning methodology for riparian land cover classification using aerial photographs and its application for flood modelling, Journal of Hydroinformatics, 24(1), 179-201, doi:10.2166/hydro.2022.134, 2022.
    123. Kasprak, A., P. R. Jackson, E. M. Lindroth, J. W. Lund, and J. R. Ziegeweid, The role of hydraulic and geomorphic complexity in predicting invasive carp spawning potential: St. Croix River, Minnesota and Wisconsin, United States, PLoS ONE, 17(2), e026305, doi:10.1371/journal.pone.0263052, 2022.
    124. Worley, L. C., K. L. Underwood, N. L. V. Vartanian, M. M. Dewoolkar, J. E. Matt, and D. M. Rizzo, Semi‐automated hydraulic model wrapper to support stakeholder evaluation: A floodplain reconnection study using 2D hydrologic engineering center's river analysis system, River Research and Applications, 38(4), 799-809, doi:10.1002/rra.3946, 2022.
    125. Jiang, W., and J. Yu, Impact of rainstorm patterns on the urban flood process superimposed by flash floods and urban waterlogging based on a coupled hydrologic–hydraulic model: a case study in a coastal mountainous river basin within southeastern China, Natural Hazards, 112, 301-326, doi:10.1007/s11069-021-05182-x, 2022.
    126. Mattos, T. S., P. T. S. Oliveira, L. de Souza Bruno, G. A. Carvalho, R. B. Pereira, L. L. Crivellaro, M. C. Lucas, and T. Roy, Towards reducing flood risk disasters in a tropical urban basin by the development of flood alert web application, Environmental Modelling & Software, 151, 105367, doi:10.1016/j.envsoft.2022.105367, 2022.
    127. Papaioannou, G., V. Markogianni, A. Loukas, and E. Dimitriou, Remote sensing methodology for roughness estimation in ungauged streams for different hydraulic/hydrodynamic modeling approaches, Water, 14(7), 1076, doi:10.3390/w14071076, 2022.
    128. Mishra, A., S. Mukherjee, B. Merz, V. P. Singh, D. B. Wright, G. Villarini, S. Paul, D. N. Kumar, C. P. Khedun, D. Niyogi, G. Schumann, and J. R. Stedinger, An overview of flood concepts, challenges, and future directions, Journal of Hydrologic Engineering, 27(6), doi:10.1061/(ASCE)HE.1943-5584.0002164, 2022.
    129. Cea, L., and P. Costabile, Flood risk in urban areas: modelling, management and adaptation to climate change. A review, Hydrology, 9(3), 50, doi:10.3390/hydrology9030050, 2022.
    130. #Karmakar, S., M. A. Sherly, and M. Mohanty, Urban flood risk mapping: A state-of-the-art review on quantification, current practices, and future challenges, Advances in Urban Design and Engineering. Design Science and Innovation, Banerji, P., Jana, A. (eds.), 125-156, Springer, Singapore, doi:10.1007/978-981-19-0412-7_5, 2022.
    131. Kadir, M. A. A., M. R. R. M. A. Zainol, P. Luo, M. Kaamin, and S. N. H. S. Yahya, Advance flood inundation model toward flood nowcasting: A review, International Journal of Nanoelectronics and Materials, 15, 81-100, 2022.
    132. Tegos, A., A. Ziogas, V. Bellos, and A. Tzimas, Forensic hydrology: a complete reconstruction of an extreme flood event in data-scarce area, Hydrology, 9(5), 93, doi:10.3390/hydrology9050093, 2022.
    133. Stephens, T., and B. Bledsoe, Simplified uncertainty bounding: an approach for estimating flood hazard uncertainty, Water, 14(10), 1618, doi:10.3390/w14101618, 2022.
    134. Iroume, J.Y.-A., R. Onguéné, F. Djanna Koffi, A. Colmet-Daage, T. Stieglitz, W. Essoh Sone, S. Bogning, J. M. Olinga Olinga, R. Ntchantcho, J.-C. Ntonga, J.-J. Braun, J.-P. Briquet, and J. Etame, The 21st August 2020 flood in Douala (Cameroon): A major urban flood investigated with 2D HEC-RAS modeling, Water, 14(11), 1768, doi:10.3390/w14111768, 2022.
    135. Jiang, W., J. Yu, Q. Wang, and Q. Yue, Understanding the effects of digital elevation model resolution and building treatment for urban flood modelling, Journal of Hydrology: Regional Studies, 42, 101122, doi:10.1016/j.ejrh.2022.101122, 2022.
    136. Singh, G., V. B. S. Chandel, and S. Kahlon, Flood hazard modelling in Upper Mandakini Basin of Uttarakhand, Current World Environment, 16(3), 880-889, doi:10.12944/CWE.16.3.18, 2022.
    137. Li, Y., D. B. Wright, and Y. Liu, Flood-induced geomorphic change of floodplain extent and depth: A case study of Hurricane Maria in Puerto Rico, Journal of Hydrologic Engineering, 27(10), doi:10.1061/(ASCE)HE.1943-5584.0002199, 2022.
    138. Iroume, J. Y.-A., R. Onguéné, F. Djanna Koffi, A. Colmet-Daage, T. Stieglitz, W. Essoh Sone, S. Bogning, J. M. Olinga Olinga, R. Ntchantcho, J.-C. Ntonga, J.-J. Braun, J.-P. Briquet, and J. Etame, The 21st August 2020 flood in Douala (Cameroon): A major urban flood investigated with 2D HEC-RAS modeling, Water, 14(11), 1768, doi:10.3390/w14111768, 2022.
    139. Ahmad, N. S., and N. A. Ahmad, Propose design of new cross section by using one dimensional HEC-RAS at Maran River, Pahang, Journal of Advancement in Environmental Solution and Resource Recovery, 2(1), 51-59, 2022.
    140. de Sousa, M. M., A. K. Beleño de Oliveira, O. M. Rezende, P. M. Canedo de Magalhães, A. C. Pitzer Jacob, P. C. de Magalhães, and M. G. Miguez, Highlighting the role of the model user and physical interpretation in urban flooding simulation, Journal of Hydroinformatics, 24(5), 976-991, doi:10.2166/hydro.2022.174, 2022.
    141. Kaya, Ç. M., Taşkın Duyarlılık Haritalarının Oluşturulmasında Kullanılan Yöntemler, Turkish Journal of Remote Sensing and GIS, 3(2), 191-209, doi:10.48123/rsgis.1129606, 2022.
    142. Li, Y., D. B. Wright, and Y. Liu, Flood-induced geomorphic change of floodplain extent and depth: a case study of hurricane Maria in Puerto Rico, Journal of Hydrologic Engineering, 27(10), doi:10.1061/(ASCE)HE.1943-5584.0002199, 2022.
    143. Wibowo, Y. A., M. A. Marfai, M. P. Hadi, H. Fatchurohman, L. Ronggowulan and D. A. Arif, Geospatial technology for flood hazard analysis in Comal Watershed, Central Java, Indonesia, IOP Conference Series: Earth and Environmental Science, 1039, 012027, 2022.
    144. Godwin, E., I. Kabenge, A. Gidudu, Y. Bamutaze, and A. Egeru, Differentiated spatial-temporal flood vulnerability and risk assessment in lowland plains in Eastern Uganda, Hydrology, 9(11), 201, doi:10.3390/hydrology9110201, 2022.
    145. Zhou, Y., Z. Wu, H. Xu, and H. Wang, Prediction and early warning method of inundation process at waterlogging points based on Bayesian model average and data-driven, Journal of Hydrology: Regional Studies, 44, 101248, doi:10.1016/j.ejrh.2022.101248, 2022.
    146. de Sousa, M. M., Ο. Μ. Rezende, A. C. P. Jacob, L. B. de França Ribeiro, P. M. C. de Magalhães, G. Maquera, and M. G. Miguez, Flood risk assessment index for urban mobility with the aid of quasi-2D flood model applied to an industrial park in São Paulo, Brazil, Infrastructures, 7(11), 158, doi:10.3390/infrastructures7110158, 2022.
    147. Otmani, A., A. Hazzab, M. Atallah, C. Apollonio, and A. Petroselli, Using volunteered geographic information data for flood mapping – Wadi Deffa El Bayadh Algeria, Journal of Applied Water Engineering and Research, doi:10.1080/23249676.2022.2155716, 2022.
    148. PhamVan, C., and H. Le, Estimation of the daily flow in river basins using the data-driven model and traditional approaches: an application in the Hieu river basin, Vietnam, Water Practice and Technology, 18(1), 215-230, doi:10.2166/wpt.2022.166, 2023.
    149. Worley, L. C., K. L. Underwood, R. M. Diehl, J. E. Matt, K.S. Lawson, R. M. Seigel, and D. M. Rizzo, Balancing multiple stakeholder objectives for floodplain reconnection and wetland restoration, Journal of Environmental Management, 326(A), 116648, doi:10.1016/j.jenvman.2022.116648, 2023.
    150. Xu, K., C. Wang, and L. Bin, Compound flood models in coastal areas: a review of methods and uncertainty analysis, Natural Hazards, 116, 469-496, doi:10.1007/s11069-022-05683-3, 2023.
    151. Daniel, W. B., C. Roth, X. Li, C. Rakowski, T. McPherson, and D. Judi, Extremely rapid, Lagrangian modeling of 2D flooding: A rivulet-based approach, Environmental Modelling & Software, 161, 105630, doi:10.1016/j.envsoft.2023.105630, 2023.
    152. Guirro, M. O., and G. P. Michel, Hydrological and hydrodynamic reconstruction of a flood event in a poorly monitored basin: a case study in the Rolante River, Brazil, Natural Hazards, doi:10.1007/s11069-023-05879-1, 2023.
    153. Kohanpur, A. H., S. Saksena, S. Dey, J. M. Johnson, M. S. Riasi, L. Yeghiazarian, and A. M. Tartakovsky, Urban flood modeling: Uncertainty quantification and physics-informed Gaussian processes regression forecasting, Water Resources Research, 59(3), e2022WR033939, doi:10.1029/2022WR033939, 2023.
    154. Rodas, M., L. Timbe, and L. Campozano, Sensibilidad del coeficiente de Manning en la estimación de los niveles de crecida para el mapeo de inundaciones en un río de la región interandina de Ecuador, Cuadernos de Geografía Revista Colombiana de Geografía, 32(1), doi:10.15446/rcdg.v32n1.94764, 2023.
    155. Wu, S., and Y. Lei, Multiscale flood disaster risk assessment in the Lancang-Mekong river basin: A focus on watershed and community levels, Atmosphere, 14(4), 657, doi:10.3390/atmos14040657, 2023.
    156. Viseh, H., and D. N. Bristow, Residential flood risk in metro Vancouver due to climate change using probability boxes, International Journal of River Basin Management, doi:10.1080/15715124.2023.2200006, 2023.
    157. Moghim, S., M. A. Gharehtoragh, and A. Safaie, Performance of the flood models in different topographies, Journal of Hydrology, 620(A), 129446, doi:10.1016/j.jhydrol.2023.129446, 2023.
    158. Makris, C., Z. Mallios, Y. Androulidakis, and Y. Krestenitis, CoastFLOOD: A high-resolution model for the simulation of coastal inundation due to storm surges, Hydrology, 10(5), 103, doi:10.3390/hydrology10050103, 2023.
    159. Tarpanelli, A., B. Bonaccorsi, M. Sinagra, A. Domeneghetti, L. Brocca, and S. Barbetta, Flooding in the digital twin Earth: The case study of the Enza River levee breach in December 2017, Water, 15(9), 1644, doi:10.3390/w15091644, 2023.
    160. Xafoulis, N., Y. Kontos, E. Farsirotou, S. Kotsopoulos, K. Perifanos, N. Alamanis, D. Dedousis, and K. Katsifarakis, Evaluation of various resolution DEMs in flood risk assessment and practical rules for flood mapping in data-scarce geospatial areas: A case study in Thessaly, Greece, Hydrology, 10(4), 91, doi:10.3390/hydrology10040091, 2023.
    161. da Silva, A. A. C. L., and J. C. Eleutério, Identifying and testing the probability distribution of earthfill dam breach parameters for probabilistic dam breach modeling, Journal of Flood Risk Management, 16(3), e12900, doi:10.1111/jfr3.12900, 2023.
    162. Hajihassanpour, M., G. Kesserwani, P. Pettersson, and V. Bellos, Sampling-based methods for uncertainty propagation in flood modeling under multiple uncertain inputs: Finding out the most efficient choice, Water Resources Research, 59(7), e2022WR034011, doi:10.1029/2022WR034011, 2023.
    163. Biswal, S., B. Sahoo, M. K. Jha, and M. K. Bhuyan, A hybrid machine learning-based multi-dem ensemble model of river cross-section extraction: Implications on streamflow routing, Journal of Hydrology, 625(A), 129951, doi:10.1016/j.jhydrol.2023.129951, 2023.
    164. Wienhold, K. J., D. Li, W. Li, and Z. N. Fang, Flood inundation and depth mapping using unmanned aerial vehicles combined with high-resolution multispectral imagery, Hydrology, 10(8), 158, doi:10.3390/hydrology10080158, 2023.
    165. Aryal, A., and A. Kalra, Application of NEXRAD precipitation data for assessing the implications of low development practices in an ungauged basin, River, doi:10.1002/rvr2.55, 2023.
    166. Bryant, S., H. Kreibich, and B. Merz, Bias in flood hazard grid aggregation, Water Resources Research, 59(9), e2023WR035100, doi:10.1029/2023WR035100, 2023.
    167. Wang, W., G. Sang, Q. Zhao, and L. Lu, Water level prediction of pumping station pre-station based on machine learning methods, Water Supply, 23(10), 4092-4111, doi:10.2166/ws.2023.242, 2023.
    168. Moraru, A., N. Rüther, and O. Bruland, Investigating optimal 2D hydrodynamic modeling of a recent flash flood in a steep Norwegian river using high-performance computing, Journal of Hydroinformatics, 25(5), 1690-1712, doi:10.2166/hydro.2023.012, 2023.
    169. Dasari, I., and V. K. Vema, Assessment of the structural uncertainty of hydrological models and its impact on flood inundation mapping, Hydrological Sciences Journal, 68(16), 2404-2421, doi:10.1080/02626667.2023.2271456, 2023.
    170. Rojpratak, S., and S. Supharatid, Regional-scale flood impacts on a small mountainous catchment in Thailand under a changing climate, Journal of Water and Climate Change, jwc2023527, doi:10.2166/wcc.2023.527, 2023.
    171. Abbas, Z., M. Akhtar, S. Akram, S. Hafeez, and S. R. Ahmad, Flood inundation modeling and damage assessment in Lahore using remote sensing, International Journal of Innovations in Science & Technology, 5(4), 638-647, 2023.
    172. Almeida, I. M., H. A. Santos, O. de Vasconcelos Costa, and V. B. Graciano, Uncertainty reduction in flood areas by probabilistic analyses of land use/cover in models of two-dimensional hydrodynamic model of dam-break, Stochastic Environmental Research and Risk Assessment, doi:10.1007/s00477-023-02635-6, 2023.
    173. Stavi, I., S. Eldad, C. Xu, Z. Xu, Y. Gusarov, M. Haiman, and E. Argaman, Ancient agricultural terrace walls control floods and regulate the distribution of Asphodelus ramosus geophytes in the Israeli arid Negev, Catena, 234, 107588, doi:10.1016/j.catena.2023.107588, 2024.
    174. Tilav, E. S., and S. Gülbaz, Investigation of flooding due to dam failure: A case study of Darlık dam, Journal of Natural Hazards and Environment, 10(1), 49-67, doi:10.21324/dacd.1327805, 2024.
    175. Tunio, I. A., L. Kumar, S. A. Memon, A. A. Mahessar, A. W. Kandhir, Sediment transport dynamics during a super flood: A case study of the 2010 super flood at the Guddu Barrage on the Indus River, International Journal of Sediment Research, doi:10.1016/j.ijsrc.2024.03.002, 2024.
    176. Sajjad, A., J. Lu, X. Chen, S. Yousaf, N. Mazhar, and S. Shuja, Flood hazard assessment in Chenab River basin using hydraulic simulation modeling and remote sensing, Natural Hazards, doi:10.1007/s11069-024-06513-4, 2024.

  1. A. Tegos, A. Efstratiadis, N. Malamos, N. Mamassis, and D. Koutsoyiannis, Evaluation of a parametric approach for estimating potential evapotranspiration across different climates, Agriculture and Agricultural Science Procedia, 4, 2–9, doi:10.1016/j.aaspro.2015.03.002, 2015.

    [Αξιολόγηση παραμετρικής προσέγγισης για εκτίμηση της δυνητικής εξατμοδιαπνοής σε διαφορετικά κλίματα]

    Η δυνητική εξατμοδιαπνοή (ΡΕΤ) είναι καίριο δεδομένο εισόδου των υδρολογικών, αγροτικών και περιβαλλοντικών μοντέλων. Επί πολλές δεκαετίες έχουν προταθεί πολυάριθμες προσεγγίσεις για τη συνεπή εκτίμηση της ΡΕΤ, σε διάφορες χρονικές κλίμακες ενδιαφέροντος. Η πλέον αναγνωρσμένη είναι η εξίσωση Penman-Monteith, που είναι ωστόσο δύσκολο να εφαρμοστεί σε περιοχές φτωχές σε δεδομένα, καθώς απαιτεί ταυτόχρονες παρατηρήσεις τεσσάρων μετεωρολογικών μεταβλητών (θερμοκρασία, διάρκεια ηλιοφάνειας, υγρασία, ταχύτητα ανέμου). Για τον λόγο αυτό, προτιμώνται σαφώς τα φειδωλά μοντέλα με ελάχιστες απαιτήσεις σε δεδομένα. Ως επί το πλείστον, αυτα έχουν αναπτυχθεί και ελεγχθεί για συγκεκριμένςς υδροκλιματικές συνθήκες, όταν ωστόσο εφρμόζονται σε διαφορετικά καθεστώτα παρέχουν πολύ λιγότερο αξιόπιστες (και σε ορισμένες περιπτώσεις παραπλανητικές) εκτιμήσεις. Κατά συνέπεια, είναι αναγκαία η ανάπτυξη γενικών μεθόδων που παραμένου φειδωλές, σε όρους δεδομένων εισόδου και παραμετροποίησης, αλλά επιτρέπουν ακόμη κάποιου είδους τοπική προσαρμογή των παραμέτρων τους, μέσω βαθμονόμησης. Στην εργασία αυτή παρουσιάζουμε μια πρόσφατη παραμετρική σχέση, που βασίζεται σε μια απολοποιημένη διατύπωση της αυθεντικής έκφρασης Penman-Monteith, που τα μόνα δεδομένα που απαιτεί είναι μέσες ημερήσιες ή μέσες μηνιαίες θερμοκρασίες. Η μέθοδος εξιολογείται με χρήση μετεωρολογικών δεδομένων από διαφορετικές περιοχές του κόσμου, τόσο στη ημερήσια όσο και στη μηνιαία κλίμακα. Τα εξαγόμενα αυτή της εκτενούς ανάλυσης είναι πολύ ενθαρρυντικά, όπως προκύπτει από τις εξαιρετικά υψηλές επιδόσεις επαλήθευσης της προτεινόμενης μεθόδου σε όλα τα σύνολα δεδομένων που εξετάζονται. Γενικά, το παραμετρικό μοντέλο υπερτερεί έναντι καταξιωμένων μεθόδων της καθημερινής πρακτικής, καθώς εξασφαλίζει βέλτιστη προσέγγιση της δυνητικής εξατμοδιαπνοής.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/1549/1/documents/IRLA_paper.pdf (560 KB)

    Βλέπε επίσης: http://dx.doi.org/10.1016/j.aaspro.2015.03.002

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. Stan, F.I., G. Neculau, L. Zaharia, G. Ioana-Toroimac, and S. Mihalache, Study on the evaporation and evapotranspiration measured on the Căldăruşani Lake (Romania), Procedia Environmental Sciences, 32, 281–289, doi:10.1016/j.proenv.2016.03.033, 2016.
    2. Esquivel-Hernández, G., R. Sánchez-Murillo, C. Birkel, S. P. Good, and J. Boll, Hydro-climatic and ecohydrological resistance/resilience conditions across tropical biomes of Costa Rica, Ecohydrology, 10(6), e1860, doi:10.1002/eco.1860, 2017.
    3. Hodam, S., S. Sarkar, A.G.R. Marak, A. Bandyopadhyay, and A. Bhadra, Spatial interpolation of reference evapotranspiration in India: Comparison of IDW and Kriging methods, Journal of The Institution of Engineers (India): Series A, 98(4), 551-524, doi:10.1007/s40030-017-0241-z, 2017.
    4. Deng, H., and J. Shao, Evapotranspiration and humidity variations in response to land cover conversions in the Three Gorges Reservoir Region, Journal of Mountain Science, 15(3), 590-605, doi:10.1007/s11629-016-4272-0, 2018.
    5. Nadyozhina, E. D., I. M. Shkolnik, A. V. Sternzat, B. N. Egorov, and A. A. Pikaleva, Evaporation from irrigated lands in arid regions as inferred from the regional climate model and atmospheric boundary layer model simulations, Russian Meteorology and Hydrology, 43(6), 404-411, doi:10.3103/S1068373918060080, 2018.
    6. Bashir, R., F. Ahmad, and R. Beddoe, Effect of climate change on a monolithic desulphurized tailings cover, Water, 2(9), 2645, doi:10.3390/w12092645, 2020.
    7. Dimitriadou, S., and K. G. Nikolakopoulos, Evapotranspiration trends and interactions in light of the anthropogenic footprint and the climate crisis: A review, Hydrology, 8(4), 163, doi:10.3390/hydrology8040163, 2021.
    8. Dimitriadou, S., and K. G. Nikolakopoulos, Artificial neural networks for the prediction of the reference evapotranspiration of the Peloponnese Peninsula, Greece, Water, 14(13), 2027, doi:10.3390/w14132027, 2022.
    9. Yu, Z., H. Wang, B. Weng, S. Zhang, T. Qin, and D. Yan, Optimized pan evaporation by potential evapotranspiration for water inflow estimation in ungauged inland plain lake, China, Polish Journal of Environmental Studies, 31(6), 5427-5442, doi:10.15244/pjoes/151110, 2022.
    10. Kaissi, O., S. Belaqziz, M. H. Kharrou, S. Erraki, C. El Hachimi, A. Amazirh, and A. Chehbouni, Advanced learning models for estimating the spatio-temporal variability of reference evapotranspiration using in-situ and ERA5-Land reanalysis data, Modeling Earth Systems and Environment, doi:10.1007/s40808-023-01872-62023, 2023.
    11. Latrech, B., T. Hermassi, S. Yacoubi, A. Slatni, F. Jarray, L. Pouget, and M. A. Ben Abdallah, Comparative analysis of climate change impacts on climatic variables and reference evapotranspiration in Tunisian semi-arid region, Agriculture, 14(1), 160, doi:10.3390/agriculture14010160, 2024.

  1. A. Tegos, N. Malamos, and D. Koutsoyiannis, A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman-Monteith formula, Journal of Hydrology, 524, 708–717, doi:10.1016/j.jhydrol.2015.03.024, 2015.

    [Φειδωλό τοπικό παραμετρικό μοντέλο εξατμοδιαπνοής βασισμένο σε απλοποίηση του τύπου Penman-Monteith]

    Συμπληρωματικό υλικό:

    Βλέπε επίσης: http://dx.doi.org/10.1016/j.jhydrol.2015.03.024

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. Hodam, S., S. Sarkar, A.G.R. Marak, A. Bandyopadhyay, and A. Bhadra, Spatial interpolation of reference evapotranspiration in India: Comparison of IDW and Kriging methods, Journal of The Institution of Engineers (India): Series A, 98(4), 551-524, doi:10.1007/s40030-017-0241-z, 2017.
    2. Deng, H., and J. Shao, Evapotranspiration and humidity variations in response to land cover conversions in the Three Gorges Reservoir Region, Journal of Mountain Science, 15(3), 590–605, doi:10.1007/s11629-016-4272-0, 2018.
    3. Giménez, P. O., and S. G. García-Galiano, Assessing Regional Climate Models (RCMs) ensemble-driven reference evapotranspiration over Spain, Water, 10(9), 1181, doi:10.3390/w10091181, 2018.
    4. Zhang, T., Y. Chen, and K. Tha Paw U, Quantifying the impact of climate variables on reference evapotranspiration in Pearl River Basin, China, Hydrological Sciences Journal, doi:10.1080/02626667.2019.1662021, 2019.

  1. A. Efstratiadis, A. Tegos, A. Varveris, and D. Koutsoyiannis, Assessment of environmental flows under limited data availability – Case study of the Acheloos River, Greece, Hydrological Sciences Journal, 59 (3-4), 731–750, doi:10.1080/02626667.2013.804625, 2014.

    [Εκτίμηση περιβαλλοντικών παροχών υπό περιορισμένη διαθεσιμότητα δεδομένων – Εφαρμογή στον Αχελώο ποταμό, Ελλάδα]

    Ο κάτω ρους του ποταμού Αχελώου είναι ένα σημαντικό υδροσύστημα της Ελλάδας, βαριά τροποποιημένο λόγω της παρεμβολής τεσσάρων υδροηλεκτρικών ταμιευτήρων, που τώρα επεκτείνεται με δύο ακόμη φράγματα στον άνω ρου. Ο σχεδιασμός των φραγμάτων και υδροηλεκτρικών διατάξεων που βρίσκονται σε λειτουργία δεν είχε λάβει υπόψη κανένα περιβαλλοντικό κριτήριο. Ωστόσο, τα τελευταία πενήντα έτη έχει προταθεί πληθώρα μεθοδολογιών για την εκτίμηση των αρνητικών επιπτώσεων τέτοιων έργων τόσο στο αβιοτικό όσο και το βιοτικό περιβάλλον, και για την παροχή υποστήριξης για την θέσπιση κατάλληλων περιορισμών στη λειτουργία τους, συνήθως σε όρους απαιτήσεων ελάχιστης ροής. Στη μελέτη αυτή, αναζητώντας μια πιο φιλο-περιβαλλοντική λειτουργία του υδροσυστήματος, διερευνούμε την πολιτική εκροών από το πλέον κατάντη φράγμα, εξετάζοντας εναλλακτικές προσεγγίσεις των περιβαλλοντικών παροχών. Λαμβάνοντας υπόψη τους περιορισμούς σε δεδομένα, προτείνουμε τη μέθοδο βασικής ροής (Basic Flow Method), η οποία είναι φειδωλή και κατάλληλη για Μεσογειακά ποτάμια, οι παροχές των οποίων παρουσιάζουν έντονη εποχιακή μεταβλητότητα. Δείχνουμε ακόμη ότι η μέθοδος της βρεχόμενης περιμέτρου – παροχής, που αποτελεί μια στοιχειώδη υδραυλική προσέγγιση, παρέχει συνεπή αποτελέσματα, ακόμα και αν δεν χρησιμοποιηθούν καθόλου δεδομένα παροχών. Τέλος, εξετάζουμε την προσαρμογή της προτεινόμενης πολιτικής εκροών (περιλαμβανομένων και των τεχνητών πλημμυρών) στον προγραμματισμό της υδροηλεκτρικής παραγωγής σε πραγματικό χρόνο, και τη διαχείριση των συγκρούσεων που προκύπτουν.

    Συμπληρωματικό υλικό:

    Βλέπε επίσης: http://dx.doi.org/10.1080/02626667.2013.804625

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. Acreman, M. C., I. C. Overton, J. King, P. Wood, I. G. Cowx, M. J. Dunbar, E. Kendy, and W. Young, The changing role of ecohydrological science in guiding environmental flows, Hydrological Sciences Journal, 59(3–4), 1–18, 2014.
    2. #Egüen, M., M. J. Polo, Z. Gulliver, E. Contreras, C. Aguilar, and M. A. Losada, Flood risk trends in coastal watersheds in South Spain: direct and indirect impact of river regulation, Changes in Flood Risk and Perception in Catchments and Cities, Proc. IAHS, 370, 51-56, doi:10.5194/piahs-370-51-2015, 2015.
    3. Aguilar, C., and M. J. Polo, Assessing minimum environmental flows in nonpermanent rivers: The choice of thresholds, Environmental Modelling and Software, 79, 120-134, doi:10.1016/j.envsoft.2016.02.003, 2016.
    4. Nerantzaki, S. D., G. V. Giannakis, N. P. Nikolaidis, I. Zacharias, G. P. Karatzas, and I. A. Sibetheros, Assessing the impact of climate change on sediment loads in a large Mediterranean watershed, Soil Science, 181(7), 306-314, 2016.
    5. Poncelet, C., V. Andréassian, L. Oudin, and C. Perrin, The Quantile Solidarity approach for the parsimonious regionalization of flow duration curves, Hydrological Sciences Journal, 62(9), 1364-1380, doi:10.1080/02626667.2017.1335399, 2017.
    6. Tegos, M., I. Nalbantis, and A. Tegos, Environmental flow assessment through integrated approaches, European Water, 60, 167-173, 2017.
    7. Gemitzi, A., and V. Lakshmi, Evaluating renewable groundwater stress with GRACE data in Greece, Groundwater, 56(3), 501-514, doi:10.1111/gwat.12591, 2018.
    8. Theodoropoulos, C., N. Skoulikidis, P. Rutschmann, and A. Stamou, Ecosystem-based environmental flow assessment in a Greek regulated river with the use of 2D hydrodynamic habitat modelling, River Research and Applications, 34(6), 538-547, doi:10.1002/rra.3284, 2018.
    9. Zhao, C., S. Yang, J. Liu, C. Liu, F. Hao, Z. Wang, H. Zhang, J. Song, S. M. Mitrovic, and R. P. Lim, Linking fish tolerance to water quality criteria for the assessment of environmental flows: A practical method for streamflow regulation and pollution control, Water Research, 141, 96-108, doi:10.1016/j.watres.2018.05.025, 2018.
    10. Operacz, A., A. Wałęga, A. Cupak, and B. Tomaszewska, The comparison of environmental flow assessment - The barrier for investment in Poland or river protection? Journal of Cleaner Production, 193, 575-592, doi:10.1016/j.jclepro.2018.05.098, 2018.
    11. Książek, L., A. Woś, J. Florek, M. Wyrębek, D. Młyński, and A. Wałęga, Combined use of the hydraulic and hydrological methods to calculate the environmental flow: Wisloka river, Poland: case study, Environmental Monitoring and Assessment, 191:254, doi:10.1007/s10661-019-7402-7, 2019.
    12. Shinozaki, Y., and N. Shirakawa, Current state of environmental flow methodologies: objectives, methods and their approaches, Journal of Japan Society of Civil Engineers – Ser. B1 (Hydraulic Engineering), 75(1), 15-30, doi:10.2208/jscejhe.75.15, 2019.
    13. Kan, H., F. Hedenus, and L. Reichenberg, The cost of a future low-carbon electricity system without nuclear power – The case of Sweden, Energy, 195, 117015, doi:10.1016/j.energy.2020.117015, 2020.
    14. Aryal, S. K., Y. Zhang, and F. Chiew, Enhanced low flow prediction for water and environmental management, Journal of Hydrology, 584, 124658, doi:10.1016/j.jhydrol.2020.124658, 2020.
    15. #Ivanova, E., and D. Myronidis, Spatial interpolation approach for environmental flow assessment in Bulgarian-Greek Rhodope mountain range, Proceeding of the 9th International Conference on Information and Communication Technologies in Agriculture, Food & Environment (HAICTA 2020), 274-285, Thessaloniki, 2020.
    16. Moccia, D., L. Salvadori, S. Ferrari, A. Carucci, and A. Pusceddu, Implementation of the EU ecological flow policy in Italy with a focus on Sardinia, Advances in Oceanography and Limnology, 11(1), doi:10.4081/aiol.2020.8781, 2020.
    17. Koskinas, A., Stochastics and ecohydrology: A study in optimal reservoir design, Dams and Reservoirs, 30(2), 53-59, doi:10.1680/jdare.20.00009, 2020.
    18. Dash, S. S., D. R. Sena, U. Mandal, A. Kumar, G. Kumar, P. K. Mishra, and M. Rawat, A hydrological modelling-based approach for vulnerable area identification under changing climate scenarios, Journal of Water and Climate Change, 12(2), 433-452, doi:10.2166/wcc.2020.202, 2021.
    19. Senent-Aparicio, J., C. George, and R. Srinivasan, Introducing a new post-processing tool for the SWAT+ model to evaluate environmental flows, Environmental Modelling and Software, 136, 104944, doi:10.1016/j.envsoft.2020.104944, 2021.
    20. Operacz, A, Possibility of hydropower development: a simple-to-use index, Energies, 14(10), 2764, doi:10.3390/en14102764, 2021.
    21. Kan, X., L. Reichenberg, and F. Hedenus, The impacts of the electricity demand pattern on electricity system cost and the electricity supply mix: a comprehensive modeling analysis for Europe, Energy, 235, 121329, doi:10.1016/j.energy.2021.121329, 2021.
    22. Greco, M., F. Arbia, and R. Giampietro, Definition of ecological flow Using IHA and IARI as an operative procedure for water management, Environments, 8(8), 77, doi:10.3390/environments8080077, 2021.
    23. #Soulis, K., Hydrological data sources and analysis for the determination of environmental water requirements in mountainous areas, Environmental Water Requirements in Mountainous Areas, E. Dimitriou and C. Papadaki (editors), Chapter 2, 51-98, Elsevier, doi: 10.1016/B978-0-12-819342-6.00007-5, 2021.
    24. #Muñoz-Mas, R., and P. Vezza, Quantification of environmental water requirements; how far can we go?, Environmental Water Requirements in Mountainous Areas, E. Dimitriou and C. Papadaki (editors), Chapter 6, 235-280, Elsevier, doi:10.1016/B978-0-12-819342-6.00001-4, 2021.
    25. Zhang, X.-R., D.-R. Zhang, and Y. Ding, An environmental flow method applied in small and medium-sized mountainous rivers, Water Science and Engineering, 14(4), 323-329, doi:10.1016/j.wse.2021.10.003, 2021.
    26. Owusu, A., M. Mul, M. Strauch, P. van der Zaag, M. Volk, and J. Slinger, The clam and the dam: A Bayesian belief network approach to environmental flow assessment in a data scarce region, Science of The Total Environment, 810, 151315, doi:10.1016/j.scitotenv.2021.151315, 2022.
    27. Hoque, M. M., A. Islam, and S. Ghosh, Environmental flow in the context of dams and development with special reference to the Damodar Valley Project, India: a review, Sustainable Water Resources Management, 8, 62, doi:10.1007/s40899-022-00646-9, 2022.
    28. Kan, X., F. Hedenus, L. Reichenberg, and O. Hohmeye, Into a cooler future with electricity generated from solar photovoltaic, iScience, 25(5), 104208, doi:10.1016/j.isci.2022.104208, 2022.
    29. Colombera, L., and N. P. Mountney, Scale dependency in quantifications of the avulsion frequency of coastal rivers, Earth-Science Reviews, 230, 104043, doi:10.1016/j.earscirev.2022.104043, 2022.
    30. #Sharma, M., C. Prakasam, R. Saravanan, S. C. Attri, V. S. Kanwar, and M. K. Sharma, A review of environmental flow evaluation methodologies – Limitations and validations, Proceedings of International Conference on Innovative Technologies for Clean and Sustainable Development (ICITCSD – 2021), Kanwar, V.S., Sharma, S.K., Prakasam, C. (eds.), Springer, Cham, doi:10.1007/978-3-030-93936-6_63, 2022.
    31. Ivanova, E., and D. Myronidis, Application of an integrated methodology for spatial classification of the environmental flow in the Bulgarian-Greek Rhodope Mountain Range, International Journal of Sustainable Agricultural Management and Informatics, 8(1), 184-103, doi:10.1504/IJSAMI.2022.123045, 2022.
    32. Prakasam, C., and R. Saravanan, Ecological flow assessment using hydrological method and validation through GIS application, Groundwater for Sustainable Development, 19, 100841, doi:10.1016/j.gsd.2022.100841, 2022.
    33. Liu, S., Q. Zhang, Y. Xie, P. Xu, and H. Du, Evaluation of minimum and suitable ecological flows of an inland basin in China considering hydrological variation, Water, 15(4), 649, doi:10.3390/w15040649, 2023.
    34. Verma, R. K., A. Pandey, S. K. Mishra, and V. P. Singh, A procedure for assessment of environmental flows incorporating inter- and intra-annual variability in dam-regulated watersheds, Water Resources Management, 37, 3259-3297, doi:10.1007/s11269-023-03502-3, 2023.
    35. Chen, H., and Q. Li, Testing and applying baseflow approaches to environmental flow needs, Ecological Indicators, 152, 110363, doi:10.1016/j.ecolind.2023.110363, 2023.
    36. Leone, M., F. Gentile, A. Lo Porto, G. F. Ricci, and A. M. De Girolamo, Ecological flow in southern Europe: Status and trends in non-perennial rivers, Journal of Environmental Management, 342, 118097, doi:10.1016/j.jenvman.2023.118097, 2023.
    37. Castellanos-Osorio, G., A. López-Ballesteros, J. Pérez-Sánchez, and J. Senent-Aparicio, Disaggregated monthly SWAT+ model versus daily SWAT+ model for estimating environmental flows in Peninsular Spain, Journal of Hydrology, 129837, doi:10.1016/j.jhydrol.2023.129837, 2023.
    38. Aszódi, A., B. Biró, L. Adorján, A. C. Dobos, G. Illés, N. K. Tóth, D. Zagyi, and Z. T. Zsiborás, The effect of the future of nuclear energy on the decarbonization pathways and continuous supply of electricity in the European Union, Nuclear Engineering and Design, 415, 112688, doi:10.1016/j.nucengdes.2023.112688, 2023.
    39. Bianucci, P., A. Sordo-Ward, B. Lama-Pedrosa, and L. Garrote, How do environmental flows impact on water availability under climate change scenarios in European basins?, Science of The Total Environment, 911, 168566, doi:10.1016/j.scitotenv.2023.168566, 2024.
    40. Manikas, K. S. Skroufouta, and E. Baltas, Simulation and evaluation of pumped hydropower storage (PHPS) system at Kastraki reservoir, Renewable Energy, 222, 119888, doi:10.1016/j.renene.2023.119888, 2024.
    41. Sedghi-Asl, M., and S. J. Poursalehan, Modified ideal point method for estimating minimum environmental flow of rivers, Acta Geophysica, doi:10.1007/s11600-023-01264-5, 2024.

  1. D. Koutsoyiannis, N. Mamassis, and A. Tegos, Logical and illogical exegeses of hydrometeorological phenomena in ancient Greece, Water Science and Technology: Water Supply, 7 (1), 13–22, 2007.

    [Λογικές και παράλογες εξηγήσεις υδρομετεωρολογικών φαινομένων στην αρχαία Ελλάδα]

    Τεχνολογικές εφαρμογές που αποκοπούν στην εκμετάλλευση των φυσικών πόρων έχουν εμφανιστεί σε όλους τους αρχαίους πολιτισμούς. Το μοναδικό φαινόμενο στον αρχαίο Ελληνικό πολιτισμό είναι ότι οι τεχνολογικές ανάγκες έδωσαν το έναυσμα στην προσπάθεια εξήγησης των φυσικών φαινομένων, επιτρέποντας έτσι τη θεμελίωση της φιλοσοφίας και της επιστήμης. Μεταξύ αυτών, η μελέτη των υδρομετεωρολογικών φαινομένων κατείχε μείζονα ρόλο. Η μελέτη αυτή ξεκινά με τους Ίωνες φιλοσόφους τον έβδομο και έκτο αιώνα π.Χ. συνεχίζεται στην κλασική Αθήνα τον πέμπτο και τέταρτο αιώνα π.Χ., και προάγεται και επεκτείνεται σε όλο τον Ελληνικό κόσμο μέχρι το τέλος της Ελληνιστικής περιόδου. Πολλές από τις θεωρίες που προτάθηκαν από τους αρχαίους έλληνες είναι εσφαλμένες, σύμφωνα με τις σημερινές θεωρήσεις. Ωστόσο, πολλές από τις αρχαίες ελληνικές εξηγήσεις των υδρομετεωρολογικών διεργασιών, όπως της εξάτμισης και της συμπύκνωσης των υδρατμών, τη δημιουργία των νεφών, του χαλαζιού, του χιονιού και της βροχής, και της εξέλιξης του υδρολογικού κύκλου, είναι εντυπωσιακές ακόμη και σήμερα.

    Σχετικές εργασίες:

    • [32] Ελληνική μετάφραση

    Συμπληρωματικό υλικό:

    Βλέπε επίσης: http://dx.doi.org/10.2166/ws.2007.002

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. Mays, L.W., A very brief history of hydraulic technology during antiquity, Environmental Fluid Mechanics, 8 (5-6), 471-484, 2008.
    2. Angelakis, A. N., and D. S. Spyridakis, A brief history of water supply and wastewater management in ancient Greece, Water Science and Technology: Water Supply, 10 (4), 618-628, 2010.
    3. #Angelakis, A. N., E. G. Dialynas and V. Despotakis, Evolution of water supply technologies through the centuries in Crete, Greece, Ch. 9 in Evolution of Water Supply Through the Millennia (A. N. Angelakis, L. W. Mays, D. Koutsoyiannis and N. Mamassis, eds.), 227-258, IWA Publishing, London, 2012.

Book chapters and fully evaluated conference publications

  1. P. Dimitriadis, A. Tegos, A. Petsiou, V. Pagana, I. Apostolopoulos, E. Vassilopoulos, M. Gini, A. D. Koussis, N. Mamassis, D. Koutsoyiannis, and P. Papanicolaou, Flood Directive implementation in Greece: Experiences and future improvements, 10th World Congress on Water Resources and Environment "Panta Rhei", Athens, European Water Resources Association, 2017.

  1. N. Malamos, I. L. Tsirogiannis, A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, Spatial interpolation of potential evapotranspiration for precision irrigation purposes, 10th World Congress on Water Resources and Environment "Panta Rhei", Athens, European Water Resources Association, 2017.

    [Χωρική παρεμβολή δυνητικής εξατμοδιαπνοής για σκοπούς ακριβούς άρδευσης]

    Συμπληρωματικό υλικό:

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. da Silva Júnior, J. C. , V. Medeiros, C. Garrozi, A. Montenegro, and G. E. Gonçalves, Random forest techniques for spatial interpolation of evapotranspiration data from Brazilian’s Northeast, Computers and Electronics in Agriculture, 166, 105017, doi:10.1016/j.compag.2019.105017, 2019.
    2. Haftcheshmeh, E. I., and F. Bansouleh, Spatial variation of reference evapotranspiration in Kermanshah province, Journal of Agricultural Meteorology, 9(2), 61-66, doi:10.22125/agmj.2021.262567.1106, 2021.

  1. A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, A parametric model for potential evapotranspiration estimation based on a simplified formulation of the Penman-Monteith equation, Evapotranspiration - An Overview, edited by S. Alexandris, 143–165, doi:10.5772/52927, InTech, 2013.

    [Παραμετρικό μοντέλο για την εκτίμηση της δυνητικής εξατμοδιαπνοής βασισμένη σε απλουστευμένη διατύπωση της εξίσωσης Penman-Monteith]

    Το άρθρο, εκτός της εισαγωγής (ενότητα 1), είναι οργανωμένο ως εξής: Στην ενότητα 2 επισκοπούμε τη μέθοδο Penman-Monteith και της απλοποιήσεις της, που εκτιμούν την εξατμοδιαπνοή με βάση δεδομένα θερμοκρασίας αι ηλιακής ακτινοβολίας. Στην ενότητα 3 παρουσιάζουμε το νέο παραμετρικό μοντέλο, που συμβιβάζει τις απαιτήσεις φειδωλότητας και συνέπειας. Στην ενότητα 4, βαθμονομούμε το μοντέλο σε σημειακή κλίμακα, με χρήση ιστορικών μετεωρολογικών δεδομένων, και αξιολοείται έναντι άλλων εμπειρικών προσεγγίσεων. Ακόμη, διερευνούμε τη γεωγραφική κατανομή των παραμέτρων του στην Ελλάδα. Τέλος, στην ενότητα 5 συνοψίζουμε τα αποτελέσματα της έρευνας και συζητούμε τα επόμενα ερευνητικά βήματα.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/1284/1/documents/2013InTech_ParametricModelPET.pdf (819 KB)

    Βλέπε επίσης: http://dx.doi.org/10.5772/52927

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. Samaras, D. A., A. Reif, and K. Theodoropoulos, Evaluation of radiation-based reference evapotranspiration models under different Mediterranean climates in Central Greece, Water Resources Management, 28 (1), 207-225, 2014.
    2. Tabari, H., P. H. Talaee, P. Willems, and C. Martinez, Validation and calibration of solar radiation equations for estimating daily reference evapotranspiration at cool semi-arid and arid locations, Hydrological Sciences Journal, 61(3), 610-619, doi:10.1080/02626667.2014.947293, 2016.
    3. Jaber, H. S., S. Mansor, B. Pradhan, and N. Ahmad, Evaluation of SEBAL model for evapotranspiration mapping in Iraq using remote sensing and GIS, International Journal of Applied Engineering Research, 11(6), 3950-3955, 2016.
    4. Kumar, D., J. Adamowski, R. Suresh, and B. Ozga-Zielinski, Estimating evapotranspiration using an extreme learning machine model: case study in North Bihar, India, Journal of Irrigation and Drainage Engineering, 04016032, doi:10.1061/(ASCE)IR.1943-4774.0001044, 2016.
    5. Djaman, K., D. Rudnick, V. C. Mel, and D. Mutiibwa, Evaluation of Valiantzas’ simplified forms of the FAO-56 Penman-Monteith reference evapotranspiration model in a humid climate, Journal of Irrigation and Drainage Engineering, doi:10.1061/(ASCE)IR.1943-4774.0001191, 2017.
    6. Tegos, M., I. Nalbantis, and A. Tegos, Environmental flow assessment through integrated approaches, European Water, 60, 167-173, 2017.
    7. Norström, E., C. Katrantsiotis, R. H. Smittenberg, and K. Kouli, Chemotaxonomy in some Mediterranean plants and implications for fossil biomarker records, Geochimica et Cosmochimica Acta, 219, 96-110, doi:10.1016/j.gca.2017.09.029, 2017.
    8. Hodam, S., S. Sarkar, A.G.R. Marak, A. Bandyopadhyay, and A. Bhadra, Spatial interpolation of reference evapotranspiration in India: Comparison of IDW and Kriging methods, Journal of The Institution of Engineers (India): Series A, doi:10.1007/s40030-017-0241-z, 2017.
    9. Mentzafou, A., S. Wagner, and E. Dimitriou, Historical trends and the long-term changes of the hydrological cycle components in a Mediterranean river basin, Science of The Total Environment, 636, 558-568, doi:10.1016/j.scitotenv.2018.04.298, 2018.
    10. Norström, E., C. Katrantsiotis, M. Finné, J. Risberg, R. H. Smittenberg, S. Bjursäter, Biomarker hydrogen isotope composition (δD) as proxy for Holocene hydroclimatic change and seismic activity in SW Peloponnese, Greece, Journal of Quaternary Science, 33(5), 563-574, doi:10.1002/jqs.3036, 2018.
    11. Mengistu, B., and G. Amente, Three methods of estimating the power of maximum temperature in TM–ET estimation equation, SN Applied Sciences, 1:1403, doi:10.1007/s42452-019-1461-9, 2019.
    12. Mengistu, B., and G. Amente, Reformulating and testing Temesgen-Melesse's temperature-based evapotranspiration estimation method, Heliyon, 6(1), e02954, doi:10.1016/j.heliyon.2019.e02954, 2020.
    13. Středová, H., J. Klimešová, T. Středa, and P. Fukalová, Could the directly measured data of transpiration be replaced by model outputs?, Contributions to Geophysics and Geodesy, 50(1), 33-47, doi:10.31577/congeo.2020.50.1.2, 2020.
    14. Jaiswal, S., and M. S. Ballal, Fuzzy inference based irrigation controller for agricultural demand side management, Computers and Electronics in Agriculture, 175, 105537, doi:10.1016/j.compag.2020.105537, 2020.
    15. Rezaei, M., H. Ghasemieh, and K. Abdollahi, Simplified version of the METRIC model for estimation of actual evapotranspiration, International Journal of Remote Sensing, 42(14), 5568-5599, doi:10.1080/01431161.2021.1925991, 2021.
    16. Dos Santos, A. A., J. L. M. de Souza, and S. L. K. Rosa, Evapotranspiration with the Moretti-Jerszurki-Silva model for the Brazilian subtropical climate, Hydrological Sciences Journal, 66(16), 2267-2279, doi:10.1080/02626667.2021.1988610, 2021.
    17. Ilbay-Yupa, M., F. Ilbay, R. Zubieta, M. García-Mora, and P. Chasi, Impacts of climate change on the precipitation and streamflow regimes in equatorial regions: Guayas River Basin, Water, 13(21), 3138, doi:10.3390/w13213138, 2021.
    18. Dimitriadou, S., and K. G. Nikolakopoulos, Evapotranspiration trends and interactions in light of the anthropogenic footprint and the climate crisis: A review, Hydrology, 8(4), 163, doi:10.3390/hydrology8040163, 2021.
    19. Danielescu, S., Development and application of ETCalc, a unique online tool for estimation of daily evapotranspiration, Atmosphere-Ocean, doi:10.1080/07055900.2022.2154191, 2022.
    20. Pisinaras V., F. Herrmann, A. Panagopoulos, E. Tziritis, I. McNamara, and F. Wendland, Fully distributed water balance modelling in large agricultural areas—The Pinios river basin (Greece) case study, Sustainability, 15(5), 4343, doi:10.3390/su15054343, 2023.
    21. Stefanidis, S., A. Tegos, and V. Alexandridis, How has aridity changed at a fir (Abies Borisii-Regis) forest site in Central Greece during the past six decades? Environmental Sciences Proceedings, 26(1), 121, doi:10.3390/environsciproc2023026121, 2023.

  1. D. Koutsoyiannis, N. Mamassis, and A. Tegos, Logical and illogical exegeses of hydrometeorological phenomena in ancient Greece, Proceedings of the 1st IWA International Symposium on Water and Wastewater Technologies in Ancient Civilizations, edited by A. N. Angelakis and D. Koutsoyiannis, Iraklio, 135–143, doi:10.13140/RG.2.1.4188.4408, International Water Association, 2006.

    [Λογικές και παράλογες εξηγήσεις υδρομετεωρολογικών φαινομένων στην αρχαία Ελλάδα]

    Τεχνολογικές εφαρμογές που αποκοπούν στην εκμετάλλευση των φυσικών πόρων έχουν εμφανιστεί σε όλους τους αρχαίους πολιτισμούς. Το μοναδικό φαινόμενο στον αρχαίο Ελληνικό πολιτισμό είναι ότι οι τεχνολογικές ανάγκες έδωσαν το έναυσμα στην προσπάθεια εξήγησης των φυσικών φαινομένων, επιτρέποντας έτσι τη θεμελίωση της φιλοσοφίας και της επιστήμης. Μεταξύ αυτών, η μελέτη των υδρομετεωρολογικών φαινομένων κατείχε μείζονα ρόλο. Η μελέτη αυτή ξεκινά με τους Ίωνες φιλοσόφους τον έβδομο αιώνα π.Χ. συνεχίζεται στην κλασική Αθήνα τον πέμπτο και τέταρτο αιώνα π.Χ., και προάγεται και επεκτείνεται σε όλο τον Ελληνικό κόσμο μέχρι το τέλος της Ελληνιστικής περιόδου. Πολλές από τις θεωρίες που προτάθηκαν από τους αρχαίους έλληνες είναι εσφαλμένες, σύμφωνα με τις σημερινές θεωρήσεις. Ωστόσο, πολλές από τις αρχαίες ελληνικές εξηγήσεις των υδρομετεωρολογικών διεργασιών, όπως της εξάτμισης και της συμπύκνωσης των υδρατμών, τη δημιουργία των νεφών, του χαλαζιού, του χιονιού και της βροχής, και της εξέλιξης του υδρολογικού κύκλου, είναι εντυπωσιακές ακόμη και σήμερα.

    Σχετικές εργασίες:

    • [15] Αναθεωρημένη έκδοση του ίδιου άρθρου.

    Πλήρες κείμενο:

    Βλέπε επίσης: http://dx.doi.org/10.13140/RG.2.1.4188.4408

Conference publications and presentations with evaluation of abstract

  1. A. Tegos, P. Dimitriadis, and D. Koutsoyiannis, Stochastic investigation of the correlation structure and probability distribution of the global potential evapotranspiration, European Geosciences Union General Assembly 2018, Geophysical Research Abstracts, Vol. 20, Vienna, EGU2018-17849-3, European Geosciences Union, 2018.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/1815/1/documents/EGU2018-17849-3.pdf (30 KB)

  1. N. Malamos, A. Tegos, I. L. Tsirogiannis, A. Christofides, and D. Koutsoyiannis, Implementation of a regional parametric model for potential evapotranspiration assessment, IrriMed 2015 – Modern technologies, strategies and tools for sustainable irrigation management and governance in Mediterranean agriculture, Bari, doi:10.13140/RG.2.1.3992.0725, 2015.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/1576/1/documents/2015Bari_Implementation_of_a_regional_parametric.pdf (2372 KB)

    Βλέπε επίσης: http://dx.doi.org/10.13140/RG.2.1.3992.0725

  1. A. Koukouvinos, D. Nikolopoulos, A. Efstratiadis, A. Tegos, E. Rozos, S.M. Papalexiou, P. Dimitriadis, Y. Markonis, P. Kossieris, H. Tyralis, G. Karakatsanis, K. Tzouka, A. Christofides, G. Karavokiros, A. Siskos, N. Mamassis, and D. Koutsoyiannis, Integrated water and renewable energy management: the Acheloos-Peneios region case study, European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-4912, doi:10.13140/RG.2.2.17726.69440, European Geosciences Union, 2015.

    [Ολοκληρωμένη διαχείριση νερού και ανανεώσιμης ενέργειας: η μελέτη περίπτωσης της περιοχής Αχελώου-Πηνειού]

    Στο πλαίσιο του έργου «Συνδυασμένα συστήματα ανανεώσιμων πηγών για αειφoρική ενεργειακή ανάπτυξη» (CRESSENDO), αναπτύξαμε ένα πρωτότυπο πλαίσιο στοχαστικής προσομοίωσης για τον βέλτιστο σχεδιασμό και διαχείριση μεγάλης κλίμακας υβριδικών συστημάτων ανανεώσιμης ενέργειας, όπου η υδροηλεκτρική ενέργεια έχει τον κυρίαρχο ρόλο. Η μεθοδολογία κια τα σχετικά υπολογιστκά εργαλεία ελέγχονται σε δύο μεγάλες γειτονικές λεκάνες της Ελλάδας (Αχελώος, Πηνειός) που εκετίνονται σε 15 500 km2 (12% της Ελληνικής επικράτειας). Ο ποταμός Αχελώος χαρακτηρίζεται από πολύ υψηλή απορροή και φιλοξενεί το ~40% της εγκατεστημένης υδροηλεκτρικής ισχύος της Ελλάδας. Από την άλλη πλευρά, η πεδιάδα της Θεσσαλίας που αποστραγγίζεται στον Πηνειό – μια αγροτική περιοχή κλειδί για την εθνική οικονομία – υποφέρει συχνά από ανεπάρκεια νερού και συστηματική περιβαλλοντική υποβάθμιση. Οι δύο λεκάνες συνδέονται μέσω έργων εκτροπής, υφιστάμενων και δομολογημένων, διαμορφώνοντας έτσι ένα μοναδικό υδροσύστημα μεγάλης κλίμακας, το μέλλον του οποίου υπήρξε αντικείμενο έντονης διαμάχης. Η περιοχή μελέτης αντιμετωπίζεται ως ένα υποθετικά κλειστό, ενεργειακά αυτόνομο σύστημα, ώστε να αξιολογηθούν οι προοπτικές αειφόρου ανάπτυξης των υδατικών και ενεργειακών πόρων του. Στο πλαίσιο αυτό αναζητείται μια αποτελεσματική διαμόρφωση των αναγκαίων υδραυλικών έργων και έργων ανανεώσιμης ενέργειας, μέσω ολοκληρωμένης μοντελοποίησης του υδατικού και ενεργειακού ισοζυγίου της περιοχής. Εξετάζουμε διάφορα σενάρια ενεργειακής ζήτησης για οικιακή, βιομηχανική και γεωργική χρήση, υποθέτοντας ότι μέρος της ζήτησης καλύπτεται από αιολική και ηλιακή ενέργεια, ενώ η περίσσεια ή το έλλειμμα ενέργειας ρυθμίζεται μέσω των μεγάλων υδροηλεκτρικών έργων, που είναι εξοπλισμένα και με διατάξειας αντλησιοταμίευσης. Ο γενικός στόχος είναι να εξετάσουμε κάτω από ποιες συνθήκες είναι τεχνικά και οικονομικά βιώσιμο ένα πλήρως ανανεώσιμο σύστημα ενέργειας σε μια τόσο μεγάλη κλίμακα.

    Πλήρες κείμενο:

    Συμπληρωματικό υλικό:

    Βλέπε επίσης: http://dx.doi.org/10.13140/RG.2.2.17726.69440

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. Stamou, A. T., and P. Rutschmann, Pareto optimization of water resources using the nexus approach, Water Resources Management, 32, 5053-5065, doi:10.1007/s11269-018-2127-x, 2018.
    2. Stamou, A.-T., and P. Rutschmann, Optimization of water use based on the water-energy-food nexus concept: Application to the long-term development scenario of the Upper Blue Nile River, Water Utility Journal, 25, 1-13, 2020.

  1. A. Tegos, A. Efstratiadis, N. Malamos, N. Mamassis, and D. Koutsoyiannis, Evaluation of a parametric approach for estimating potential evapotranspiration across different climates, IRLA2014 – The Effects of Irrigation and Drainage on Rural and Urban Landscapes, Patras, doi:10.13140/RG.2.2.14004.24966, 2014.

    [Αποτίμηση μιας παραμετρικής μεθόδου για την εκτίμηση της δυνητικής εξατμοδιαπνοής σε διάφορα κλίματα]

    Η δυνητική εξατμοδιαπνοή αποτελεί βασικό στοιχείο εισόδου των μοντέλων υδατικών πόρων, γεωργίας και περιβάλλοντος. Επί πολλές δεκαετίες, έχουν προταθεί πολυάριθμες προσεγγίσεις για τη συνεπή εκτίμηση της δυνητικής εξατμοδιαπνοής για διάφορες χρονικές κλίμακες ενδιαφέροντος. Η πλέον καταξιωμένη είναι η εξίσωση Penman-Monteith, που είναι ωστόσο δύσκολη στην εφαρμογή της σε περιοχές φτωχές σε δεδομένα, καθώς απαιτεί ταυτόχρονες παρατηρήσεις τεσσάρων μετεωρολογικών μεταβλητών (θερμοκρασία, διάρκεια ηλιοφάνειας, σχετική υγρασία, ταχύτητα ανέμου). Για τον λόγο αυτό, προτιμώνται σαφώς φειδωλά μοντέλα με ελάχιστες απαιτήσεις σε δεδομένα εισόδου. Συνήθως, αυτά έχουν αναπτυχθεί και ελεγχθεί σε συνγκεκριμένες υδροκλιματικές συνθήκες, ωστόσο όταν εφαρμόζονται σε διαφορετικά καθεστώτα παρέχουν πολύ λιγότερο αξιόπιστες (και σε κάποιες περιπτώσεις παραπλανητικές) εκτιμήσεις. Κατά συνέπεια, είναι απαραίτητη η ανάπτυξη γενικευμένων μεθόδων που παραμένουν φειδωλές, σε όρους δεδομένων εισόδου και παραμετροποίησης, αλλά επιτέπουν ακόμη κάποιου είδους προσαρμογή των παραμέτρων τυς στις τοπικές συνθήκες, μέσω βαθμονόμησης. Στη μελέτη αυτή παρουσιάζουμε με πρόσφατη παραμευρική σχέση που βασίζεται σε μια απλοποιημένη διατύπωση της αυθεντικής έκφρασης των Penman-Monteith, η οποία απαιτεί μόνο δεδομένα μέσης ημερήσιας ή μηνιαίας θερμοκρασίας. Η μέθοδος αξιολογείται με χρήση μετεωρολογικών δεδομένων από διαφορετικές περιοχές του κόσμου, τόσο στη μηνιαία όσο και στην ημερήσια κλίμακα. Τα αποτελέσματα αυτή της εκτνούς ανάλυσης είναι πολύ ενθαρρυντικά, όπως προκύπτει από την εξαιρετικά υψηλή επίδοση της προτεινόμενης προσέγγισης στην επαλύθευση, για το σύνολο των δειγμάτων που εξετάζονται. Γενικά, το παραμετρικό μοντέλο υπερέχει όλων των καταξιωμένων μεθόδων της καθημερινής πρακτικής, εξασφαλίζοντας τη βέλτιστη προσέγγιση της δυνητικής εξατμοδιαπνοής.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/1512/1/documents/2014_IRLA_Parametric.pdf (740 KB)

    Βλέπε επίσης: http://dx.doi.org/10.13140/RG.2.2.14004.24966

  1. N. Bountas, N. Boboti, E. Feloni, L. Zeikos, Y. Markonis, A. Tegos, N. Mamassis, and D. Koutsoyiannis, Temperature variability over Greece: Links between space and time, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.17739.80164, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.

    [Μεταβλητότητα θερμοκρασίας στην Ελλάδα: Σχέσεις μεταξύ χώρου και χρόνου]

    Η θερμοκρασία συνδέεται στενά με τον υδρολογικό κύκλο με πολλούς τρόπους και κυρίως με την εξατμισοδιαπνοή . Ο στόχος μας εδώ είναι να εξετάσουμε την πιθανή επίδραση των χωρικών χαρακτηριστικών στη μεταβλητότητα της θερμοκρασία στο χρόνο όσον αφορά στη μηνιαία απόλυτη μέγιστη / ελάχιστη και στη μέση μηνιαία σε όλη την Ελλάδα . Για να επιτευχθεί αυτό, αναλύονται τα δεδομένα θερμοκρασίας των σταθμών της Ελληνικής Εθνικής Μετεωρολογικής Υπηρεσίας (ΕΜΥ) από το 1950. Η ανάλυση περιελάμβανε δύο βήματα: τον προσδιορισμό των περιοχών με παρόμοιες κλιματολογικές ιδιότητες και τη διερεύνηση των πιθανών συσχετίσεων της θερμοκρασίας στο χρόνο. Έτσι, οι χρονοσειρές κατηγοριοποιούνται σε τρεις ομάδες ανάλογα με τη θέση τους (ηπειρωτικοί, παράκτιοι και νησιωτικοί) και τέσσερις ομάδας σχετικά με την απόσταση του σταθμού από μια πόλη (στο κέντρο της πόλης, κοντά στο άκρο της πόλης, μακριά από το άκρο της πόλης) ή σε αεροδρόμιο. Καθεμία από τις χρονοσειρές στη συνέχεια εξετάζεται για (α) την επίδραση της αστικής θερμικής νησίδας, καθώς οι ελληνικές πόλεις επεκτάθηκαν στο χρόνο, (β) την επίδραση της γενικής ατμοσφαιρικής κυκλοφορίας (NAO), (γ) τη σχέση τους με τα δεδομένα παγκόσμιας θερμοκρασίας και (δ) τη μεταβολή της εξατμοδιαπνοής που παρατηρήθηκε στην περιοχή.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/1391/1/documents/Kos_Temperature_poster_.pdf (2010 KB)

    Βλέπε επίσης: http://dx.doi.org/10.13140/RG.2.2.17739.80164

  1. A. Efstratiadis, A. Koukouvinos, P. Dimitriadis, A. Tegos, N. Mamassis, and D. Koutsoyiannis, A stochastic simulation framework for flood engineering, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.16848.51201, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.

    [Πλαίσιο στοχαστικής προσομοίωσης για την τεχνολογία πλημμυρών]

    Η τεχνολογία πλημμυρών αντιμετωπίζεται συνήθως ως μια σειριακή εφαρμογή εξισώσεων και μοντέλων, με συγκεκριμένες παραδοχές και τιμές παραμέτρων, παράγοντας έτσι πλήρως προσδιοριστικά αποτελέσματα. Στη διαδικασία αυτή, η μοναδική πιθανοτική έννοια είναι η περίοδος επαναφοράς της βροχόπτωσης, η οποία ορίζεται εκ των προτέρων, και αντιπροσωπεύει την αποδεκτή διακινδύνευση όλων των μεγεθών σχεδιασμού ενδιαφέροντος (παροχές αιχμής, πλημμυρικά υδρογραφήματα, βάθη και ταχύτητες ροής, κατακλυόμενες εκτάσεις, κτλ.). Ωστόσο, μια πιο συνεπής προσέγγιση θα απαιτούσε την εκτίμηση της διακινδύνευσης με συνδυασμό των αβεβαιοτήτων όλων των επιμέρους μεταβλητών. Η επιλογή αυτή παρέχεται από τη στοχαστική προσομοίωση, που αποτελεί την πλέον αποτελεσματική και ισχυρή τεχνική ανάλυσης συστημάτων υψηλής πολυπλοκότητας και αβεβαιότητας. Αυτό προϋποθέτει την αναγνώριση των συνιστωσών του μοντέλου που αντιπροσωπεύουν χρονικά μεταβαλλόμενες διεργασίες και αυτών που αντιπροσωπεύουν άγνωστες, και συνεπώς αβέβαιες, παραμέτρους. Στο προτεινόμενο πλαίσιο, και οι δύο πρέπει να αντιμετωπίζονται ως τυχαίες μεταβλητές. Προβλέπονται τα εξής υπολογιστικά βήματα: (α) γέννηση συνθετικών χρονοσειρών επιφανειακή βροχόπτωσης, μέσω πολυμεταβλητών στοχαστικών μοντέλων επιμερισμού, (β) γέννηση τυχαίων συνθηκών αρχικής εδαφικής υγρασίας, (γ) εφαρμογή μοντέλων υδρολογικής και υδραυλικής προσομοίωσης με τυχαίες τιμές παραμέτρων, που λαμβάνονται από κατάλληλες κατανομές, (δ) στατιστική ανάλυση των αποτελεσμάτων των μοντέλων και προσδιορισμός των εμπειρικών τους κατανομών, και (ε) επιλογή της τιμής σχεδιασμού, που αντιστοιχεί στην αποδεκτή διακινδύνευση. Η προσέγγιση αυτή επιτρέπει την εκτίμηση της ολικής πιθανοτικής κατανομής των μεταβλητών εξόδου αντί μίας μοναδικής τιμής, όπως προκύπτει από την προσδιοριστική διαδικασία. Στο πλαίσιο αυτό, η στοχαστική προσομοίωση παρέχει ακόμη τη δυνατότητα εισαγωγής των χαμένης κουλτούρας της αναγνώρισης της αβεβαιότητας στην τεχνολογία πλημμυρών.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/1384/1/documents/KosFloodStochSim.pdf (1860 KB)

    Βλέπε επίσης: http://dx.doi.org/10.13140/RG.2.2.16848.51201

  1. V. Pagana, A. Tegos, P. Dimitriadis, A. Koukouvinos, P. Panagopoulos, and N. Mamassis, Alternative methods in floodplain hydraulic simulation - Experiences and perspectives, European Geosciences Union General Assembly 2013, Geophysical Research Abstracts, Vol. 15, Vienna, EGU2013-10283-2, European Geosciences Union, 2013.

    [Εναλλακτικές μέθοδοι υδραυλικής προσομοίωσης πλημμυρικών πεδίων - Εμπειρίες και προοπτικές]

    Πλήρες κείμενο:

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. #Μίχας, Σ. Ν., Κ. Ι. Νικολάου, Σ. Λ. Λαζαρίδου, και Μ. Ν. Πικούνης, Σύγκριση μαθηματικών ομοιωμάτων διόδευσης πλημμυρικού κύματος από υποθετική θραύσης φράγματος Αγιόκαμπου, Πρακτικά 2ου Πανελλήνιου Συνεδρίου Φραγμάτων και Ταμιευτήρων, Αθήνα, Αίγλη Ζαππείου, Ελληνική Επιτροπή Μεγάλων Φραγμάτων, 2013.

  1. A. Oikonomou, P. Dimitriadis, A. Koukouvinos, A. Tegos, V. Pagana, P. Panagopoulos, N. Mamassis, and D. Koutsoyiannis, Floodplain mapping via 1D and quasi-2D numerical models in the valley of Thessaly, Greece, European Geosciences Union General Assembly 2013, Geophysical Research Abstracts, Vol. 15, Vienna, EGU2013-10366, doi:10.13140/RG.2.2.25165.03040, European Geosciences Union, 2013.

    [Απεικόνιση της πλημμυρικής κατάκλυσης μέσω μονοδιάστατων και ψευδο-διδιάστατων αριθμητικών μοντέλων στην πεδιάδα της Θεσσαλίας, Ελλάδα]

    Πλήρες κείμενο:

    Βλέπε επίσης: http://dx.doi.org/10.13140/RG.2.2.25165.03040

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. #Μίχας, Σ. Ν., Κ. Ι. Νικολάου, Σ. Λ. Λαζαρίδου, και Μ. Ν. Πικούνης, Σύγκριση μαθηματικών ομοιωμάτων διόδευσης πλημμυρικού κύματος από υποθετική θραύσης φράγματος Αγιόκαμπου, Πρακτικά 2ου Πανελλήνιου Συνεδρίου Φραγμάτων και Ταμιευτήρων, Αθήνα, Αίγλη Ζαππείου, Ελληνική Επιτροπή Μεγάλων Φραγμάτων, 2013.

  1. A. Varveris, P. Panagopoulos, K. Triantafillou, A. Tegos, A. Efstratiadis, N. Mamassis, and D. Koutsoyiannis, Assessment of environmental flows of Acheloos Delta, European Geosciences Union General Assembly 2010, Geophysical Research Abstracts, Vol. 12, Vienna, 12046, doi:10.13140/RG.2.2.14849.66404, European Geosciences Union, 2010.

    [Εκτίμηση περιβαλλοντικών παροχών στο Δέλτα του Αχελώου]

    Ο Αχελώος, ο ποταμός με τη μεγαλύτερη παροχή μεταξύ των ποταμών της Ελλάδας, φιλοξενεί τρία υδροηλεκτρικά φράγματα, ενώ δύο ακόμη φράγματα είναι υπό κατασκευή. Επιπρόσθετα, υπάρχουν σχέδια για μερική εκτροπή του ποταμού προς ένα γειτονικό υδατικό διαμέρισμα, για άρδευση και υδροηλεκτρική ανάπτυξη. Το Δέλτα του Αχελώου θεωρείται ως ένας από τους πιο σημαντικούς Μεσογειακούς υγροτόπους, λόγω της οικολογικής του σημασίας, περιλαμβανομένης της ιχθυοπανίδας. Στη μελέτη αυτή έχουμε ως στόχο να επαναπροσδιορίσουμε την οικολογική ροή και να προτείνουμε μια πολιτική διαχείρισης των εκροών, από τον πλέον κατάντη ταμιευτήρα (Στράτος), ώστε να προστατευτεί το οικοσύστημα στο Δέλτα του Αχελώου. Εκπονείται μια υδρολογική ανάλυση για την ανακατασκευή των φυσικοποιημένων παροχών κατά μήκος του ποταμού, σε ημερήσια βάση, η οποία συνοδεύεται από μια λεπτομερή αποτίμηση εναλλακτικών μεθοδολογιών για την εκτίμηση της οικολογικής ροής. Με βάση τα αποτελέσματα των αναλύσεων, καθορίζεται η αντίστοιχη πολιτική διαχείρισης των υδατικών πόρων, λαμβάνοντας υπόψη τα χαρακτηριστικά του υδροηλεκτρικού σταθμού και των σχετικών υδραυλικών έργων.

    Πλήρες κείμενο:

    Βλέπε επίσης: http://dx.doi.org/10.13140/RG.2.2.14849.66404

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. #Fourniotis, N. T., M. Stavropoulou-Gatsi and I. K. Kalavrouziotis, Acheloos River: The timeless, and since ancient period, contribution to the development and environmental upgrading of Western Greece, Proceedings 3rd IWA Specialized Conference on Water & Wastewater Technologies in Ancient Civilizations, Istanbul-Turkey, 420-428, 2012.
    2. Fourniotis, N. T., A proposal for impact evaluation of the diversion of the Acheloos River on the Acheloos estuary in Western Greece, International Journal of Engineering Science and Technology, 4(4), 1792-1802, 2012.

  1. A. Tegos, N. Mamassis, and D. Koutsoyiannis, Estimation of potential evapotranspiration with minimal data dependence, European Geosciences Union General Assembly 2009, Geophysical Research Abstracts, Vol. 11, Vienna, 1937, doi:10.13140/RG.2.2.27222.86089, European Geosciences Union, 2009.

    [Εκτίμηση της δυνητικής εξατμοδιαπνοής με ελάχιστη εξάρτηση από δεδομένα]

    Πλήρες κείμενο:

    Βλέπε επίσης: http://dx.doi.org/10.13140/RG.2.2.27222.86089

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. Tabari, H., P. H. Talaee, P. Willems, and C. Martinez, Validation and calibration of solar radiation equations for estimating daily reference evapotranspiration at cool semi-arid and arid locations, Hydrological Sciences Journal, 2014.

  1. A. Efstratiadis, A. Tegos, I. Nalbantis, E. Rozos, A. Koukouvinos, N. Mamassis, S.M. Papalexiou, and D. Koutsoyiannis, Hydrogeios, an integrated model for simulating complex hydrographic networks - A case study to West Thessaly region, 7th Plinius Conference on Mediterranean Storms, Rethymnon, Crete, doi:10.13140/RG.2.2.25781.06881, European Geosciences Union, 2005.

    [Υδρόγειος, ολοκληρωμένο μοντέλο για την προσομοίωση σύνθετων υδρογραφικών δικτύων - Εφαρμογή στην περιοχή της Δυτικής Θεσσαλίας]

    Αναπτύχθηκε ένα ολοκληρωμένο σχήμα, που αποτελείται από ένα συνδυαστικό υδρολογικό μοντέλο και ένα μοντέλο διαχείρισης συστημικού προσανατολισμού, βασισμένο σε ημικατανεμημένη προσέγγιση. Τα γεωγραφικά δεδομένα εισόδου περιλαμβάνουν το υδρογραφικό δίκτυο, τις υπολεκάνες ανάντη κάθε κόμβου ποταμού και τη διακριτοποίηση του υδροφορέα με τη μορφή κυττάρων αυθαίρετης γεωμετρίας. Επιπλέον επίπεδα κατανεμημένης γεωγραφικής πληροφορίας, όπως η γεωλογία, η κάλυψη γης και η κλίση του εδάφους, χρησιμοποιούνται για τον ορισμό των μονάδων υδρολογικής απόκρισης. Διάφορες συνιστώσες συνδυάζονται για την αναπαράσταση των κύριων διεργασιών της λεκάνης απορροής, όπως μοντέλα εδαφικής υγρασίας, υπόγειων νερών, διόδευσης πλημμυρών και διαχείρισης νερού. Οι έξοδοι του μοντέλου περιλαμβάνουν παροχές ποταμών, εκροές πηγών, στάθμες υπόγειου νερού και απολήψεις νερού. Το μοντέλο μπορεί να υλοποιηθεί σε ημερήσια και μηνιαία κλίμακα. Έχει γίνει εφαρμογή στην περιοχή της Δυτικής Θεσσαλίας. Για τη βαθμονόμηση του μοντέλου, χρησιμοποιήθηκαν, ταυτόχρονα, οι παροχές επτά υδρομετρικών σταθμών και οι στάθμες νερού έξι γεωτρήσεων. Η εφαρμογή του μοντέλου στη συγκεκριμένη περιοχή κατέδειξε ικανοποιητική συμφωνία μεταξύ των παρατηρημένων και προσομοιωμένων δεδομένων.

    Πλήρες κείμενο:

    Βλέπε επίσης: http://dx.doi.org/10.13140/RG.2.2.25781.06881

Presentations and publications in workshops

  1. Α. Τέγος, Α. Ευστρατιάδης, Α. Βαρβέρης, Ν. Μαμάσης, Α. Κουκουβίνος, και Δ. Κουτσογιάννης, Εκτίμηση και υλοποίηση περιορισμών οικολογικής παροχής σε μεγάλα Υ/Η έργα: Η περίπτωση του Αχελώου, Η οικολογική παροχή των ποταμών και η σημασία της ορθής εκτίμησής της, Κτήριο "Κωστής Παλαμάς" Πανεπιστημίου Αθηνών, 2014.

    Μετά από συνοπτική επισκόπηση των διεθνών εξελίξεων στην εκτίμηση των περιβαλλοντικών ροών, περιγράφεται η διαδικασία χειρισμού του προβλήματος στην περίπτωση των υδροηλεκτρικών φραγμάτων του Αχελώου. Συγκεκριμένα, παρουσιάζονται τα αποτελέσματα από την εφαρμογή διαφορετικών υδρολογικών και υδραυλικών προσεγγίσεων, και προτείνεται μια τεχνική λύση για την υλοποίηση της προτεινόμενης παροχής κατάντη του φράγματος Στράτου.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/1455/1/documents/2014_envflows_pres.pdf (1344 KB)

  1. Δ. Κουτσογιάννης, Ν. Μαμάσης, και Α. Τέγος, Υδρομετεωρολογικά ζητήματα στην αρχαία ελληνική επιστήμη και φιλοσοφία, Η Οικο-νομία του Νερού, επιμέλεια Η. Ευθυμιόπουλος και Μ. Μοδινός, Ύδρα, doi:10.13140/RG.2.2.25574.63040, Ελληνικά Γράμματα, 2009.

    Σε όλους τους αρχαίους πολιτισμούς παρουσιάζονται τεχνολογικές εφαρμογές που στόχο έχουν την εκμετάλλευση των φυσικών πόρων. Στον αρχαίο ελληνικό πολιτισμό, όμως, εμφανίσθηκε το μοναδικό φαινόμενο, αυτές οι τεχνολογικές ανάγκες να δώσουν το έναυσμα για την εξήγηση φυσικών φαινομένων και συμπεριφορών, οδηγώντας έτσι στη θεμελίωση της επιστήμης και της φιλοσοφίας. Ξεχωριστό ρόλο κατείχε η μελέτη των υδρομετεωρολογικών φαινομένων. Αυτή ξεκίνησε με τους Ίωνες φιλοσόφους τον έβδομο π.Χ. αιώνα, συνέχισε στην κλασική Αθήνα τον πέμπτο και τέταρτο π.Χ. αιώνα, και προχώρησε επεκτεινόμενη σε ολόκληρο τον ελληνικό κόσμο, μέχρι το τέλος των ελληνιστικών χρόνων, έως την κατάκτηση της Ελλάδας από τους Ρωμαίους. Πολλές από τις θεωρίες των αρχαίων ελλήνων θεωρούνται λανθασμένες σύμφωνα με τη σύγχρονη θεώρηση. Παρ’ όλ’ αυτά, πολλά στοιχεία στις ερμηνείες που έδωσαν οι έλληνες φιλόσοφοι για τα υδρομετεωρολογικά φαινόμενα, όπως η εξάτμιση και η υγροποίηση του ατμού, η δημιουργία των νεφών, το χαλάζι, η χιονόπτωση και η βροχόπτωση, και o υδρολογικός κύκλος στο σύνολό του, εντυπωσιάζουν ακόμα και σήμερα.

    Σχετικές εργασίες:

    • [15] Αγγλικό κείμενο (δημοσίευση στο Water Science and Technology: Water Supply)

    Πλήρες κείμενο:

    Βλέπε επίσης: http://dx.doi.org/10.13140/RG.2.2.25574.63040

Various publications

  1. Α. Τέγος, Αχελώος κι εκείνα που δεν λέγονται, 2009.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/937/1/documents/acheloos_tegos_2.pdf (271 KB)

  1. Α. Τέγος, Αχελώος: Το νερό ανήκει μόνο στα ψάρια;, Νέος Αγώνας Καρδίτσας, Μάρτιος 2009.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/935/1/documents/axelwos_tegos1.pdf (200 KB)

Academic works

  1. A. Tegos, State-of-the-art approach for potential evapotranspiration assessment, PhD thesis, 123 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, Νοέμβριος 2019.

    [Προσέγγιση υψηλής τεχνολογίας για την εκτίμηση της δυνητικής εξατμοδιαπνοής]

    Ο σκοπός της Διδακτορικής Διατριβής είναι η θεμελίωση μιας νέας σχέσης θερμοκρασίας για την εκτίμηση της δυνητικής εξατμοδιαπνοής, καθώς τα απλοποιημένα μοντέλα εκτίμησης είναι εξαιρετικά χρήσιμα σε καθεστώς έλλειψης πρωτογενών δεδομένων. Σε αυτό το πλαίσιο, παρουσιάζεται το Παραμετρικό Mοντέλο που αποτελεί απλοποίηση του καταξιωμένου μοντέλου Penman-Monteith και το οποίο απαιτεί τη μέση ημερήσια θερμοκρασία ή τη μέση μηνιαία θερμοκρασία ως δεδομένο εισόδου. Το μοντέλο εφαρμόστηκε σε παγκόσμιο και σε τοπικό πεδίο και τα αποτελέσματα είναι πολύ ενθαρρυντικά, καθώς συνοδεύεται από μεγάλη αποδοτικότητα σε όλα τα πεδία εφαρμογής του. Γενικά, το παραμετρικό μοντέλο υπερισχύει όλων των εδραιωμένων μοντέλων ακτινοβολίας και διασφαλίζει τη βέλτιστη εκτίμηση της δυνητικής εξατμοδιαπνοής. Ένα δεύτερο επίπεδο μελέτης της παρούσας διατριβής σχετίζεται με το ποιο μοντέλο γεωστατιστικής είναι το βέλτιστο για τη μετατροπή της σημειακής πληροφορίας σε χωρική. Πραγματοποιήθηκε συστηματική μελέτη διαφορετικών τεχνικών γεωγραφικής ολοκλήρωσης και το αποτέλεσμα είναι ότι η μέθοδος Αντιστρόφου Σταθμισμένης Απόστασης είναι η βέλτιστη παρόλο που είναι η απλούστερη από όσες εφαρμόστηκαν. Άλλο κομμάτι της διατριβής ήταν η ανάπτυξη ενός εργαλείου σε περιβάλλον R για την εκτίμηση των τάσεων σε χρονοσειρές. Η μεθοδολογία εκτιμά τις τάσεις με ένα τροποποιημένο στατιστικό έλεγχο Mann-Kendall λαμβάνοντας υπόψη τη φυσική συμπεριφορά της δυναμικής Hurst-Kolmogorov. Τέλος, μέσω υδρολογικών, γεωπονικών και κλιματολογικών εφαρμογών αξιολογείται η χρησιμότητα του Παραμετρικού μοντέλου σε διαφορετικά επιστημονικά πεδία.

    Πλήρες κείμενο:

  1. Α. Τέγος, Απλοποίηση της εκτίμησης της εξατμοδιαπνοής στην Ελλάδα, Μεταπτυχιακή εργασία, Τομέας Υδατικών Πόρων και Περιβάλλοντος – Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, 2007.

    Στην παρούσα εργασία αναπτύχθηκε ένα νέο μοντέλο για την εκτίμηση της δυνητικής εξατμοδιαπνοής. Το νέο μοντέλο βασίζεται στη διατύπωση μιας παραμετρικής εξίσωσης, που προσαρμόζεται σε ένα δείγμα υπολογισμένης δυνητικής εξατμοδιαπνοής κατά Penman- Monteith. Η προσαρμογή γίνεται με την μέθοδο των ελαχίστων τετραγώνων και το νέο μοντέλο απαιτεί για δεδομένα εισόδου τη μέση θερμοκρασία και την εξωγήινη ακτινοβολία, εκ των οποίων μόνο η θερμοκρασία χρειάζεται να μετρηθεί. Το μοντέλο εφαρμόστηκε σε 37 μετεωρολογικούς σταθμούς της Ελλάδας για τις περιόδους 1968-83 και 1984-1989 σε μηνιαίο χρονικό βήμα. Η πρώτη περίοδος είναι η περίοδος βαθμονόμησης και η δεύτερη η περίοδος επαλήθευσης του μοντέλου, όπου ελέγχεται η προγνωστική ικανότητα του. Μέσω βελτιστοποίησης μειώθηκαν οι παράμετροι του αρχικού παραμετρικού μοντέλου με σκοπό την απλοποίηση της μαθηματικής του έκφρασης. Τα αποτελέσματα κρίνονται ιδιαίτερα ικανοποιητικά. Τέλος, πραγματοποιήθηκε γεωγραφική παρεμβολή των παραμέτρων με τη χρήση Συστημάτων Γεωγραφικής Πληροφορίας, για την εξαγωγή τους σε όλο τον Ελλαδικό χώρο.

    Πλήρες κείμενο:

    Συμπληρωματικό υλικό:

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. Papadavid, G. C., A. Agapiou, S. Michaelides and D. G.Hadjimitsis, The integration of remote sensing and meteorological data for monitoring irrigation demand in Cyprus, Nat. Hazards Earth Syst. Sci., 9, 2009-2014, 2009.
    2. Hadjimitsis, D. G., and G. Papadavid, Integrated approach of remote sensing and micro-sensor technology for estimating evapotranspiration in Cyprus, Agric Eng Int: CIGR Journal 12 (3-4), 1-11, 2010.
    3. Papadavid, G., D. Hadjimitsis, S. Michaelides and A. Nisantzi, Crop evapotranspiration estimation using remote sensing and the existing network of meteorological stations in Cyprus, Adv. Geosci., 30, 39-44, doi: 10.5194/adgeo-30-39-2011, 2011.
    4. #Hadjimitsis, D. G. and G. Papadavid, Remote Sensing for Determining Evapotranspiration and Irrigation Demand for Annual Crops, Remote Sensing of Environment - Integrated Approaches, 10.5772/39305, 2013.

  1. Α. Τέγος, Συνδυασμένη προσομοίωση υδρολογικών-υδρογεωλογικών διεργασιών και λειτουργίας υδροσυστήματος Δυτικής Θεσσαλίας, Διπλωματική εργασία, 132 pages, Τομέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων – Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, Σεπτέμβριος 2005.

    Σκοπός της εργασίας είναι η ολοκληρωμένη προσομοίωση του υδρολογικού κύκλου στην περιοχή της Δυτικής Θεσσαλίας, με χρήση του μοντέλου ΥΔΡΟΓΕΙΟΣ. Αρχικά, έγινε η συλλογή των πρωτογενών δεδομένων που αφορούν στο υδροσύστημα (δεδομένα υδρομετρικών και βροχομετρικών σταθμών, δεδομένα υπόγειας υδρογεωλογίας, δεδομένα καλλιεργειών). Στη συνέχεια, προχωρήσαμε στη σχηματοποίηση του φυσικού και τεχνητού συστήματος. Για την προσαρμογή του μοντέλου, δηλαδή την εκτίμηση των παραμέτρων του, ορίστηκε μια αντικειμενική συνάρτηση που περιλαμβάνει μηνίαια δείγματα από μετρήσεις πεδίου για επιφανειακά και υπόγεια νερά. Η συνάρτηση που διαμορφώθηκε περιλαμβάνει 16 συνιστώσες. Μέσω βελτιστοποίησης, επιχειρήθηκε η εύρεση του μικρότερου συνολικού σφάλματος μεταξύ των παρατηρημένων και προσομοιωμένων χρονοσειρών. Η μελέτη αφορά στην περίοδο 1972-73 έως 1992-1993. Η πρώτη δεκαετία αναφέρεται στην περίοδο βαθμονόμησης, ενώ η δεύτερη είναι η περίοδος επαλήθευσης, στην οποία ελέγχθηκε η προγνωστική του ικανότητα του μοντέλου. Λαμβάνοντας υπόψη τη συνθετότητα του προβλήματος, η προσαρμογή του μοντέλου ήταν ικανοποιητική, ενώ προέκυψαν χρήσιμα συμπεράσματα που μπορούν να αξιοποιηθούν για διαχειριστικούς σκοπούς.

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/679/1/documents/2005tegos.pdf (8166 KB)

    Συμπληρωματικό υλικό:

Research reports

  1. Α. Κουκουβίνος, Α. Ευστρατιάδης, Δ. Νικολόπουλος, Χ. Τύραλης, Α. Τέγος, Ν. Μαμάσης, και Δ. Κουτσογιάννης, Πιλοτική εφαρμογή στο σύστημα Αχελώου-Θεσσαλίας, Συνδυασμένα συστήματα ανανεώσιμων πηγών για αειφoρική ενεργειακή ανάπτυξη (CRESSENDO), 98 pages, Τομέας Υδατικών Πόρων και Περιβάλλοντος – Εθνικό Μετσόβιο Πολυτεχνείο, Οκτώβριος 2015.

    Αντικείμενο της έκθεσης είναι ο έλεγχος των μεθοδολογιών και τα υπολογιστικών εργαλείων που αναπτύχθηκαν στο πλαίσιο του έργου, στο σύστημα των διασυνδεδεμένων λεκανών απορροής του Αχελώου και Πηνειού. Η περιοχή μελέτης αντιμετωπίζεται ως ένα υποθετικά κλειστό και ενεργειακά αυτόνομο σύστημα, προκειμένου να διερευνήσουμε τις προοπτικές της αειφόρου ανάπτυξης σε περιφερειακή κλίμακα, με αποκλειστική χρήση ΑΠΕ.

    Σχετικό έργο: Συνδυασμένα συστήματα ανανεώσιμων πηγών για αειφoρική ενεργειακή ανάπτυξη (CRESSENDO)

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/1613/1/documents/Report_EE4a.pdf (8010 KB)

  1. Ν. Μαμάσης, Ρ. Μαυροδήμου, Α. Ευστρατιάδης, Μ. Χαϊνταρλής, Α. Τέγος, Α. Κουκουβίνος, Π. Λαζαρίδου, Μ. Μαγαλιού, και Δ. Κουτσογιάννης, Διερεύνηση εναλλακτικών τρόπων οργάνωσης και λειτουργίας Φορέα Διαχείρισης έργων Σμοκόβου, Διερεύνηση σεναρίων διαχείρισης του ταμιευτήρα Σμοκόβου, Τεύχος 2, 73 pages, Τομέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων – Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, Μάρτιος 2007.

    Εξετάζεται το πλαίσιο ίδρυσης και λειτουργίας ενός φορέα διαχείρισης του ταμιευτήρα Σμοκόβου και των συναφών έργων. Ορίζεται η ευρύτερη περιοχή μελέτης, καθώς και τα όρια ευθύνης του φορέα σε αυτήν, και γίνεται μια σύντομη περιγραφή των χαρακτηριστικών του φυσικού και τεχνητού συστήματος. Εξετάζεται το υφιστάμενο νομικό και θεσμικό πλαίσιο, βάσει των οποίων προτείνονται διάφορα εναλλακτικά σχήματα. Προδιαγράφονται η νομική και διοικητική μορφή, οι αρμοδιότητες και το οργανόγραμμα του φορέα. Επιχειρείται μια αρχική χρηματοοικονομική ανάλυση, με σκοπό την τεκμηρίωση της βιωσιμότητάς του. Τέλος, προτείνονται οι επόμενες δράσεις για την οργάνωση των διαβουλεύσεων με τους εμπλεκόμενους φορείς.

    Σχετικό έργο: Διερεύνηση σεναρίων διαχείρισης του ταμιευτήρα Σμοκόβου

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/720/1/documents/Smo_teyx2ekd3.pdf (2847 KB)

    Συμπληρωματικό υλικό:

  1. Α. Ευστρατιάδης, Α. Τέγος, Γ. Καραβοκυρός, Ι. Κυριαζοπούλου, και Ι. Βαζίμας, Σχέδιο διαχείρισης των υδατικών πόρων περιοχής Καρδίτσας, Ολοκληρωμένη Διαχείριση Υδατικών Συστημάτων σε Σύζευξη με Εξελιγμένο Υπολογιστικό Σύστημα (ΟΔΥΣΣΕΥΣ), Τεύχος 16, 132 pages, ΝΑΜΑ Σύμβουλοι Μηχανικοί και Μελετητές Α.Ε., Αθήνα, Δεκέμβριος 2006.

    Το παρόν τεύχος αναφέρεται στο Διαχειριστικό Σχέδιο της πιλοτικής περιοχής της Καρδίτσας, στην εκπόνηση του οποίου συνέβαλαν η ερευνητική ομάδα της ΝΑΜΑ Α.Ε., σε συνεργασία με τη ΔΕΥΑ Καρδίτσας και το Εθνικό Μετσόβιο Πολυτεχνείο. Το σχετικό παραδοτέο εντάσσεται στην Ενότητα Εργασίας 8, με τίτλο «Πιλοτικές Εφαρμογές». Σκοπός των Πιλοτικών Εφαρμογών είναι ο έλεγχος και αξιολόγηση του προϊόντος σε συστήματα υδατικών πόρων με διαφορετικά χαρακτηριστικά, τόσο ως προς την υδροκλιματικό καθεστώς και την κλίμακα των έργων, όσο και ως προς το θεσμικό και διοικητικό πλαίσιο της διαχείρισης τους. Μετά την ολοκλήρωση των πιλοτικών εφαρμογών, το προϊόν επανεξετάστηκε σε όλα του τα επίπεδα (θεωρητικό υπόβαθρο, σχεδιασμός και υλοποίηση λογισμικού), προτού λάβει την οριστική του μορφή. Το τεύχος περιλαμβάνει τις ακόλουθες ενότητες, οι οποίες είναι σε συμφωνία με το πλαίσιο που προδιαγράφεται στο Τεχνικό Παράρτημα της Σύμβασης: (α) περιγραφή της περιοχής μελέτης, (β) περιγραφή του υδροσυστήματος, (γ) δεδομένα και επεξεργασίες, (δ) εκτίμηση υδατικών αναγκών, (ε) εκτίμηση υδρολογικών εισροών, (στ) διαχείριση υδροσυστήματος, (ζ) προσομοίωση ποιοτικών παραμέτρων, (η) χρηματοοικονομική ανάλυση, και (θ) συμπεράσματα και προτάσεις.

    Σχετικό έργο: Ολοκληρωμένη Διαχείριση Υδατικών Συστημάτων σε Σύζευξη με Εξελιγμένο Υπολογιστικό Σύστημα (ΟΔΥΣΣΕΥΣ)

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/769/1/documents/report_16.pdf (5557 KB)

    Συμπληρωματικό υλικό:

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. #Strosser P., J. Roussard, B. Grandmougin, M. Kossida, I. Kyriazopoulou, J. Berbel, S. Kolberg, J. A. Rodríguez-Díaz, P. Montesinos, J. Joyce, T. Dworak, M. Berglund, and C. Laaser, EU Water saving potential (Part 2 – Case Studies), Berlin, Allemagne, Ecologic – Institute for International and European Environmental Policy, 101 pp., 2007.

  1. Α. Ευστρατιάδης, Α. Κουκουβίνος, Ε. Ρόζος, Α. Τέγος, και Ι. Ναλμπάντης, Θεωρητική τεκμηρίωση μοντέλου προσομοίωσης υδρολογικών-υδρογεωλογικών διεργασιών λεκάνης απορροής «Υδρόγειος», Ολοκληρωμένη Διαχείριση Υδατικών Συστημάτων σε Σύζευξη με Εξελιγμένο Υπολογιστικό Σύστημα (ΟΔΥΣΣΕΥΣ), Ανάδοχος: ΝΑΜΑ Σύμβουλοι Μηχανικοί και Μελετητές Α.Ε., Τεύχος 4a, 103 pages, Τομέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων – Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, Δεκέμβριος 2006.

    Αντικείμενο του τεύχους είναι η ανάπτυξη του υπολογιστικού συστήματος ΥΔΡΟΓΕΙΟΣ, που αναπαριστά τις υδρολογικές και υδρογεωλογικές διεργασίες καθώς και τις πρακτικές διαχείρισης των υδατικών πόρων μιας λεκάνης απορροής. Μετά μια συνοπτική παρουσίαση των γνωστότερων υδρολογικών μοντέλων και τη γενικότερη τοποθέτηση του προβλήματος, περιγράφεται το θεωρητικό υπόβαθρο της προσέγγισης, που περιλαμβάνει τη συνδυαστική λειτουργία τριών επιμέρους μοντέλων: (α) ενός εννοιολογικού μοντέλου συγκέντρωσης της εδαφικής υγρασίας, με διαφορετικές παραμέτρους για κάθε μονάδα υδρολογικής απόκρισης, που εκτιμά τον μετασχηματισμό της βροχόπτωσης σε εξατμοδιαπνοή, επιφανειακή απορροή και κατείσδυση, (β) ενός πολυκυτταρικού μοντέλου υπόγειων νερών, που εκτιμά τη χωρική διακύμανση της στάθμης του υδροφορέα, τη βασική ροή (απορροή πηγών) και τις υπόγειες διαφυγές, και (γ) ενός μοντέλου κατανομής των υδατικών πόρων, που για δεδομένες υδρολογικές εισροές στο υδρογραφικό δίκτυο, δεδομένα χαρακτηριστικά των τεχνικών έργων (υδραγωγεία, γεωτρήσεις) και δεδομένους στόχους και περιορισμούς εκτιμά τις απολήψεις και το υδατικό ισοζύγιο σε όλα τα σημεία ελέγχου του υδροσυστήματος, επιλέγοντας την οικονομικά βέλτιστη διαχείριση. Η χωρική ανάλυση προϋποθέτει μια ημικατανεμημένη σχηματοποίηση της λεκάνης και του υποκείμενού της υδροφορέα, και μια αδρομερή περιγραφή των τεχνικών έργων, που επιτυγχάνονται με τη χρήση συστημάτων γεωγραφικής πληροφορίας. Το χρονικό βήμα προσομοίωσης είναι μηναίο ή ημερήσιο. Στην τελευταία περίπτωση, παρέχεται η δυνατότητα ενσωμάτωσης ενός σχήματος διόδευσης, που βασίζεται στην καταξιωμένη μέθοδο Muskingum-Cunge. Ιδιαίτερη έμφαση δίνεται στην εκτίμηση των παραμέτρων του μοντέλου, με τη χρήση στατιστικών και εμπειρικών μέτρων καλής προσαρμογής και εξελικτικών αλγορίθμων για μονοκριτηριακή και πολυκριτηριακή βελτιστοποίηση. Τέλος, παρουσιάζεται η εφαρμογή του μοντέλου στην περιοχή της Δυτικής Θεσσαλίας.

    Σχετικό έργο: Ολοκληρωμένη Διαχείριση Υδατικών Συστημάτων σε Σύζευξη με Εξελιγμένο Υπολογιστικό Σύστημα (ΟΔΥΣΣΕΥΣ)

    Πλήρες κείμενο: http://www.itia.ntua.gr/el/getfile/755/1/documents/report_4a.pdf (3877 KB)

    Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

    1. #Πετροπούλου, Μ., Ε. Ζαγγάνα, Ν. Χαριζόπουλος, Μ. Μιχαλοπούλου, Α. Μυλωνάς, και Κ. Περδικάρης, Εκτίμηση του υδρολογικού ισοζυγίου της λεκάνης απορροής του Πηνειού ποταμού Ηλείας με χρήση του μοντέλου «Ζυγός», 14ο Πανελλήνιο Συνέδριο της Ελληνικής Υδροτεχνικής Ένωσης (ΕΥΕ), Βόλος, 2019.