Andreas Efstratiadis

Civil Engineer, MSc., Dr. Engineer
A.Efstratiadis@itia.ntua.gr
+30-2107722861

Participation in research projects

Participation as Principal Investigator

  1. Nonlinear methods in multicriteria water resource optimization problems

Participation as Researcher

  1. DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools
  2. EU COST Action ES0901: European procedures for flood frequency estimation (FloodFreq)
  3. Maintenance, upgrading and extension of the Decision Support System for the management of the Athens water resource system
  4. Development of Database and software applications in a web platform for the "National Databank for Hydrological and Meteorological Information"
  5. OpenMI Life
  6. Cost of raw water of the water supply of Athens
  7. Observations, Analysis and Modeling of Lightning Activity in Thunderstorms, for Use in Short Term Forecasting of Flash Floods
  8. Flood risk estimation and forecast using hydrological models and probabilistic methods
  9. Support on the compilation of the national programme for water resources management and preservation
  10. Investigation of management scenarios for the Smokovo reservoir
  11. Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS)
  12. Modernisation of the supervision and management of the water resource system of Athens
  13. Investigation of scenarios for the management and protection of the quality of the Plastiras Lake
  14. Evaluation of Management of the Water Resources of Sterea Hellas - Phase 3

Participation in engineering studies

  1. Σχέδιο Διαχείρισης Κινδύνων Πλημμύρας των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Ανατολικής Πελοποννήσου (GR03)
  2. Σχέδιο Διαχείρισης Κινδύνων Πλημμύρας των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Βόρειας Πελοποννήσου (GR02)
  3. Παροχή Συμβουλευτικών Υπηρεσιών για την Κατάρτιση του 2ου Σχεδίου Διαχείρισης Λεκάνης Απορροής Ποταμού της Κύπρου για την Εφαρμογή της Οδηγίας 2000/60/ΕΚ και για την Κατάρτιση του Σχεδίου Διαχείρισης Κινδύνων Πλημμύρας για την Εφαρμογή της Οδηγίας 2007/60
  4. Έργα Ορεινής Υδρονομίας Ρεμάτων Ορεινών Λεκανών Απορροής Αλμωπίας
  5. Σχέδιο Διαχείρισης Κινδύνων Πλημμύρας των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Δυτικής Πελοποννήσου (GR01)
  6. Σχέδιο Διαχείρισης Κινδύνων Πλημμύρας των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Κρήτης (GR13)
  7. Hydrological study of the ski center area of Parnassos
  8. Water supply works from Gadouras dam - Phase B
  9. Specific Technical Study for the Ecological Flow from the Dam of Stratos
  10. Μελέτες Διερεύνησης Προβλημάτων Άρδευσης και Δυνατότητας Κατασκευής Ταμιευτήρων Νομού Βοιωτίας
  11. Water resource management of the Integrated Tourist Development Area in Messenia
  12. Hydrological and hydraulic study for the flood protection of the new railway in the region of Sperhios river
  13. Engineering consultant for the project "Water supply of Heracleio and Agios Nicolaos from the Aposelemis dam"
  14. Preliminary Water Supply Study of the Thermoelectric Livadia Power Plant
  15. Complementary study of environmental impacts from the diversion of Acheloos to Thessaly

Published work

Publications in scientific journals

  1. E. Savvidou, A. Efstratiadis, A. D. Koussis, A. Koukouvinos, and D. Skarlatos, A curve number approach to formulate hydrological response units within distributed hydrological modelling, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-627, 2016, (in review).
  2. P. Dimitriadis, A. Tegos, A. Oikonomou, V. Pagana, A. Koukouvinos, N. Mamassis, D. Koutsoyiannis, and A. Efstratiadis, Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping, Journal of Hydrology, 534, 478–492, doi:10.1016/j.jhydrol.2016.01.020, 2016.
  3. I. Tsoukalas, P. Kossieris, A. Efstratiadis, and C. Makropoulos, Surrogate-enhanced evolutionary annealing simplex algorithm for effective and efficient optimization of water resources problems on a budget, Environmental Modelling and Software, 77, 122–142, doi:10.1016/j.envsoft.2015.12.008, 2016.
  4. A. Tegos, A. Efstratiadis, N. Malamos, N. Mamassis, and D. Koutsoyiannis, Evaluation of a parametric approach for estimating potential evapotranspiration across different climates, Agriculture and Agricultural Science Procedia, 4, 2–9, doi:10.1016/j.aaspro.2015.03.002, 2015.
  5. A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Hydrological modelling of temporally-varying catchments: Facets of change and the value of information, Hydrological Sciences Journal, 60 (7-8), 1438–1461, doi:10.1080/02626667.2014.982123, 2015.
  6. A. Efstratiadis, Y. Dialynas, S. Kozanis, and D. Koutsoyiannis, A multivariate stochastic model for the generation of synthetic time series at multiple time scales reproducing long-term persistence, Environmental Modelling and Software, 62, 139–152, doi:10.1016/j.envsoft.2014.08.017, 2014.
  7. A. Efstratiadis, A. D. Koussis, D. Koutsoyiannis, and N. Mamassis, Flood design recipes vs. reality: can predictions for ungauged basins be trusted?, Natural Hazards and Earth System Sciences, 14, 1417–1428, doi:10.5194/nhess-14-1417-2014, 2014.
  8. A. Efstratiadis, A. Tegos, A. Varveris, and D. Koutsoyiannis, Assessment of environmental flows under limited data availability – Case study of Acheloos River, Greece, Hydrological Sciences Journal, 59 (3-4), 731–750, doi:10.1080/02626667.2013.804625, 2014.
  9. M. Rianna, A. Efstratiadis, F. Russo, F. Napolitano, and D. Koutsoyiannis, A stochastic index method for calculating annual flow duration curves in intermittent rivers, Irrigation and Drainage, 62 (S2), 41–49, doi:10.1002/ird.1803, 2013.
  10. J. A. P. Pollacco, B. P. Mohanty, and A. Efstratiadis, Weighted objective function selector algorithm for parameter estimation of SVAT models with remote sensing data, Water Resources Research, 49 (10), 6959–6978, doi:10.1002/wrcr.20554, 2013.
  11. N. Mamassis, A. Efstratiadis, and E. Apostolidou, Topography-adjusted solar radiation indices and their importance in hydrology, Hydrological Sciences Journal, 57 (4), 756–775, doi:10.1080/02626667.2012.670703, 2012.
  12. A. Efstratiadis, and K. Hadjibiros, Can an environment-friendly management policy improve the overall performance of an artificial lake? Analysis of a multipurpose dam in Greece, Environmental Science and Policy, 14 (8), 1151–1162, doi:10.1016/j.envsci.2011.06.001, 2011.
  13. D. Koutsoyiannis, A. Christofides, A. Efstratiadis, G. G. Anagnostopoulos, and N. Mamassis, Scientific dialogue on climate: is it giving black eyes or opening closed eyes? Reply to “A black eye for the Hydrological Sciences Journal” by D. Huard, Hydrological Sciences Journal, 56 (7), 1334–1339, 2011.
  14. I. Nalbantis, A. Efstratiadis, E. Rozos, M. Kopsiafti, and D. Koutsoyiannis, Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems, Hydrology and Earth System Sciences, 15, 743–758, doi:10.5194/hess-15-743-2011, 2011.
  15. G. G. Anagnostopoulos, D. Koutsoyiannis, A. Christofides, A. Efstratiadis, and N. Mamassis, A comparison of local and aggregated climate model outputs with observed data, Hydrological Sciences Journal, 55 (7), 1094–1110, doi:10.1080/02626667.2010.513518, 2010.
  16. A. Efstratiadis, and D. Koutsoyiannis, One decade of multiobjective calibration approaches in hydrological modelling: a review, Hydrological Sciences Journal, 55 (1), 58–78, 2010.
  17. D. Koutsoyiannis, C. Makropoulos, A. Langousis, S. Baki, A. Efstratiadis, A. Christofides, G. Karavokiros, and N. Mamassis, Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability, Hydrology and Earth System Sciences, 13, 247–257, doi:10.5194/hess-13-247-2009, 2009.
  18. D. Koutsoyiannis, A. Efstratiadis, N. Mamassis, and A. Christofides, On the credibility of climate predictions, Hydrological Sciences Journal, 53 (4), 671–684, 2008.
  19. A. Efstratiadis, I. Nalbantis, A. Koukouvinos, E. Rozos, and D. Koutsoyiannis, HYDROGEIOS: A semi-distributed GIS-based hydrological model for modified river basins, Hydrology and Earth System Sciences, 12, 989–1006, doi:10.5194/hess-12-989-2008, 2008.
  20. D. Koutsoyiannis, A. Efstratiadis, and K. Georgakakos, Uncertainty assessment of future hydroclimatic predictions: A comparison of probabilistic and scenario-based approaches, Journal of Hydrometeorology, 8 (3), 261–281, doi:10.1175/JHM576.1, 2007.
  21. K. Hadjibiros, A. Katsiri, A. Andreadakis, D. Koutsoyiannis, A. Stamou, A. Christofides, A. Efstratiadis, and G.-F. Sargentis, Multi-criteria reservoir water management, Global Network for Environmental Science and Technology, 7 (3), 386–394, 2005.
  22. A. Christofides, A. Efstratiadis, D. Koutsoyiannis, G.-F. Sargentis, and K. Hadjibiros, Resolving conflicting objectives in the management of the Plastiras Lake: can we quantify beauty?, Hydrology and Earth System Sciences, 9 (5), 507–515, 2005.
  23. E. Rozos, A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Calibration of a semi-distributed model for conjunctive simulation of surface and groundwater flows, Hydrological Sciences Journal, 49 (5), 819–842, doi:10.1623/hysj.49.5.819.55130, 2004.
  24. A. Efstratiadis, D. Koutsoyiannis, and D. Xenos, Minimising water cost in the water resource management of Athens, Urban Water Journal, 1 (1), 3–15, 2004.
  25. D. Koutsoyiannis, G. Karavokiros, A. Efstratiadis, N. Mamassis, A. Koukouvinos, and A. Christofides, A decision support system for the management of the water resource system of Athens, Physics and Chemistry of the Earth, 28 (14-15), 599–609, doi:10.1016/S1474-7065(03)00106-2, 2003.
  26. D. Koutsoyiannis, A. Efstratiadis, and G. Karavokiros, A decision support tool for the management of multi-reservoir systems, Journal of the American Water Resources Association, 38 (4), 945–958, doi:10.1111/j.1752-1688.2002.tb05536.x, 2002.

Book chapters and fully evaluated conference publications

  1. G. Papaioannou, L. Vasiliades, A. Loukas, A. Efstratiadis, S.M. Papalexiou, Y. Markonis, and A. Koukouvinos, A methodological approach for flood risk management in urban areas: The Volos city paradigm, 10th World Congress on Water Resources and Environment, Athens, European Water Resources Association, 2017.
  2. N. Malamos, I. L. Tsirogiannis, A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, Spatial interpolation of potential evapotranspiration for precision irrigation purposes, 10th World Congress on Water Resources and Environment, Athens, European Water Resources Association, 2017.
  3. K. Risva, D. Nikolopoulos, A. Efstratiadis, and I. Nalbantis, A simple model for low flow forecasting in Mediterranean streams, 10th World Congress on Water Resources and Environment, Athens, European Water Resources Association, 2017.
  4. T. Vergou, A. Efstratiadis, and D. Dermatas, Water balance model for evaluation of landfill malfunction due to leakage, Proceedings of ISWA 2016 World Congress, Novi Sad, Ιnternational Solid Waste Association, 2016.
  5. S. Mihas, A. Efstratiadis, K. Nikolaou, and N. Mamassis, Drought and water scarcity management plan for the Peloponnese river basin districts, 12th International Conference “Protection & Restoration of the Environment”, Skiathos, Dept. of Civil Engineering and Dept. of Planning & Regional Development, Univ. Thessaly, Stevens Instute of Technology, 2014.
  6. C. Ioannou, G. Tsekouras, A. Efstratiadis, and D. Koutsoyiannis, Stochastic analysis and simulation of hydrometeorological processes for optimizing hybrid renewable energy systems, Proceedings of the 2nd Hellenic Concerence on Dams and Reservoirs, Athens, Zappeion, doi:10.13140/RG.2.1.3787.0327, Hellenic Commission on Large Dams, 2013.
  7. A. Efstratiadis, D. Bouziotas, and D. Koutsoyiannis, A decision support system for the management of hydropower systems – Application to the Acheloos-Thessaly hydrosystem, Proceedings of the 2nd Hellenic Concerence on Dams and Reservoirs, Athens, Zappeion, doi:10.13140/RG.2.1.1952.0244, Hellenic Commission on Large Dams, 2013.
  8. A. Efstratiadis, A. D. Koussis, S. Lykoudis, A. Koukouvinos, A. Christofides, G. Karavokiros, N. Kappos, N. Mamassis, and D. Koutsoyiannis, Hydrometeorological network for flood monitoring and modeling, Proceedings of First International Conference on Remote Sensing and Geoinformation of Environment, Paphos, Cyprus, 8795, 10-1–10-10, doi:10.1117/12.2028621, Society of Photo-Optical Instrumentation Engineers (SPIE), 2013.
  9. A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, A parametric model for potential evapotranspiration estimation based on a simplified formulation of the Penman-Monteith equation, Evapotranspiration - An Overview, edited by S. Alexandris, 143–165, doi:10.5772/52927, InTech, 2013.
  10. D. Koutsoyiannis, N. Mamassis, A. Efstratiadis, N. Zarkadoulas, and Y. Markonis, Floods in Greece, Changes of Flood Risk in Europe, edited by Z. W. Kundzewicz, Chapter 12, 238–256, IAHS Press, Wallingford – International Association of Hydrological Sciences, 2012.
  11. C. Makropoulos, E. Safiolea, A. Efstratiadis, E. Oikonomidou, V. Kaffes, C. Papathanasiou, and M. Mimikou, Multi-reservoir management with Open-MI, Proceedings of the 11th International Conference on Environmental Science and Technology, Chania, A, 788–795, Department of Environmental Studies, University of the Aegean, 2009.
  12. A. Efstratiadis, and D. Koutsoyiannis, Fitting hydrological models on multiple responses using the multiobjective evolutionary annealing simplex approach, Practical hydroinformatics: Computational intelligence and technological developments in water applications, edited by R.J. Abrahart, L. M. See, and D. P. Solomatine, 259–273, doi:10.1007/978-3-540-79881-1_19, Springer, 2008.
  13. K. Hadjibiros, A. Katsiri, A. Andreadakis, D. Koutsoyiannis, A. Stamou, A. Christofides, A. Efstratiadis, and G.-F. Sargentis, Multi-criteria reservoir water management, Proceedings of the 9th International Conference on Environmental Science and Technology (9CEST), Rhodes, A, 535–543, Department of Environmental Studies, University of the Aegean, 2005.
  14. D. Koutsoyiannis, and A. Efstratiadis, Experience from the development of decision support systems for the management of large-scale hydrosystems of Greece, Proceedings of the Workshop "Water Resources Studies in Cyprus", edited by E. Sidiropoulos and I. Iakovidis, Nikosia, 159–180, Water Development Department of Cyprus, Aristotle University of Thessaloniki, Thessaloniki, 2003.
  15. I. Nalbantis, E. Rozos, G. M. T. Tentes, A. Efstratiadis, and D. Koutsoyiannis, Integrating groundwater models within a decision support system, Proceedings of the 5th International Conference of European Water Resources Association: "Water Resources Management in the Era of Transition", edited by G. Tsakiris, Athens, 279–286, European Water Resources Association, 2002.
  16. K. Hadjibiros, D. Koutsoyiannis, A. Katsiri, A. Stamou, A. Andreadakis, G.-F. Sargentis, A. Christofides, A. Efstratiadis, and A. Valassopoulos, Management of water quality of the Plastiras reservoir, 4th International Conference on Reservoir Limnology and Water Quality, Ceske Budejovice, Czech Republic, doi:10.13140/RG.2.1.4872.4723, 2002.
  17. A. Efstratiadis, and D. Koutsoyiannis, An evolutionary annealing-simplex algorithm for global optimisation of water resource systems, Proceedings of the Fifth International Conference on Hydroinformatics, Cardiff, UK, 1423–1428, doi:10.13140/RG.2.1.1038.6162, International Water Association, 2002.
  18. G. Karavokiros, A. Efstratiadis, and D. Koutsoyiannis, Determining management scenarios for the water resource system of Athens, Proceedings, Hydrorama 2002, 3rd International Forum on Integrated Water Management, 175–181, doi:10.13140/RG.2.1.3135.7684, Water Supply and Sewerage Company of Athens, Athens, 2002.
  19. D. Koutsoyiannis, A. Efstratiadis, and G. Karavokiros, A decision support tool for the management of multi-reservoir systems, Proceedings of the Integrated Decision-Making for Watershed Management Symposium, Chevy Chase, Maryland, doi:10.13140/RG.2.1.3528.9848, US Environmental Protection Agency, Duke Power, Virginia Tech, 2001.
  20. A. Efstratiadis, N. Zervos, G. Karavokiros, and D. Koutsoyiannis, The Hydronomeas computational system and its application to the simulation of reservoir systems, Water resources management in sensitive regions of Greece, Proceedings of the 4th Conference, edited by G. Tsakiris, A. Stamou, and J. Mylopoulos, Volos, 36–43, doi:10.13140/RG.2.1.4053.2724, Greek Committee for the Water Resources Management, 1999.

Conference publications and presentations with evaluation of abstract

  1. V. Daniil, G. Pouliasis, E. Zacharopoulou, E. Demetriou, G. Manou, M. Chalakatevaki, I. Parara, C. Georganta, P. Stamou, S. Karali, E. Hadjimitsis, G. Koudouris, E. Moschos, D. Roussis, K. Papoulakos, A. Koskinas, G. Pollakis, N. Gournari, K. Sakellari, Y. Moustakis, N. Mamassis, A. Efstratiadis, H. Tyralis, P. Dimitriadis, T. Iliopoulou, G. Karakatsanis, K. Tzouka, E. Deligiannis, V. Tsoukala, P. Papanicolaou, and D. Koutsoyiannis, The uncertainty of atmospheric processes in planning a hybrid renewable energy system for a non-connected island, European Geosciences Union General Assembly 2017, Geophysical Research Abstracts, Vol. 19, Vienna, EGU2017-16781-4, doi:10.13140/RG.2.2.29610.62406, European Geosciences Union, 2017.
  2. K. Papoulakos, G. Pollakis, Y. Moustakis, A. Markopoulos, T. Iliopoulou, P. Dimitriadis, D. Koutsoyiannis, and A. Efstratiadis, Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability, European Geosciences Union General Assembly 2017, Geophysical Research Abstracts, Vol. 19, Vienna, 19, EGU2017-10334-4, European Geosciences Union, 2017.
  3. E. Michaelidi, S. Antoniadi, A. Koukouvinos, B. Bacchi, and A. Efstratiadis, Adaptation of the concept of varying time of concentration within flood modelling: Theoretical and empirical investigations across the Mediterranean, European Geosciences Union General Assembly 2017, Geophysical Research Abstracts, Vol. 19, Vienna, 19, EGU2017-10663-1, European Geosciences Union, 2017.
  4. Y. Moustakis, P. Kossieris, I. Tsoukalas, and A. Efstratiadis, Quasi-continuous stochastic simulation framework for flood modelling, European Geosciences Union General Assembly 2017, Geophysical Research Abstracts, Vol. 19, Vienna, 19, EGU2017-534, European Geosciences Union, 2017.
  5. T. Vergou, A. Efstratiadis, and D. Dermatas, Water balance model for evaluation of landfill malfunction due to leakage, 13th International Conference on Protection and Restoration of the Environment, Mykonos, 2016.
  6. M. Giglioni, A. Efstratiadis, F. Lombardo, F. Napolitano, and F. Russo, Comparative assessment of different drought indices across the Mediterranean, European Geosciences Union General Assembly 2016, Geophysical Research Abstracts, Vol. 18, Vienna, EGU2016-18537, European Geosciences Union, 2016.
  7. Ο. Daskalou, M. Karanastasi, Y. Markonis, P. Dimitriadis, A. Koukouvinos, A. Efstratiadis, and D. Koutsoyiannis, GIS-based approach for optimal siting and sizing of renewables considering techno-environmental constraints and the stochastic nature of meteorological inputs, European Geosciences Union General Assembly 2016, Geophysical Research Abstracts, Vol. 18, Vienna, EGU2016-12044-1, doi:10.13140/RG.2.2.19535.48803, European Geosciences Union, 2016.
  8. A. Efstratiadis, S.M. Papalexiou, Y. Markonis, A. Koukouvinos, L. Vasiliades, G. Papaioannou, and A. Loukas, Flood risk assessment at the regional scale: Computational challenges and the monster of uncertainty, European Geosciences Union General Assembly 2016, Geophysical Research Abstracts, Vol. 18, Vienna, EGU2016-12218, European Geosciences Union, 2016.
  9. P. Kossieris, A. Efstratiadis, I. Tsoukalas, and D. Koutsoyiannis, Assessing the performance of Bartlett-Lewis model on the simulation of Athens rainfall, European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-8983, doi:10.13140/RG.2.2.14371.25120, European Geosciences Union, 2015.
  10. E. Rozos, D. Nikolopoulos, A. Efstratiadis, A. Koukouvinos, and C. Makropoulos, Flow based vs. demand based energy-water modelling, European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-6528, European Geosciences Union, 2015.
  11. A. Koukouvinos, D. Nikolopoulos, A. Efstratiadis, A. Tegos, E. Rozos, S.M. Papalexiou, P. Dimitriadis, Y. Markonis, P. Kossieris, H. Tyralis, G. Karakatsanis, K. Tzouka, A. Christofides, G. Karavokiros, A. Siskos, N. Mamassis, and D. Koutsoyiannis, Integrated water and renewable energy management: the Acheloos-Peneios region case study, European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-4912, doi:10.13140/RG.2.2.17726.69440, European Geosciences Union, 2015.
  12. A. Efstratiadis, I. Tsoukalas, P. Kossieris, G. Karavokiros, A. Christofides, A. Siskos, N. Mamassis, and D. Koutsoyiannis, Computational issues in complex water-energy optimization problems: Time scales, parameterizations, objectives and algorithms, European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-5121, doi:10.13140/RG.2.2.11015.80802, European Geosciences Union, 2015.
  13. A. Drosou, P. Dimitriadis, A. Lykou, P. Kossieris, I. Tsoukalas, A. Efstratiadis, and N. Mamassis, Assessing and optimising flood control options along the Arachthos river floodplain (Epirus, Greece), European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-9148, European Geosciences Union, 2015.
  14. A. Zarkadoulas, K. Mantesi, A. Efstratiadis, A. D. Koussis, K. Mazi, D. Katsanos, A. Koukouvinos, and D. Koutsoyiannis, A hydrometeorological forecasting approach for basins with complex flow regime, European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-3904, doi:10.13140/RG.2.2.21920.99842, European Geosciences Union, 2015.
  15. I. Tsoukalas, P. Kossieris, A. Efstratiadis, and C. Makropoulos, Handling time-expensive global optimization problems through the surrogate-enhanced evolutionary annealing-simplex algorithm, European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-5923, European Geosciences Union, 2015.
  16. A. Tegos, A. Efstratiadis, N. Malamos, N. Mamassis, and D. Koutsoyiannis, Evaluation of a parametric approach for estimating potential evapotranspiration across different climates, IRLA2014 – The Effects of Irrigation and Drainage on Rural and Urban Landscapes, Patras, doi:10.13140/RG.2.2.14004.24966, 2014.
  17. G. Karakatsanis, N. Mamassis, D. Koutsoyiannis, and A. Efstratiadis, Entropy, pricing and macroeconomics of pumped-storage systems, European Geosciences Union General Assembly 2014, Geophysical Research Abstracts, Vol. 16, Vienna, EGU2014-15858-6, European Geosciences Union, 2014.
  18. P. Dimas, D. Bouziotas, A. Efstratiadis, and D. Koutsoyiannis, A holistic approach towards optimal planning of hybrid renewable energy systems: Combining hydroelectric and wind energy, European Geosciences Union General Assembly 2014, Geophysical Research Abstracts, Vol. 16, Vienna, EGU2014-5851, doi:10.13140/RG.2.2.28854.70723, European Geosciences Union, 2014.
  19. Y. Markonis, A. Efstratiadis, A. Koukouvinos, N. Mamassis, and D. Koutsoyiannis, Investigation of drought characteristics in different temporal and spatial scales: A case study in the Mediterranean region , Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.
  20. G. Karakatsanis, N. Mamassis, D. Koutsoyiannis, and A. Efstratiadis, Entropy and reliability of water use via a statistical approach of scarcity, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.24450.68809, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.
  21. P. Kossieris, A. Efstratiadis, and D. Koutsoyiannis, Coupling the strengths of optimization and simulation for calibrating Poisson cluster models, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.15223.21929, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.
  22. P. Kossieris, A. Efstratiadis, and D. Koutsoyiannis, The use of stochastic objective functions in water resource optimization problems, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.18578.66249, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.
  23. P. Dimas, D. Bouziotas, A. Efstratiadis, and D. Koutsoyiannis, A stochastic simulation framework for planning and management of combined hydropower and wind energy systems , Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.27491.55841, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.
  24. E. Michaelidi, T. Mastrotheodoros, A. Efstratiadis, A. Koukouvinos, and D. Koutsoyiannis, Flood modelling in river basins with highly variable runoff, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.30847.00167, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.
  25. A. Efstratiadis, A. Koukouvinos, P. Dimitriadis, A. Tegos, N. Mamassis, and D. Koutsoyiannis, A stochastic simulation framework for flood engineering, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.16848.51201, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.
  26. A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Hydrological modelling in presence of non-stationarity induced by urbanisation: an assessment of the value of information, “Knowledge for the future”, IAHS - IAPSO – IASPEI Joint Assembly 2013, Gothenburg, doi:10.13140/RG.2.2.13178.49607, International Association of Hydrological Sciences, 2013.
  27. G. Tsekouras, C. Ioannou, A. Efstratiadis, and D. Koutsoyiannis, Stochastic analysis and simulation of hydrometeorological processes for optimizing hybrid renewable energy systems, European Geosciences Union General Assembly 2013, Geophysical Research Abstracts, Vol. 15, Vienna, EGU2013-11660, doi:10.13140/RG.2.2.30250.62404, European Geosciences Union, 2013.
  28. A. Venediki, S. Giannoulis, C. Ioannou, L. Malatesta, G. Theodoropoulos, G. Tsekouras, Y. Dialynas, S.M. Papalexiou, A. Efstratiadis, and D. Koutsoyiannis, The Castalia stochastic generator and its applications to multivariate disaggregation of hydro-meteorological processes, European Geosciences Union General Assembly 2013, Geophysical Research Abstracts, Vol. 15, Vienna, EGU2013-11542, doi:10.13140/RG.2.2.15675.41764, European Geosciences Union, 2013.
  29. D. Koutsoyiannis, and A. Efstratiadis, The necessity for large-scale hybrid renewable energy systems, Hydrology and Society, EGU Leonardo Topical Conference Series on the hydrological cycle 2012, Torino, doi:10.13140/RG.2.2.30355.48161, European Geosciences Union, 2012.
  30. A. Efstratiadis, D. Bouziotas, and D. Koutsoyiannis, The parameterization-simulation-optimization framework for the management of hydroelectric reservoir systems, Hydrology and Society, EGU Leonardo Topical Conference Series on the hydrological cycle 2012, Torino, doi:10.13140/RG.2.2.36437.22243, European Geosciences Union, 2012.
  31. A. Efstratiadis, A. D. Koussis, D. Koutsoyiannis, N. Mamassis, and S. Lykoudis, Flood design recipes vs. reality: Can predictions for ungauged basins be trusted? – A perspective from Greece, Advanced methods for flood estimation in a variable and changing environment, Volos, doi:10.13140/RG.2.2.19660.00644, University of Thessaly, 2012.
  32. M. Mathioudaki, A. Efstratiadis, and N. Mamassis, Investigation of hydrological design practices based on historical flood events in an experimental basin of Greece (Lykorema, Penteli), Advanced methods for flood estimation in a variable and changing environment, Volos, University of Thessaly, 2012.
  33. S. Kozanis, A. Christofides, A. Efstratiadis, A. Koukouvinos, G. Karavokiros, N. Mamassis, D. Koutsoyiannis, and D. Nikolopoulos, Using open source software for the supervision and management of the water resources system of Athens, European Geosciences Union General Assembly 2012, Geophysical Research Abstracts, Vol. 14, Vienna, 7158, doi:10.13140/RG.2.2.28468.04482, European Geosciences Union, 2012.
  34. P. Kossieris, D. Koutsoyiannis, C. Onof, H. Tyralis, and A. Efstratiadis, HyetosR: An R package for temporal stochastic simulation of rainfall at fine time scales, European Geosciences Union General Assembly 2012, Geophysical Research Abstracts, Vol. 14, Vienna, 11718, European Geosciences Union, 2012.
  35. D. Tsaknias, D. Bouziotas, A. Christofides, A. Efstratiadis, and D. Koutsoyiannis, Statistical comparison of observed temperature and rainfall extremes with climate model outputs, European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, EGU2011-3454, doi:10.13140/RG.2.2.15321.52322, European Geosciences Union, 2011.
  36. A. Christofides, S. Kozanis, G. Karavokiros, Y. Markonis, and A. Efstratiadis, Enhydris: A free database system for the storage and management of hydrological and meteorological data, European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, 8760, European Geosciences Union, 2011.
  37. M. Rianna, E. Rozos, A. Efstratiadis, and F. Napolitano, Assessing different levels of model complexity for the Liri-Garigliano catchment simulation, European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, 4067, European Geosciences Union, 2011.
  38. E. Galiouna, A. Efstratiadis, N. Mamassis, and K. Aristeidou, Investigation of extreme flows in Cyprus: empirical formulas and regionalization approaches for peak flow estimation, European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, 2077, European Geosciences Union, 2011.
  39. A. Efstratiadis, New insights on model evaluation inspired by the stochastic simulation paradigm, European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, 1852, European Geosciences Union, 2011.
  40. K. Hadjibiros, and A. Efstratiadis, Balancing between nature, economy and society conflicting priorities: the Plastiras lake landscape, International Conference in Landscape Ecology, Brno, 2013, Czech Association for Landscape Ecology (CZ-IALE), 2010.
  41. A. Varveris, P. Panagopoulos, K. Triantafillou, A. Tegos, A. Efstratiadis, N. Mamassis, and D. Koutsoyiannis, Assessment of environmental flows of Acheloos Delta, European Geosciences Union General Assembly 2010, Geophysical Research Abstracts, Vol. 12, Vienna, 12046, doi:10.13140/RG.2.2.14849.66404, European Geosciences Union, 2010.
  42. S. Kozanis, A. Christofides, N. Mamassis, A. Efstratiadis, and D. Koutsoyiannis, Hydrognomon – open source software for the analysis of hydrological data, European Geosciences Union General Assembly 2010, Geophysical Research Abstracts, Vol. 12, Vienna, 12419, doi:10.13140/RG.2.2.21350.83527, European Geosciences Union, 2010.
  43. A. Efstratiadis, and S.M. Papalexiou, The quest for consistent representation of rainfall and realistic simulation of process interactions in flood risk assessment, European Geosciences Union General Assembly 2010, Geophysical Research Abstracts, Vol. 12, Vienna, 11101, European Geosciences Union, 2010.
  44. A. Efstratiadis, I. Nalbantis, E. Rozos, and D. Koutsoyiannis, Accounting for water management issues within hydrological simulation: Alternative modelling options and a network optimization approach, European Geosciences Union General Assembly 2010, Geophysical Research Abstracts, Vol. 12, Vienna, 10085, doi:10.13140/RG.2.2.22189.69603, European Geosciences Union, 2010.
  45. A. Efstratiadis, K. Mazi, A. D. Koussis, and D. Koutsoyiannis, Flood modelling in complex hydrologic systems with sparsely resolved data, European Geosciences Union General Assembly 2009, Geophysical Research Abstracts, Vol. 11, Vienna, 4157, doi:10.13140/RG.2.2.13801.08807, European Geosciences Union, 2009.
  46. A. Efstratiadis, and D. Koutsoyiannis, On the practical use of multiobjective optimisation in hydrological model calibration, European Geosciences Union General Assembly 2009, Geophysical Research Abstracts, Vol. 11, Vienna, 2326, doi:10.13140/RG.2.2.10445.64480, European Geosciences Union, 2009.
  47. G. G. Anagnostopoulos, D. Koutsoyiannis, A. Efstratiadis, A. Christofides, and N. Mamassis, Credibility of climate predictions revisited, European Geosciences Union General Assembly 2009, Geophysical Research Abstracts, Vol. 11, Vienna, 611, doi:10.13140/RG.2.2.15898.24009, European Geosciences Union, 2009.
  48. D. Koutsoyiannis, N. Mamassis, A. Christofides, A. Efstratiadis, and S.M. Papalexiou, Assessment of the reliability of climate predictions based on comparisons with historical time series, European Geosciences Union General Assembly 2008, Geophysical Research Abstracts, Vol. 10, Vienna, 09074, doi:10.13140/RG.2.2.16658.45768, European Geosciences Union, 2008.
  49. D. Koutsoyiannis, A. Efstratiadis, and K. Georgakakos, A stochastic methodological framework for uncertainty assessment of hydroclimatic predictions, European Geosciences Union General Assembly 2007, Geophysical Research Abstracts, Vol. 9, Vienna, 06026, doi:10.13140/RG.2.2.16029.31202, European Geosciences Union, 2007.
  50. I. Nalbantis, A. Efstratiadis, and D. Koutsoyiannis, On the use and misuse of semi-distributed rainfall-runoff models, XXIV General Assembly of the International Union of Geodesy and Geophysics, Perugia, doi:10.13140/RG.2.2.14351.59044, International Union of Geodesy and Geophysics, International Association of Hydrological Sciences, 2007.
  51. K. Georgakakos, D. Koutsoyiannis, and A. Efstratiadis, Uncertainty assessment of future hydroclimatic predictions: Methodological framework and a case study in Greece, European Geosciences Union General Assembly 2006, Geophysical Research Abstracts, Vol. 8, Vienna, 08065, doi:10.13140/RG.2.2.29975.37284, European Geosciences Union, 2006.
  52. A. Efstratiadis, D. Koutsoyiannis, and G. Karavokiros, Linking hydroinformatics tools towards integrated water resource systems analysis, European Geosciences Union General Assembly 2006, Geophysical Research Abstracts, Vol. 8, Vienna, 02096, doi:10.13140/RG.2.2.26619.92966, European Geosciences Union, 2006.
  53. A. Efstratiadis, A. Koukouvinos, E. Rozos, I. Nalbantis, and D. Koutsoyiannis, Control of uncertainty in complex hydrological models via appropriate schematization, parameterization and calibration, European Geosciences Union General Assembly 2006, Geophysical Research Abstracts, Vol. 8, Vienna, 02181, doi:10.13140/RG.2.2.28297.65124, European Geosciences Union, 2006.
  54. A. Efstratiadis, G. Karavokiros, S. Kozanis, A. Christofides, A. Koukouvinos, E. Rozos, N. Mamassis, I. Nalbantis, K. Noutsopoulos, E. Romas, L. Kaliakatsos, A. Andreadakis, and D. Koutsoyiannis, The ODYSSEUS project: Developing an advanced software system for the analysis and management of water resource systems, European Geosciences Union General Assembly 2006, Geophysical Research Abstracts, Vol. 8, Vienna, 03910, doi:10.13140/RG.2.2.24942.20805, European Geosciences Union, 2006.
  55. A. Efstratiadis, A. Tegos, I. Nalbantis, E. Rozos, A. Koukouvinos, N. Mamassis, S.M. Papalexiou, and D. Koutsoyiannis, Hydrogeios, an integrated model for simulating complex hydrographic networks - A case study to West Thessaly region, 7th Plinius Conference on Mediterranean Storms, Rethymnon, Crete, doi:10.13140/RG.2.2.25781.06881, European Geosciences Union, 2005.
  56. S. Kozanis, A. Christofides, N. Mamassis, A. Efstratiadis, and D. Koutsoyiannis, Hydrognomon - A hydrological data management and processing software tool, European Geosciences Union General Assembly 2005, Geophysical Research Abstracts, Vol. 7, Vienna, 04644, doi:10.13140/RG.2.2.34222.10561, European Geosciences Union, 2005.
  57. A. Efstratiadis, G. Karavokiros, and D. Koutsoyiannis, Hydronomeas: A water resources planning and management software system, European Geosciences Union General Assembly 2005, Geophysical Research Abstracts, Vol. 7, Vienna, 04675, doi:10.13140/RG.2.2.29608.37128, European Geosciences Union, 2005.
  58. A. Efstratiadis, and D. Koutsoyiannis, The multiobjective evolutionary annealing-simplex method and its application in calibrating hydrological models, European Geosciences Union General Assembly 2005, Geophysical Research Abstracts, Vol. 7, Vienna, 04593, doi:10.13140/RG.2.2.32963.81446, European Geosciences Union, 2005.
  59. A. Efstratiadis, E. Rozos, A. Koukouvinos, I. Nalbantis, G. Karavokiros, and D. Koutsoyiannis, An integrated model for conjunctive simulation of hydrological processes and water resources management in river basins, European Geosciences Union General Assembly 2005, Geophysical Research Abstracts, Vol. 7, Vienna, 03560, doi:10.13140/RG.2.2.27930.64960, European Geosciences Union, 2005.
  60. D. Koutsoyiannis, and A. Efstratiadis, Climate change certainty versus climate uncertainty and inferences in hydrological studies and water resources management (solicited), European Geosciences Union General Assembly 2004, Geophysical Research Abstracts, Vol. 6, Nice, doi:10.13140/RG.2.2.12726.29764, European Geosciences Union, 2004.
  61. A. Efstratiadis, D. Koutsoyiannis, K. Hadjibiros, A. Andreadakis, A. Stamou, A. Katsiri, G.-F. Sargentis, and A. Christofides, A multicriteria approach for the sustainable management of the Plastiras reservoir, Greece, EGS-AGU-EUG Joint Assembly, Geophysical Research Abstracts, Vol. 5, Nice, doi:10.13140/RG.2.2.23631.48801, European Geophysical Society, 2003.
  62. A. Efstratiadis, D. Koutsoyiannis, E. Rozos, and I. Nalbantis, Calibration of a conjunctive surface-groundwater simulation model using multiple responses, EGS-AGU-EUG Joint Assembly, Geophysical Research Abstracts, Vol. 5, Nice, doi:10.13140/RG.2.2.23002.34246, European Geophysical Society, 2003.
  63. G. Karavokiros, A. Efstratiadis, and D. Koutsoyiannis, A decision support system for the management of the water resource system of Athens, 26th General Assembly of the European Geophysical Society, Geophysical Research Abstracts, Vol. 3, Nice, doi:10.13140/RG.2.2.28035.50724, European Geophysical Society, 2001.
  64. D. Koutsoyiannis, and A. Efstratiadis, A stochastic hydrology framework for the management of multiple reservoir systems, 26th General Assembly of the European Geophysical Society, Geophysical Research Abstracts, Vol. 3, Nice, doi:10.13140/RG.2.2.11258.29125, European Geophysical Society, 2001.
  65. A. Efstratiadis, and D. Koutsoyiannis, Global optimisation techniques in water resources management, 26th General Assembly of the European Geophysical Society, Geophysical Research Abstracts, Vol. 3, Nice, doi:10.13140/RG.2.2.13774.87360, European Geophysical Society, 2001.

Presentations and publications in workshops

  1. Ο. Daskalou, A. Koukouvinos, A. Efstratiadis, and D. Koutsoyiannis, Methodology for optimal allocation and sizing of renewable energy sources using ArcGIS 10.3: Case study of Thessaly Perfecture, 24th Hellenic Meeting of ArcGIS Users, Crowne Plaza, Athens, Marathon Data Systems, 2016.
  2. A. Efstratiadis, A. Koukouvinos, N. Mamassis, and D. Koutsoyiannis, The quantitative dimension of WFD 2000/60, Water Framework Directive 2000/60 and Inland Water Protection: Research and Perspectives, Athens, Hellenic Centre for Marine Research, Specific Secreteriat of Water – Ministry of Environment, Energy and Climate Change, 2015.
  3. A. D. Koussis, and A. Efstratiadis, Hydrological simulation and forecasting models, Workshop - Deucalion research project, Goulandris National Histroy Museum, 2014.
  4. A. Efstratiadis, Adaptation of regional hydrological formulas to Greek basins, Workshop - Deucalion research project, Goulandris National Histroy Museum, 2014.
  5. A. Tegos, A. Efstratiadis, A. Varveris, N. Mamassis, A. Koukouvinos, and D. Koutsoyiannis, Assesment and implementation of ecological flow constraints in large hydroelectric works: The case of Acheloos, Ecological flow of rivers and the importance of their true assesment, 2014.
  6. N. Mamassis, A. Efstratiadis, and D. Koutsoyiannis, Perspectives of combined management of water and energy in Thessaly region, , Larissa, 21 pages, doi:10.13140/RG.2.2.15760.61442, Technical Chamber of Greece / Department of CW Thessaly, 2014.
  7. A. D. Koussis, S. Lykoudis, A. Efstratiadis, A. Koukouvinos, N. Mamassis, D. Koutsoyiannis, A. Peppas, and A. Maheras, Estimating flood flows in ungauged Greek basins under hydroclimatic variability (Deukalion project) - Development of physically-established conceptual-probabilistic framework and computational tools, Climate and Environmental Change in the Mediterranean Region, Pylos, Navarino Environmental Observatory, 2012.
  8. A. Efstratiadis, Models in practice: Experience from the water supply system of Athens, Invited lecture, Tokyo, Tokyo Metropolitan University, 2010.
  9. A. Loukas, A. Efstratiadis, and L. Vasiliades, Review of existing simulation based flood-frequency frameworks in Greece, EU COST Action ES0901: European Procedures for Flood Frequency Estimation (FloodFreq) - 3rd Management Committee Meeting, Prague, 2010.
  10. A. Efstratiadis, L. Vasiliades, and A. Loukas, Review of existing statistical methods for flood frequency estimation in Greece, EU COST Action ES0901: European Procedures for Flood Frequency Estimation (FloodFreq) - 3rd Management Committee Meeting, Prague, 2010.
  11. N. Mamassis, E. Tiligadas, D. Koutsoyiannis, M. Salahoris, G. Karavokiros, S. Mihas, K. Noutsopoulos, A. Christofides, S. Kozanis, A. Efstratiadis, E. Rozos, and L. Bensasson, HYDROSCOPE: National Databank for Hydrological, Meteorological and Geographical Information, Towards a rational handling of current water resource problems: Utilizing Data and Informatics for Information, Hilton Hotel, Athens, 2010.
  12. E. Safiolea, A. Efstratiadis, S. Kozanis, I. Liagouris, and C. Papathanasiou, Integrated modelling of a River-Reservoir system using OpenMI, OpenMI-LIFE Pinios Workshop, Volos, 2009.
  13. C. Makropoulos, E. Safiolea, A. Efstratiadis, E. Oikonomidou, and V. Kaffes, Multi-reservoir management with OpenMI, OpenMI-LIFE Pinios Workshop, Volos, 2009.
  14. C. Makropoulos, D. Koutsoyiannis, and A. Efstratiadis, Challenges and perspectives in urban water management, Local Govenance Conference: The Green Technology in the Cities, Athens, Ecocity, Central Association of Greek Municipalities, 2009.
  15. D. Koutsoyiannis, and A. Efstratiadis, Energy, water and agriculture: Prospects of integrated management in the Prefecture of Karditsa, Water Resources Management in the Prefecture of Karditsa, Workshop of The Local Union of Municipalities and Communities, Karditsa, doi:10.13140/RG.2.2.33124.37760, 2008.
  16. E. Safiolea, I. Liagouris, A. Efstratiadis, and S. Kozanis, Impact of climate change scenarios on the reliability of a reservoir, 2nd OpenMI-Life and Association Workshops On Integrated Modelling for Integrated Water Management, CEH, Wallingford, UK, 2007.
  17. A. Efstratiadis, S. Kozanis, I. Liagouris, and E. Safiolea, Migration of a reservoir management model (RMM-NTUA), 1st OpenMI Life Workshop, Aquafin, Aartselaar, Belgium, 2007.
  18. A. Efstratiadis, D. Koutsoyiannis, and N. Mamassis, Optimization of the water supply network of Athens, Second International Congress: "Environment - Sustainable Water Resource Management", Athens, Association of Civil Engineers of Greece, European Council of Civil Engineers, 2007.
  19. S. Kozanis, and A. Efstratiadis, Zygos: A basin processes simulation model, 21st European Conference for ESRI Users, Athens, Greece, 2006.
  20. A. Efstratiadis, Strategies and algorithms for multicriteria calibration of complex hydrological models, Presentation of research activities of the Department of Water Resources, Athens, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, 2006.
  21. A. Efstratiadis, HYDROGEIOS: Geo-hydrological model for watershed simulation, 15th meeting of the Greek users of Geographical Information Systems (G.I.S.) ArcInfo - ArcView - ArcIMS, Athens, Marathon Data Systems, 2005.
  22. A. Efstratiadis, Nonlinear methods in multicriteria water resource problems, "Hydromedon" - First meeting of PhD students, Patra, University of Patra, 2005.
  23. D. Koutsoyiannis, and A. Efstratiadis, Climatic change certainty and climatic uncertainty from a hydrological and water resources management viewpoint, Invited seminar, University of Thessaly, Volos, doi:10.13140/RG.2.2.31761.22888, University of Thessaly, 2004.
  24. D. Koutsoyiannis, and A. Efstratiadis, The Hydronomeas computational system and its application to the study of the Acheloos river diversion, Water resource management with emphasis in Epiros, Ioannina, doi:10.13140/RG.2.2.35116.67205, Municipal Company of Water Supply and Sewerage of Ioannina, 2003.
  25. D. Koutsoyiannis, A. Efstratiadis, and A. Koukouvinos, Hydrological investigation of the Plastiras lake management, Workshop for the presentation of the research project "Investigation of scenarios for the management and protection of the quality of the Plastiras Lake", doi:10.13140/RG.2.2.16950.09286, Municipality of Karditsa, Karditsa, 2002.

Various publications

  1. G. Karavokiros, A. Efstratiadis, and D. Koutsoyiannis, The management of resources for the water supply of Athens, Hellenic Association of Consulting Firms Newsletter, 65, 4–5, Athens, October 2001.

Books

  1. D. Koutsoyiannis, and A. Efstratiadis, Lecture Notes on Urban Hydraulic Works - Water Supply, 83 pages, doi:10.13140/RG.2.1.3559.7044, National Technical University of Athens, February 2015.

Educational notes

  1. A. Efstratiadis, The water supply system of Athens: Management complexities and modelling challenges vs. low risk & cost decisions, October 2016.
  2. S. Mihas, A. Efstratiadis, and D. Dermatas, Lecture notes on "Hydraulic Structures - Dams", Department of Water Resources and Environmental Engineering – National Technical University of Athens, December 2015.
  3. A. Efstratiadis, and D. Koutsoyiannis, Lecture notes: Urban stormwater drainage networks, 23 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, July 2014.
  4. A. Efstratiadis, Applications of stochastic simulation in water resource systems - The software "Castalia", 19 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, March 2014.
  5. A. Efstratiadis, Flood simulation models, 24 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, May 2013.
  6. A. Efstratiadis, Hydrogeios as an operational tool for hydrological simulation and management of human-modified basins, 24 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, May 2012.
  7. A. Efstratiadis, Environment-friendly policies and water resources development: The case of Plastiras reservoir , 14 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, May 2012.
  8. A. Efstratiadis, Simulation and optimization of the management of the water resource system of Athens, 28 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, January 2012.
  9. A. Efstratiadis, Lecture notes on flood hydrology and design of sewage networks, 44 pages, June 2011.
  10. C. Makropoulos, and A. Efstratiadis, Lecture notes on Water Resource System Optimization and Hydroinformatics, 307 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, April 2011.
  11. A. Efstratiadis, N. Mamassis, and D. Koutsoyiannis, Lecture notes on Water Resources Management - Part 2, 97 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, 2011.
  12. A. Efstratiadis, Hydrological and hydrogeological simulation of modified river basins - The Hydrogeios model, 40 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, April 2010.
  13. D. Koutsoyiannis, and A. Efstratiadis, Lecture notes on Urban Hydraulic Works - Part 1: Water Supply, 146 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, 2007.
  14. A. Efstratiadis, and D. Koutsoyiannis, Lecture notes on Typical Hydraulic Works - Part 2: Water Distribution Networks, 90 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, 2006.
  15. A. Efstratiadis, Hydrological investigation of the Plastiras reservoir operation, 16 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, May 2006.
  16. A. Efstratiadis, and D. Koutsoyiannis, Lecture notes on Water Resource System Optimisation - Part 2, 140 pages, National Technical University of Athens, Athens, 2004.
  17. A. Christofides, A. Efstratiadis, and G.-F. Sargentis, Presentation of the research project "Investigation of scenarios for the management and protection of the quality of the Plastiras Lake", 79 pages, 1 April 2003.

Academic works

  1. A. Efstratiadis, Non-linear methods in multiobjective water resource optimization problems, with emphasis on the calibration of hydrological models, PhD thesis, 391 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, February 2008.
  2. A. Efstratiadis, Investigation of global optimum seeking methods in water resources problems, MSc thesis, 139 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, May 2001.
  3. A. Efstratiadis, and N. Zervos, Optimal management of reservoir systems - Application to the Acheloos-Thessalia system, Diploma thesis, 181 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, March 1999.

Research reports

  1. D. Dermatas, N. Mamassis, I. Panagiotakis, and A. Efstratiadis, Evaluation of environmental impracts due to water flows through Mavrorachi landfill, Investigation of the qualitative adequacy of the bottom of cell A3 and of the transitional bonding with cell A1 as well as the environmental impacts from the operation of the landfill , Contractor: Department of Water Resources and Environmental Engineering – National Technical University of Athens, March 2017.
  2. A. Koukouvinos, A. Efstratiadis, D. Nikolopoulos, H. Tyralis, A. Tegos, N. Mamassis, and D. Koutsoyiannis, Case study in the Acheloos-Thessaly system, Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO), 98 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, October 2015.
  3. A. Siskos, G. Karavokiros, A. Christofides, and A. Efstratiadis, Development of decision support system for renewable energy managment, Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO), 103 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, July 2015.
  4. A. Efstratiadis, N. Mamassis, Y. Markonis, P. Kossieris, and H. Tyralis, Methodological framework for optimal planning and management of water and renewable energy resources, Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO), 154 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, April 2015.
  5. Y. Markonis, S. Lykoudis, A. Efstratiadis, and A. Koukouvinos, Description of rainfall and meteorological data and processing, DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools, Contractors: ETME: Peppas & Collaborators, Grafeio Mahera, Department of Water Resources and Environmental Engineering – National Technical University of Athens, National Observatory of Athens, 54 pages, September 2014.
  6. A. Efstratiadis, A. Koukouvinos, E. Michaelidi, E. Galiouna, K. Tzouka, A. D. Koussis, N. Mamassis, and D. Koutsoyiannis, Description of regional approaches for the estimation of characteristic hydrological quantities, DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools, Contractors: ETME: Peppas & Collaborators, Grafeio Mahera, Department of Water Resources and Environmental Engineering – National Technical University of Athens, National Observatory of Athens, 146 pages, September 2014.
  7. A. Efstratiadis, A. Koukouvinos, P. Dimitriadis, E. Rozos, and A. D. Koussis, Theoretical documentation of hydrological-hydraulic simulation model, DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools, Contractors: ETME: Peppas & Collaborators, Grafeio Mahera, Department of Water Resources and Environmental Engineering – National Technical University of Athens, National Observatory of Athens, 108 pages, September 2014.
  8. A. Efstratiadis, D. Koutsoyiannis, and S.M. Papalexiou, Description of methodology for intense rainfall analysis , DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools, Contractors: ETME: Peppas & Collaborators, Grafeio Mahera, Department of Water Resources and Environmental Engineering – National Technical University of Athens, National Observatory of Athens, 55 pages, November 2012.
  9. A. Efstratiadis, D. Koutsoyiannis, N. Mamassis, P. Dimitriadis, and A. Maheras, Litterature review of flood hydrology and related tools, DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools, Contractors: ETME: Peppas & Collaborators, Grafeio Mahera, Department of Water Resources and Environmental Engineering – National Technical University of Athens, National Observatory of Athens, 115 pages, October 2012.
  10. N. Mamassis, A. Efstratiadis, G. Karavokiros, S. Kozanis, and A. Koukouvinos, Final report, Maintenance, upgrading and extension of the Decision Support System for the management of the Athens water resource system, Contractors: , Report 2, 84 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, November 2011.
  11. C. Makropoulos, D. Damigos, A. Efstratiadis, A. Koukouvinos, and A. Benardos, Synoptic report and final conclusions, Cost of raw water of the water supply of Athens, 32 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, October 2010.
  12. C. Makropoulos, A. Efstratiadis, and A. Koukouvinos, Appraisal of financial cost and proposals for a rational management of the hydrosystem, Cost of raw water of the water supply of Athens, 73 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, October 2010.
  13. C. Makropoulos, A. Koukouvinos, A. Efstratiadis, and N. Chalkias, Mehodology for estimation of the financial cost , Cost of raw water of the water supply of Athens, 40 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, July 2010.
  14. S. Kozanis, A. Christofides, and A. Efstratiadis, Scientific documentation of the Hydrognomon software (version 4 ), Development of Database and software applications in a web platform for the "National Databank for Hydrological and Meteorological Information" , Contractor: Department of Water Resources and Environmental Engineering – National Technical University of Athens, 173 pages, Athens, June 2010.
  15. A. Koukouvinos, A. Efstratiadis, and E. Rozos, Hydrogeios - Version 2.0 - User manual, Development of Database and software applications in a web platform for the "National Databank for Hydrological and Meteorological Information" , Contractor: Department of Water Resources and Environmental Engineering – National Technical University of Athens, 100 pages, November 2009.
  16. S.M. Papalexiou, and A. Efstratiadis, Final report, Flood risk estimation and forecast using hydrological models and probabilistic methods , 116 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, November 2009.
  17. A. Efstratiadis, E. Rozos, and A. Koukouvinos, Hydrogeios: Hydrological and hydrogeological simulation model - Documentation report, Development of Database and software applications in a web platform for the "National Databank for Hydrological and Meteorological Information" , 139 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, November 2009.
  18. A. Efstratiadis, G. Karavokiros, and N. Mamassis, Master plan of the Athens water resource system - Year 2009, Maintenance, upgrading and extension of the Decision Support System for the management of the Athens water resource system, Contractors: , Report 1, 116 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, April 2009.
  19. D. Koutsoyiannis, N. Mamassis, A. Koukouvinos, and A. Efstratiadis, Summary report, Athens, Investigation of management scenarios for the Smokovo reservoir, Contractor: Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, 37 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, August 2008.
  20. D. Koutsoyiannis, N. Mamassis, A. Koukouvinos, and A. Efstratiadis, Final report, Investigation of management scenarios for the Smokovo reservoir, Contractor: Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Report 4, 66 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, July 2008.
  21. A. Efstratiadis, A. Koukouvinos, N. Mamassis, and D. Koutsoyiannis, Alternative scenarios for the management and optimal operation of the Smokovo reservoir and the related works, Investigation of management scenarios for the Smokovo reservoir, Contractor: Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Report 3, 104 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, July 2008.
  22. D. Koutsoyiannis, A. Andreadakis, R. Mavrodimou, A. Christofides, N. Mamassis, A. Efstratiadis, A. Koukouvinos, G. Karavokiros, S. Kozanis, D. Mamais, and K. Noutsopoulos, National Programme for the Management and Protection of Water Resources, Support on the compilation of the national programme for water resources management and preservation, 748 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, February 2008.
  23. G. Karavokiros, A. Efstratiadis, and I. Vazimas, HYDRONOMEAS - Computer System for Simulation and Optimal Management of Water Resources - User Manual - Version 4.0, Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS), Contractor: NAMA, 144 pages, January 2007.
  24. A. Efstratiadis, G. Karavokiros, and D. Koutsoyiannis, Theoretical documentation of model for simulating and optimising the management of water resources "Hydronomeas", Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS), Contractor: NAMA, Report 9, 91 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, January 2007.
  25. N. Mamassis, R. Mavrodimou, A. Efstratiadis, M. Heidarlis, A. Tegos, A. Koukouvinos, P. Lazaridou, M. Magaliou, and D. Koutsoyiannis, Investigation of alternative organisations and operations of a Water Management Body for the Smokovo projects, Investigation of management scenarios for the Smokovo reservoir, Report 2, 73 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, March 2007.
  26. A. Efstratiadis, A. Tegos, G. Karavokiros, I. Kyriazopoulou, and I. Vazimas, Master Plan for water resources management for the area of Karditsa, Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS), Report 16, 132 pages, NAMA, Athens, December 2006.
  27. A. Efstratiadis, A. Koukouvinos, E. Rozos, A. Tegos, and I. Nalbantis, Theoretical documentation of model for simulating hydrological-hydrogeological processes of river basin "Hydrogeios", Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS), Contractor: NAMA, Report 4a, 103 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, December 2006.
  28. A. Koukouvinos, A. Efstratiadis, L. Lazaridis, and N. Mamassis, Data report, Investigation of management scenarios for the Smokovo reservoir, Report 1, 66 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, January 2006.
  29. A. Efstratiadis, D. Koutsoyiannis, and S. Kozanis, Theoretical documentation of stochastic simulation of hydrological variables model "Castalia", Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS), Contractor: NAMA, Report 3, 61 pages, doi:10.13140/RG.2.2.30224.40966, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, September 2005.
  30. S. Kozanis, A. Christofides, and A. Efstratiadis, Description of the data management and processing system "Hydrognomon", Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS), Contractor: NAMA, Report 2, 141 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, September 2005.
  31. R. Mavrodimou, I. Nalbantis, and A. Efstratiadis, Guidelines for the assessment of water resource projects, Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS), Contractor: NAMA, Report 13, 72 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, June 2005.
  32. I. Nalbantis, N. Mamassis, D. Koutsoyiannis, and A. Efstratiadis, Final report, Modernisation of the supervision and management of the water resource system of Athens, Report 25, 135 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, March 2004.
  33. G. Karavokiros, A. Efstratiadis, and D. Koutsoyiannis, Hydronomeas (version 3.2) - A system to support the management of water resources, Modernisation of the supervision and management of the water resource system of Athens, Report 24, 142 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, January 2004.
  34. A. Efstratiadis, and D. Koutsoyiannis, Castalia (version 2.0) - A system for stochastic simulation of hydrological variables, Modernisation of the supervision and management of the water resource system of Athens, Report 23, 103 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, January 2004.
  35. A. Efstratiadis, I. Nalbantis, and E. Rozos, Model for simulating the hydrological cycle in Boeoticos Kephisos and Yliki basins, Modernisation of the supervision and management of the water resource system of Athens, Report 21, 196 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, January 2004.
  36. A. Efstratiadis, and N. Mamassis, Hydrometeorological data processing, Modernisation of the supervision and management of the water resource system of Athens, Report 17, 72 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, January 2004.
  37. D. Koutsoyiannis, I. Nalbantis, G. Karavokiros, A. Efstratiadis, N. Mamassis, A. Koukouvinos, A. Christofides, E. Rozos, A. Economou, and G. M. T. Tentes, Methodology and theoretical background, Modernisation of the supervision and management of the water resource system of Athens, Report 15, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, January 2004.
  38. D. Koutsoyiannis, A. Efstratiadis, G. Karavokiros, A. Koukouvinos, N. Mamassis, I. Nalbantis, E. Rozos, Ch. Karopoulos, A. Nassikas, E. Nestoridou, and D. Nikolopoulos, Master plan of the Athens water resource system — Year 2002–2003, Modernisation of the supervision and management of the water resource system of Athens, Report 14, 215 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, December 2002.
  39. A. Efstratiadis, G. Karavokiros, and D. Koutsoyiannis, Second updating of simulations of the Athens water resource system for hydrologic year 2001-02, Modernisation of the supervision and management of the water resource system of Athens, Contractor: Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Report 13b, 25 pages, Athens, April 2002.
  40. A. Efstratiadis, G. Karavokiros, and D. Koutsoyiannis, First updating of simulations of the Athens water resource system for hydrologic year 2001-02, Modernisation of the supervision and management of the water resource system of Athens, Contractor: Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Report 13a, 21 pages, Athens, February 2002.
  41. A. Efstratiadis, A. Koukouvinos, D. Koutsoyiannis, and N. Mamassis, Hydrological Study, Investigation of scenarios for the management and protection of the quality of the Plastiras Lake, Report 2, 70 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, March 2002.
  42. K. Hadjibiros, D. Koutsoyiannis, A. Andreadakis, A. Katsiri, A. Stamou, A. Valassopoulos, A. Efstratiadis, I. Katsiris, M. Kapetanaki, A. Koukouvinos, N. Mamassis, K. Noutsopoulos, G.-F. Sargentis, and A. Christofides, Overview report, Investigation of scenarios for the management and protection of the quality of the Plastiras Lake, Report 1, 23 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, March 2002.
  43. G. Karavokiros, A. Efstratiadis, and D. Koutsoyiannis, Second updating of simulations of the Athens water resource system for hydrologic year 2000-01, Modernisation of the supervision and management of the water resource system of Athens, Contractor: Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, 17 pages, Athens, June 2001.
  44. G. Karavokiros, A. Efstratiadis, and D. Koutsoyiannis, First updating of simulations of the Athens water resource system for hydrologic year 2000-01, Modernisation of the supervision and management of the water resource system of Athens, Contractor: Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, 14 pages, Athens, February 2001.
  45. D. Koutsoyiannis, A. Efstratiadis, G. Karavokiros, A. Koukouvinos, N. Mamassis, I. Nalbantis, D. Grintzia, N. Damianoglou, Ch. Karopoulos, S. Nalpantidou, A. Nassikas, D. Nikolopoulos, A. Xanthakis, and K. Ripis, Master plan of the Athens water resource system — Year 2001–2002, Modernisation of the supervision and management of the water resource system of Athens, Contractor: Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Report 13, Athens, December 2001.
  46. A. Efstratiadis, I. Nalbantis, and N. Mamassis, Hydrometeorological data processing, Modernisation of the supervision and management of the water resource system of Athens, Report 8, 129 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, December 2000.
  47. G. Karavokiros, A. Efstratiadis, A. Koukouvinos, N. Mamassis, I. Nalbantis, N. Damianoglou, K. Constantinidou, S. Nalpantidou, A. Xanthakis, and S Politaki, Analysis of the system requirements, Modernisation of the supervision and management of the water resource system of Athens, Report 1, 74 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, January 2000.
  48. D. Koutsoyiannis, A. Efstratiadis, G. Karavokiros, A. Koukouvinos, N. Mamassis, I. Nalbantis, D. Grintzia, N. Damianoglou, A. Xanthakis, S Politaki, and V. Tsoukala, Master plan of the Athens water resource system - Year 2000-2001, Modernisation of the supervision and management of the water resource system of Athens, Contractor: Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Report 5, 165 pages, Athens, December 2000.
  49. G. Karavokiros, A. Efstratiadis, and D. Koutsoyiannis, Hydronomeas (version 2): A system for the support of the water resources management, Modernisation of the supervision and management of the water resource system of Athens, Contractor: Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Report 11, 84 pages, Athens, December 2000.
  50. A. Efstratiadis, and D. Koutsoyiannis, Castalia: A system for the stochastic simulation of hydrological variables, Modernisation of the supervision and management of the water resource system of Athens, Contractor: Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Report 9, 70 pages, Athens, December 2000.

Miscellaneous works

  1. A. Efstratiadis, "Investigation of global optimum seeking methods in water resources problems" and "Parallel memetic algorithms - Parallel evolutionary algorithms and other techniques": Comparative presentation, September 2012.
  2. H. Tyralis, and A. Efstratiadis, "National Programme for the Management and Protection of Water Resources" and "Impacts of climate change to surface and groundwater resources of Greece": Comparative presentation, September 2012.
  3. A. Efstratiadis, and N. Mamassis, Evaluating models or evaluating modelling practices? - Interactive comment on HESS Opinions “Crash tests for a standardized evaluation of hydrological models”, Hydrology and Earth System Sciences Discussions, 6, C1404–C1409, 2009.
  4. G. Karavokiros, A. Efstratiadis, and D. Koutsoyiannis, Hydronomeas: A system for supporting water resources management, 8 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, February 2002.
  5. D. Koutsoyiannis, and A. Efstratiadis, Castalia: A system for stochastic simulation of hydrologic variables, 6 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, February 2002.

Engineering reports

  1. A. Efstratiadis, A. Koukouvinos, and N. Mamassis, Estimation of flood hydrographs at selected streams crossing Trans Adriatic Pipeline (TAP) – Section 1, Detailed design of TAP - Section 1, Commissioner: Asprofos Engineering, Contractors: , September 2016.
  2. A. Efstratiadis, A. Koukouvinos, N. Mamassis, S. Baki, Y. Markonis, and D. Koutsoyiannis, [No English title available], , Commissioner: Ministry of Environment, Energy and Climate Change, Contractor: Exarhou Nikolopoulos Bensasson, 205 pages, February 2013.
  3. A. Koukouvinos, A. Efstratiadis, N. Mamassis, Y. Markonis, S. Baki, and D. Koutsoyiannis, [No English title available], , Commissioner: Ministry of Environment, Energy and Climate Change, Contractor: Exarhou Nikolopoulos Bensasson, 144 pages, February 2013.
  4. N. Mamassis, and A. Efstratiadis, Drought and water shortage study, , Commissioner: Ministry of Environment, Energy and Climate Change, Contractor: Ydroexigiantiki, 145 pages, June 2012.
  5. A. Efstratiadis, Hydrological study, Hydrological study of the ski center area of Parnassos, Contractor: Lazaridis and Collaborators, June 2010.
  6. A. Efstratiadis, and E. Rozos, Hydrological investigation, Water supply works from Gadouras dam - Phase B, Commissioner: Ministry of Environment, Planning and Public Works, Contractor: Ydroexigiantiki, 57 pages, July 2010.
  7. D. Koutsoyiannis, N. Mamassis, and A. Efstratiadis, Essential works to ensure the established ecological flow, Specific Technical Study for the Ecological Flow from the Dam of Stratos, Commissioner: Public Power Corporation, Contractor: ECOS Consultants S.A., 22 pages, Athens, May 2009.
  8. D. Koutsoyiannis, N. Mamassis, and A. Efstratiadis, Investigation of ecological flow, Specific Technical Study for the Ecological Flow from the Dam of Stratos, Commissioner: Public Power Corporation, Contractor: ECOS Consultants S.A., 88 pages, Athens, May 2009.
  9. N. Mamassis, A. Koukouvinos, and A. Efstratiadis, Hydrological study, , Commissioner: Ministry of Agricultural Development and Food, Contractor: ETME- Antoniou Peppas and Co., Athens, 2006.
  10. D. Argyropoulos, N. Mamassis, A. Efstratiadis, and E. Rozos, Water resource management of Xerias and Yannouzagas basins, Water resource management of the Integrated Tourist Development Area in Messenia, Commissioner: TEMES - Tourist Enterprises of Messinia, Contractor: D. Argyropoulos, 73 pages, Athens, 2005.
  11. D. Argyropoulos, E. Lagadinou, and A. Efstratiadis, Water resources management of the Selas catchment, Water resource management of the Integrated Tourist Development Area in Messenia, Commissioner: TEMES - Tourist Enterprises of Messinia, Contractor: D. Argyropoulos, 48 pages, Athens, 2005.
  12. N. Mamassis, A. Efstratiadis, M. Lasithiotakis, and D. Koutsoyiannis, First monitoring programme for the estimation of water resources in the Pylos-Romanos area for the water supply of the ITDA , Water resource management of the Integrated Tourist Development Area in Messenia, Commissioner: TEMES - Tourist Enterprises of Messinia, Contractor: D. Argyropoulos, 17 pages, Athens, 2003.
  13. D. Koutsoyiannis, N. Mamassis, and A. Efstratiadis, Hydrological study of the Sperhios basin, Hydrological and hydraulic study for the flood protection of the new railway in the region of Sperhios river, Commissioner: ERGA OSE, Contractor: D. Soteropoulos, Collaborators: D. Koutsoyiannis, 197 pages, Athens, January 2003.
  14. A. Efstratiadis, G. M. T. Tentes, D. Koutsoyiannis, and D. Argyropoulos, Technical report, Preliminary Water Supply Study of the Thermoelectric Livadia Power Plant, Contractor: Ypologistiki Michaniki, 63 pages, Athens, 2001.
  15. D. Koutsoyiannis, I. Nalbantis, N. Mamassis, A. Efstratiadis, L. Lazaridis, and A. Daniil, Flood study, Engineering consultant for the project "Water supply of Heracleio and Agios Nicolaos from the Aposelemis dam", Commissioner: Ministry of Environment, Planning and Public Works, Contractor: Aposelemis Joint Venture, Athens, October 2001.
  16. D. Koutsoyiannis, A. Efstratiadis, N. Mamassis, I. Nalbantis, and L. Lazaridis, Hydrological study of reservoir operation, Engineering consultant for the project "Water supply of Heracleio and Agios Nicolaos from the Aposelemis dam", Commissioner: Ministry of Environment, Planning and Public Works, Contractor: Aposelemis Joint Venture, Athens, October 2001.
  17. D. Koutsoyiannis, A. Efstratiadis, and N. Mamassis, Appraisal of the surface water potential and its exploitation in the Acheloos river basin and in Thessaly, Ch. 5 of Study of Hydrosystems, Complementary study of environmental impacts from the diversion of Acheloos to Thessaly, Commissioner: Ministry of Environment, Planning and Public Works, Contractor: Ydroexigiantiki, Collaborators: D. Koutsoyiannis, 2001.

Details on research projects

Participation as Principal Investigator

  1. Nonlinear methods in multicriteria water resource optimization problems

    Duration: November 2002–December 2007

    Budget: €33 274

    Commissioned by: Ministry of National Education

    Contractor: National Technical University of Athens

    Project director: D. Koutsoyiannis

    Principal investigator: A. Efstratiadis

    Programme: Ηράκλειτος

Participation as Researcher

  1. DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools

    Duration: March 2011–March 2014

    Budget: €145 000

    Commissioned by: General Secretariat of Research and Technology

    Contractors:

    1. ETME: Peppas & Collaborators
    2. Grafeio Mahera
    3. Department of Water Resources and Environmental Engineering
    4. National Observatory of Athens

    Project director: D. Koutsoyiannis

    Principal investigator: N. Mamassis

    Programme: ΕΣΠΑ "Συνεργασία"

    The project aims to develop a set of physically-based methodologies associated with modelling and forecasting of extreme rainfall events and the subsequent flood events, and adapted to the peculiarities of the hydroclimatic and geomorphological conditions of Greece. It includes the implementation of a set of research river basins that comprises a number of gauged basins in Greece and Cyprus with reliable measurements of adequate length, as well as three new experimental basins (with their sub-basins), which will be equipped with the necessary infrastructure. From the field data analysis (hydrological, meteorological, geographical) physically-established regional models will be devoloped for the estimation of characteristic hydrological design quantities, along with hydrological-hydraulic models, which will be integrated within an operational system for hydrometeorological forecasting. A framework of design criteria and methodologies (in a draft form for discussion) will be prepared for the elaboration of hydrological studies for flood-prevention works.

    Project web-page: http://deucalionproject.gr/

  1. EU COST Action ES0901: European procedures for flood frequency estimation (FloodFreq)

    Duration: February 2010–December 2013

    Project director: T. Kjeldsen

    The main objective is to undertake a pan-European comparison and evaluation of methods for flood frequency estimation under the various climatologic and geographic conditions found in Europe, and different levels of data availability. A scientific framework for assessing the ability of these methods to predict the impact of environmental change (climate change, land-use and river engineering works) on future flood frequency characteristics (flood occurrence and magnitude) will be developed and tested. The availability of such procedures is crucial for the formulation of robust flood risk management strategies as required by the Directive of the European Parliament on the assessment and management of floods. The outputs from FloodFreq will be disseminated to: academics, professionals involved in operational flood risk management from private and public institutions, and relevant policy makers from national and international regulatory bodies. This Action enables cooperation between researchers involved in nationally funded research projects to, thereby enabling testing of methods free from the constraints of administrative boundaries, and allowing a more efficient use of European flood research funding.

    Project web-page: http://www.costfloodfreq.eu/

  1. Maintenance, upgrading and extension of the Decision Support System for the management of the Athens water resource system

    Duration: October 2008–November 2011

    Budget: €72 000

    Project director: N. Mamassis

    Principal investigator: D. Koutsoyiannis

    This research project includes the maintenance, upgrading and extension of the Decision Support System that developed by NTUA for EYDAP in the framework of the research project “Updating of the supervision and management of the water resources’ system for the water supply of the Athens’ metropolitan area”. The project is consisted of the following parts: (a) Upgrading of the Data Base, (b)Upgrading and extension of hydrometeorological network, (c) upgrading of the hydrometeorological data process software, (d) upgrading and extension of the Hydronomeas software, (e) hydrological data analysis and (f) support to the preparation of the annual master plans

  1. Development of Database and software applications in a web platform for the "National Databank for Hydrological and Meteorological Information"

    Duration: December 2009–May 2011

    Budget: €140 000

    Commissioned by: Hydroscope Systems Consortium

    Contractor: Department of Water Resources and Environmental Engineering

    Project director: N. Mamassis

    Principal investigator: N. Mamassis

    The Ministry of Environment, Physical Planning & Public Works assigned to a consortium of consultancy companies the Project "Development of a new software platform for the management and operation of the National Databank for Hydrologic and Meteorological Information - 3rd Phase within a GIS environment and relevant dissemination actions". In the framework of the specific project a research team of NTUA undertakes a part as subcontractor. NTUA delivers methodologies for further development of the databases and applications of the Databank and their migration into a web platform (including the experimental node openmeteo.org for free data storage for the public). Specifically, using the knowhow that has been developed in the past by Research Teams from the Department of Water Resources of the School of Civil Engineering a database system and software applications (included hydrological models) are created fully adapted for operation over the Internet. NTUA's contribution is primarily on the design of the new system and the hydrological and geographical database the development of distibuted hydological models, the adaptation of the system to the WFD 2000/60/EC and on supporting dissemination activities. Finally NTUA will participate in the technical support and pilot operation of the project after its delivery from the consortium to the Ministry.

    More information is available at http://www.hydroscope.gr/.

  1. OpenMI Life

    Duration: January 2006–December 2010

    The project's rationale lies in the Water Framework Directive,which demands an integrated approach to water management. This requires an ability to predict how catchment processes will interact. In most contexts, it is not feasible to build a single predictive model that adequately represents all the processes; therefore, a means of linking models of individual processes is required.The FP5 HarmonIT project's innovative and acclaimed solution, the Open Modelling Interface and Environment (OpenMI) met this need by simplifying the linking of hydrology related models.Its establishment will support and assist the strategic planning and integrated catchment management.

  1. Cost of raw water of the water supply of Athens

    Duration: June 2010–December 2010

    Budget: €110 000

    Commissioned by: Fixed Assets Company EYDAP

    Contractor: Department of Water Resources and Environmental Engineering

    Project director: C. Makropoulos

  1. Observations, Analysis and Modeling of Lightning Activity in Thunderstorms, for Use in Short Term Forecasting of Flash Floods

    Duration: October 2006–September 2009

    Commissioned by: DGXII / FP6-SUSTDEV-2005-3.II.1.2

    Contractor: National Observatory of Athens

    Project director: K. Lagouvardos

  1. Flood risk estimation and forecast using hydrological models and probabilistic methods

    Duration: February 2007–August 2008

    Budget: €15 000

    Commissioned by: National Technical University of Athens

    Contractor: Department of Water Resources and Environmental Engineering

    Collaborators: Hydrologic Research Center

    Project director: D. Koutsoyiannis

    Principal investigator: S.M. Papalexiou

    Programme: Πρόγραμμα Βασικής Έρευνας ΕΜΠ "Κωνσταντίνος Καραθεοδωρή"

    The objective of this project is the development of an integrated framework for the estimation and forecast of flood risk using stochastic, hydrological and hydraulics methods. The study area is the Boeticos Kephisos river basin. The project includes analysis of severe storm episodes in the basin, the understanding of mechanisms of flood generation in this karstic basin and the estimation of flood risk in characteristic sites of the hydrosystem.

  1. Support on the compilation of the national programme for water resources management and preservation

    Duration: February 2007–May 2007

    Budget: €45 000

    Commissioned by: Ministry of Environment, Planning and Public Works

    Contractor: Department of Water Resources and Environmental Engineering

    Project director: D. Koutsoyiannis

    Principal investigator: A. Andreadakis

    This project updates and expands a previous research project (Classification of quantitative and qualitative parameters of water resources in water districts of Greece), which has been commissioned by the Ministry of Development and conducted by the same team of NTUA in co-operation with the Ministry of Development, IGME, and KEPE.

    The project includes defining the methodology, analyzing the water resources in the 14 water districts, quantity and quality and the relations between them, describing the existing administrative and development frameworks for water resources management and protection presenting the national, peripheral and sectoral water-related policies, and proposing an approach to a water resource management and protection programme (conclusions, problems, solutions, and proposals for projects and measures).

  1. Investigation of management scenarios for the Smokovo reservoir

    Duration: November 2005–December 2006

    Budget: €60 000

    Commissioned by: Special Directorate for the Management of Corporate Programs of Thessaly

    Contractor: Department of Water Resources, Hydraulic and Maritime Engineering

    Project director: D. Koutsoyiannis

    Principal investigator: N. Mamassis

    Programme: Επιχειρησιακά Σχέδια Διαχείρισης Δικτύων Σμοκόβου

  1. Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS)

    Duration: July 2003–June 2006

    Budget: €779 656

    Commissioned by: General Secretariat of Research and Technology

    Contractor: NAMA

    Collaborators:

    1. Department of Water Resources, Hydraulic and Maritime Engineering
    2. Municipal Company of Water Supply and Sewerage of Karditsa
    3. Aeiforiki Dodekanisou
    4. Marathon Data Systems

    Project director: D. Koutsoyiannis

    Principal investigator: A. Andreadakis

    Programme: ΕΠΑΝ, Φυσικό Περιβάλλον και Βιώσιμη Ανάπτυξη

    The project aims at providing support to decision-making processes within the direction of integrated management of water resource systems at a variety of scales. Several methodologies and computing tools are developed, which are incorporated into an integrated information system. The main deliverable is an operational software package of general use, which is evaluated and tested on two pilot case studies, concerning hydrosystems in Greece with varying characteristics (Karditsa, Dodecanesus). The end-product of the project is a software system for simulation and optimisation of hydrosystem operation, as well as a series of separate software applications for solving specific problems, aiming at producing input data to the central system or post-processing of the results. The project includes eleven work packages, eight for basic research, two for industrial research and one for the pilot applications.

  1. Modernisation of the supervision and management of the water resource system of Athens

    Duration: March 1999–December 2003

    Commissioned by: Water Supply and Sewerage Company of Athens

    Contractor: Department of Water Resources, Hydraulic and Maritime Engineering

    Project director: D. Koutsoyiannis

    Principal investigator: D. Koutsoyiannis

    Due to the dry climate of the surrounding region, Athens has suffered from frequent water shortages during its long history but now has acquired a reliable system for water supply. This extensive and complex water resource system extends over an area of around 4000 km2 and includes surface water and groundwater resources. It incorporates four reservoirs, 350 km of main aqueducts, 15 pumping stations and more than 100 boreholes. The water resource system also supplies secondary uses such as irrigation and water supply of nearby towns. The Athens Water Supply and Sewerage Company (EYDAP) that runs the system commissioned this project, which comprises: (a) development of a geographical information system for the representation and supervision of the external water supply system; (b) development of a measurement system for the water resources of Athens; (c) development of a system for the estimation and prediction of the water resource system of Athens utilising stochastic models; (d) development of a decision support system for the integrated management of water resource system of Athens using simulation-optimisation methodologies; and (e) cooperation and transfer of knowledge between NTUA and EYDAP.

    Products: 17 reports; 14 publications

  1. Investigation of scenarios for the management and protection of the quality of the Plastiras Lake

    Duration: May 2001–January 2002

    Commissioned by:

    1. Prefectural Government of Karditsa
    2. Municipality of Karditsa

    Contractor: Department of Water Resources, Hydraulic and Maritime Engineering

    Project director: K. Hadjibiros

    Principal investigator: D. Koutsoyiannis

    To protect the Plastiras Lake, a high quality of the natural landscape and a satisfactory water quality must be ensured, the conflicting water uses and demands must be arranged and effective water management practices must be established. To this aim, the hydrology of the catchment is investigated, the geographical, meteorological and water power data are collected and processed, the water balance is studied and a stochastic model is constructed to support the study of alternative management scenarios. In addition, an analysis of the natural landscape is performed and the negative influences (e.g. dead tries) are determined and quantified using GIS. Furthermore, the water quality parameters are evaluated, the water quality state is assessed, the quantitative targets are determined, the pollution sources are identified and measures for the reduction of pollution are studied using a hydrodynamic model with emphasis on the nutrient status. Based on the results of these analyses, scenarios of safe water release are suggested.

  1. Evaluation of Management of the Water Resources of Sterea Hellas - Phase 3

    Duration: November 1996–December 2000

    Commissioned by: Directorate of Water Supply and Sewage

    Contractor: Department of Water Resources, Hydraulic and Maritime Engineering

    Project director: D. Koutsoyiannis

    Principal investigator: D. Koutsoyiannis

    The main objectives of the research project are the evaluation and management of the water resources, both surface and subsurface, of the Sterea Hellas region, and the systematic study of all parameters related to the rational development and management of the water resources of this region. Another objective of the project, considered as an infrastructure work, is the development of software for the hydrological, hydrogeological and operational simulation of the combined catchments of the study area. The development of the software and, at the same time, the development of methodologies suitable for the Greek conditions will assist in decision-making concerning the water resources management of Sterea Hellas and of other Greek regions. The project also aims at the improving of the cooperation between the National Technical University of Athens and the Ministry of Environment, Planning and Public Works. This is considered as a necessary condition for the continuous updating of the project results as well as for the rational analysis of the water resource problems of the Sterea Hellas region. The specific themes of Phase 3 are: (a) the completion of the information systems of the previous phases, which concerned hydrological and hydrogeological information, by including two additional levels of information related to the water uses and the water resources development works; (b) the development of methodologies for optimising the hydrosystems operation and the construction of integrated simulation and optimisation models for the two major hydrosystems of the study area (Western and Eastern Sterea Hellas); and (c) the integration of all computer systems (databases, geographical information systems, application models) into a unified system with collaborating components.

Details on engineering studies

  1. Σχέδιο Διαχείρισης Κινδύνων Πλημμύρας των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Ανατολικής Πελοποννήσου (GR03)

    Commissioned by: Specific Secreteriat of Water

    Contractor: ADT-OMEGA

  1. Σχέδιο Διαχείρισης Κινδύνων Πλημμύρας των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Βόρειας Πελοποννήσου (GR02)

    Commissioned by: Specific Secreteriat of Water

    Contractor: ADT-OMEGA

  1. Παροχή Συμβουλευτικών Υπηρεσιών για την Κατάρτιση του 2ου Σχεδίου Διαχείρισης Λεκάνης Απορροής Ποταμού της Κύπρου για την Εφαρμογή της Οδηγίας 2000/60/ΕΚ και για την Κατάρτιση του Σχεδίου Διαχείρισης Κινδύνων Πλημμύρας για την Εφαρμογή της Οδηγίας 2007/60

    Commissioned by: Depatment of Water Development of Cyprus

    Contractor: LDK & ECOS

  1. Έργα Ορεινής Υδρονομίας Ρεμάτων Ορεινών Λεκανών Απορροής Αλμωπίας

  1. Σχέδιο Διαχείρισης Κινδύνων Πλημμύρας των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Δυτικής Πελοποννήσου (GR01)

    Commissioned by: Specific Secreteriat of Water

    Contractor: ADT-OMEGA

  1. Σχέδιο Διαχείρισης Κινδύνων Πλημμύρας των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Κρήτης (GR13)

    Commissioned by: Specific Secreteriat of Water

    Contractor: ADT-OMEGA

  1. Hydrological study of the ski center area of Parnassos

    Duration: June 2010–July 2010

    Contractor: Lazaridis and Collaborators

  1. Water supply works from Gadouras dam - Phase B

    Duration: July 2009–July 2010

    Commissioned by: Ministry of Environment, Planning and Public Works

    Contractor: Ydroexigiantiki

  1. Specific Technical Study for the Ecological Flow from the Dam of Stratos

    Duration: January 2009–June 2009

    Commissioned by: Public Power Corporation

    Contractor: ECOS Consultants S.A.

  1. Μελέτες Διερεύνησης Προβλημάτων Άρδευσης και Δυνατότητας Κατασκευής Ταμιευτήρων Νομού Βοιωτίας

    Duration: January 2006–December 2006

    Commissioned by: Ministry of Agricultural Development and Food

    Contractor: ETME- Antoniou Peppas and Co.

  1. Water resource management of the Integrated Tourist Development Area in Messenia

    Duration: January 2003–December 2005

    Commissioned by: TEMES - Tourist Enterprises of Messinia

    Contractor: D. Argyropoulos

  1. Hydrological and hydraulic study for the flood protection of the new railway in the region of Sperhios river

    Duration: October 2002–January 2003

    Budget: €90 000

    Commissioned by: ERGA OSE

    Contractor: D. Soteropoulos

    Collaborators: D. Koutsoyiannis

  1. Engineering consultant for the project "Water supply of Heracleio and Agios Nicolaos from the Aposelemis dam"

    Duration: October 2000–December 2002

    Budget: €1 782 000

    Commissioned by: Ministry of Environment, Planning and Public Works

    Contractor: Aposelemis Joint Venture

  1. Preliminary Water Supply Study of the Thermoelectric Livadia Power Plant

    Duration: January 2001–December 2001

    Contractor: Ypologistiki Michaniki

  1. Complementary study of environmental impacts from the diversion of Acheloos to Thessaly

    Duration: December 2000–February 2001

    Commissioned by: Ministry of Environment, Planning and Public Works

    Contractor: Ydroexigiantiki

    Collaborators: D. Koutsoyiannis

Published work in detail

Publications in scientific journals

  1. E. Savvidou, A. Efstratiadis, A. D. Koussis, A. Koukouvinos, and D. Skarlatos, A curve number approach to formulate hydrological response units within distributed hydrological modelling, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-627, 2016, (in review).

    We propose a systematic framework for delineating Hydrological Response Units (HRUs), based on a modified Curve Number (CN) approach. The CN-value accounts for three major physiographic characteristics of a river basin, by means of classes of soil permeability, land use/land cover characteristics, and drainage capacity. A semi-automatic procedure in a GIS environment allows producing basin maps of distributed CN-values as the product of the three classified layers. The map of CN-values is used in the context of model parameterization, in order to identify the essential number and spatial extent of HRUs and, consequently, the number of control variables of the calibration problem. The new approach aims at reducing the subjectivity introduced by the definition of HRUs, and simultaneously at providing parsimonious modelling schemes. In particular, the CN-based parameterization (1) allows the user to assign as many parameters as can be supported by the available hydrological information, (2) associates the model parameters with anticipated basin responses, as quantified in terms of CN classes across HRUs, and (3) reduces the effort for model calibration, simultaneously ensuring good predictive capacity. The advantages of the proposed framework are demonstrated in the hydrological simulation of Nedontas river basin, Greece, in which parameterizations of different complexities are employed in a recently improved version of the HYDROGEIOS modelling framework.

    Full text: http://www.itia.ntua.gr/en/getfile/1673/1/documents/hess-2016-627.pdf (2890 KB)

    See also: http://www.hydrol-earth-syst-sci-discuss.net/hess-2016-627/

  1. P. Dimitriadis, A. Tegos, A. Oikonomou, V. Pagana, A. Koukouvinos, N. Mamassis, D. Koutsoyiannis, and A. Efstratiadis, Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping, Journal of Hydrology, 534, 478–492, doi:10.1016/j.jhydrol.2016.01.020, 2016.

    One-dimensional and quasi-two-dimensional hydraulic freeware models (HEC-RAS, LISFLOOD-FP and FLO-2d) are widely used for flood inundation mapping. These models are tested on a benchmark test with a mixed rectangular-triangular channel cross section. Using a Monte-Carlo approach, we employ extended sensitivity analysis by simultaneously varying the input discharge, longitudinal and lateral gradients and roughness coefficients, as well as the grid cell size. Based on statistical analysis of three output variables of interest, i.e. water depths at the inflow and outflow locations and total flood volume, we investigate the uncertainty enclosed in different model configurations and flow conditions, without the influence of errors and other assumptions on topography, channel geometry and boundary conditions. Moreover, we estimate the uncertainty associated to each input variable and we compare it to the overall one. The outcomes of the benchmark analysis are further highlighted by applying the three models to real-world flood propagation problems, in the context of two challenging case studies in Greece.

    Other works that reference this work (this list might be obsolete):

    1. Apel, H., O. Martínez Trepat, N. N. Hung, D. T. Chinh, B. Merz, and N. V. Dung, Combined fluvial and pluvial urban flood hazard analysis: concept development and application to Can Tho city, Mekong Delta, Vietnam, Natural Hazards and Earth System Sciences, 16, 941-961, doi:10.5194/nhess-16-941-2016, 2016.
    2. Papaioannou , G., A. Loukas, L. Vasiliades, and G. T. Aronica, Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach, Natural Hazards, 83, 117-132, doi:10.1007/s11069-016-2382-1, 2016.
    3. #Santillan, J. R., A. M. Amora, M. Makinano-Santillan, J. T. Marqueso, L. C. Cutamora, J. L. Serviano, and R. M. Makinano, Assessing the impacts of flooding caused by extreme rainfall events through a combined geospatial and numerical modeling approach, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLI-B8, 2016, XXIII ISPRS Congress, Prague, doi:10.5194/isprs-archives-XLI-B8-1271-2016, 2016.
    4. Cheviron, B. and R. Moussa, Determinants of modelling choices for 1-D free-surface flow and morphodynamics in hydrology and hydraulics: a review, Hydrology and Earth System Sciences, 20, 3799-3830, doi:10.5194/hess-20-3799-2016, 2016.
    5. Mohd Talha Anees, K. Abdullah, M.N.M. Nawawi, Nik Norulaini Nik Ab Rahman, Abd. Rahni Mt. Piah, Nor Azazi Zakaria, M.I. Syakir, and A.K. Mohd. Omar, Numerical modeling techniques for flood analysis, Journal of African Earth Sciences, 124, 478–486, doi:10.1016/j.jafrearsci.2016.10.001, 2016.
    6. Skublics, D., G. Blöschl, and P. Rutschmann, Effect of river training on flood retention of the Bavarian Danube, Journal of Hydrology and Hydromechanics, 64(4), 349-356, doi:10.1515/johh-2016-0035, 2016.
    7. Doong, D.-J., W. Lo, Z. Vojinovic, W.-L. Lee, and S.-P. Lee, Development of a new generation of flood inundation maps—A case study of the coastal City of Tainan, Taiwan, Water, 8(11), 521, doi:10.3390/w8110521, 2016.
    8. #Cartaya, S., and R. Mantuano-Eduarte, Identificación de zonas en riesgo de inundación mediante la simulación hidráulica en un segmento del Río Pescadillo, Manabí, Ecuador, Revista de Investigación, 40(89), 158-170, 2016.
    9. Javadnejad, F., B. Waldron, and A. Hill, LITE Flood: Simple GIS-based mapping approach for real-time redelineation of multifrequency floods, Natural Hazards Review, doi:10.1061/(ASCE)NH.1527-6996.0000238, 2017.
    10. Shrestha, A., M. S. Babel, S. Weesakul, and Z. Vojinovic, Developing intensity–duration–frequency (IDF) curves under climate change uncertainty: The case of Bangkok, Thailand, Water, 9(2), 145, doi:10.3390/w9020145, 2017.
    11. Roushangar, K., M. T. Alami, V. Nourani, and A. Nouri, A cost model with several hydraulic constraints for optimizing in practice a trapezoidal cross section, Journal of Hydroinformatics, 19(3), 456-468, doi:10.2166/hydro.2017.081, 2017.
    12. Papaioannou, G., L. Vasiliades, A. Loukas, and G. T. Aronica, Probabilistic flood inundation mapping at ungauged streams due to roughness coefficient uncertainty in hydraulic modelling, Advances in Geosciences, 44, 23-34, doi:10.5194/adgeo-44-23-2017, 2017.

  1. I. Tsoukalas, P. Kossieris, A. Efstratiadis, and C. Makropoulos, Surrogate-enhanced evolutionary annealing simplex algorithm for effective and efficient optimization of water resources problems on a budget, Environmental Modelling and Software, 77, 122–142, doi:10.1016/j.envsoft.2015.12.008, 2016.

    In water resources optimization problems, the objective function usually presumes to first run a simulation model and then evaluate its outputs. However, long simulation times may pose significant barriers to the procedure. Often, to obtain a solution within a reasonable time, the user has to substantially restrict the allowable number of function evaluations, thus terminating the search much earlier than required. A promising strategy to address these shortcomings is the use of surrogate modeling techniques. Here we introduce the Surrogate-Enhanced Evolutionary Annealing-Simplex (SEEAS) algorithm that couples the strengths of surrogate modeling with the effectiveness and efficiency of the evolutionary annealing-simplex method. SEEAS combines three different optimization approaches (evolutionary search, simulated annealing, downhill simplex). Its performance is benchmarked against other surrogate-assisted algorithms in several test functions and two water resources applications (model calibration, reservoir management). Results reveal the significant potential of using SEEAS in challenging optimization problems on a budget.

    Related works:

    • [61] Early presentation if EGU conference

    Full text: http://www.itia.ntua.gr/en/getfile/1587/2/documents/SEEAS_paper.pdf (4310 KB)

    Additional material:

    Other works that reference this work (this list might be obsolete):

    1. Dariane , A. B., and M. M. Javadianzadeh, Towards an efficient rainfall–runoff model through partitioning scheme, Water, 8, 63; doi:10.3390/w8020063, 2016.
    2. Yaseen, Z. M., O. Jaafar, R. C. Deo, O. Kisi, J. Adamowski, J. Quilty, and A. El-Shafie, Boost stream-flow forecasting model with extreme learning machine data-driven: A case study in a semi-arid region in Iraq, Journal of Hydrology, doi:10.1016/j.jhydrol.2016.09.035, 2016.
    3. Müller, R., and N. Schütze, Multi-objective optimization of multi-purpose multi-reservoir systems under high reliability constraints, Environmental Earth Sciences, 75:1278, doi:10.1007/s12665-016-6076-5, 2016.
    4. #Christelis, V., V. Bellos, and G. Tsakiris, Employing surrogate modelling for the calibration of a 2D flood simulation model, Sustainable Hydraulics in the Era of Global Change: Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016), A. S. Erpicum, M. Pirotton, B. Dewals, P. Archambeau (editors), CRC Press, 2016.

  1. A. Tegos, A. Efstratiadis, N. Malamos, N. Mamassis, and D. Koutsoyiannis, Evaluation of a parametric approach for estimating potential evapotranspiration across different climates, Agriculture and Agricultural Science Procedia, 4, 2–9, doi:10.1016/j.aaspro.2015.03.002, 2015.

    Potential evapotranspiration (PET) is key input in water resources, agricultural and environmental modelling. For many decades, numerous approaches have been proposed for the consistent estimation of PET at several time scales of interest. The most recognized is the Penman-Monteith formula, which is yet difficult to apply in data-scarce areas, since it requires simultaneous observations of four meteorological variables (temperature, sunshine duration, humidity, wind velocity). For this reason, parsimonious models with minimum input data requirements are strongly preferred. Typically, these have been developed and tested for specific hydroclimatic conditions, but when they are applied in different regimes they provide much less reliable (and in some cases misleading) estimates. Therefore, it is essential to develop generic methods that remain parsimonious, in terms of input data and parameterization, yet they also allow for some kind of local adjustment of their parameters, through calibration. In this study we present a recent parametric formula, based on a simplified formulation of the original Penman-Monteith expression, which only requires mean daily or monthly temperature data. The method is evaluated using meteorological records from different areas worldwide, at both the daily and monthly time scales. The outcomes of this extended analysis are very encouraging, as indicated by the substantially high validation scores of the proposed approach across all examined data sets. In general, the parametric model outperforms well-established methods of the everyday practice, since it ensures optimal approximation of potential evapotranspiration.

    Full text: http://www.itia.ntua.gr/en/getfile/1549/1/documents/IRLA_paper.pdf (560 KB)

    See also: http://dx.doi.org/10.1016/j.aaspro.2015.03.002

    Other works that reference this work (this list might be obsolete):

    1. Stan, F.I., G. Neculau, L. Zaharia, G. Ioana-Toroimac, and S. Mihalache, Study on the evaporation and evapotranspiration measured on the Căldăruşani Lake (Romania), Procedia Environmental Sciences, 32, 281–289, doi:10.1016/j.proenv.2016.03.033, 2016.
    2. Esquivel-Hernández, G., R. Sánchez-Murillo, C. Birkel, S. P. Good, and J. Boll, Hydro-climatic and ecohydrological resistance/resilience conditions across tropical biomes of Costa Rica, Ecohydrology, doi:10.1002/eco.1860, 2017.

  1. A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Hydrological modelling of temporally-varying catchments: Facets of change and the value of information, Hydrological Sciences Journal, 60 (7-8), 1438–1461, doi:10.1080/02626667.2014.982123, 2015.

    River basins are by definition temporally varying systems: changes are apparent at every temporal scale, in terms of changing meteorological inputs and catchment characteristics, respectively due to inherently uncertain natural processes and anthropogenic interventions. In an operational context, the ultimate goal of hydrological modelling is predicting responses of the basin under conditions that are similar or different from those observed in the past. Since water management studies require that anthropogenic effects are considered known and a long hypothetical period is simulated, the combined use of stochastic models, for generating the inputs, and deterministic models that also represent the human interventions in modified basins, is found to be a powerful approach for providing realistic and statistically consistent simulations (in terms of product moments and correlations, at multiple time scales, and long-term persistence). The proposed framework is investigated on the Ferson Creek basin (USA) that exhibits significantly growing urbanization during the last 30 years. Alternative deterministic modelling options include a lumped water balance model with one time-varying parameter and a semi-distributed scheme based on the concept of hydrological response units. Model inputs and errors are respectively represented through linear and non-linear stochastic models. The resulting nonlinear stochastic framework maximizes the exploitation of the existing information, by taking advantage of the calibration protocol used in this issue.

    Additional material:

    See also: http://dx.doi.org/10.1080/02626667.2014.982123

    Other works that reference this work (this list might be obsolete):

    1. Thirel, G., V. Andréassian, and C. Perrin, On the need to test hydrological models under changing conditions, Hydrological Sciences Journal, 60(7-8), 1165-1173, doi:10.1080/02626667.2015.1050027, 2015.
    2. Biao, I. E., S. Gaba, A. E. Alamou, and A. Afouda, Influence of the uncertainties related to the random component of rainfall inflow in the Ouémé River Basin (Benin, West Africa), International Journal of Current Engineering and Technology, 5(3), 1618-1629, 2015.
    3. #Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers using radial basis function metamodels, Proceedings of 9th World Congress EWRA “Water Resources Management in a Changing World: Challenges and Opportunities”, Istanbul, 2015.
    4. Christelis, V., and A. Mantoglou, Coastal aquifer management based on the joint use of density-dependent and sharp interface models, Water Resources Management, 30(2), 861-876, doi:10.1007/s11269-015-1195-4, 2016.
    5. McMillan, H., A. Montanari, C. Cudennec, H. Savenjie, H. Kreibich, T. Krüger, J. Liu, A. Meija, A. van Loon, H. Aksoy, G. Di Baldassarre, Y. Huang, D. Mazvimavi, M. Rogger, S. Bellie, T. Bibikova, A. Castellarin, Y. Chen, D. Finger, A. Gelfan, D. Hannah, A. Hoekstra, H. Li, S. Maskey, T. Mathevet, A. Mijic, A. Pedrozo Acuña, M. J. Polo, V. Rosales, P. Smith, A. Viglione, V. Srinivasan, E. Toth, R. van Nooyen, and J. Xia, Panta Rhei 2013-2015: Global perspectives on hydrology, society and change, Hydrological Sciences Journal, 61(7), 1174-1191, doi:10.1080/02626667.2016.1159308, 2016.
    6. Biao, I. E., A. E. Alamou, and A. Afouda, Improving rainfall–runoff modelling through the control of uncertainties under increasing climate variability in the Ouémé River basin (Benin, West Africa), Hydrological Sciences Journal, 61(16), 2902-2915, doi:10.1080/02626667.2016.1164315, 2016.
    7. Pathiraja, S., L. Marshall, A. Sharma, and H. Moradkhani, Detecting non-stationary hydrologic model parameters in a paired catchment system using data assimilation, Advances in Water Resources, 94, 103–119, doi:10.1016/j.advwatres.2016.04.021, 2016.
    8. Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers assisted by adaptive metamodelling methods and radial basis functions, Water Resources Management, 30(15), 5845–5859, doi:10.1007/s11269-016-1337-3, 2016.
    9. Seibert, J., and I. van Meerveld, Hydrological change modeling: Challenges and opportunities, Hydrological Processes, 30(26), 4966–4971, doi:10.1002/hyp.10999, 2016.
    10. Ceola, S., A. Montanari, T. Krueger, F. Dyer, H. Kreibich, I. Westerberg, G. Carr, C. Cudennec, A. Elshorbagy, H. Savenije, P. van der Zaag, D. Rosbjerg, H. Aksoy, F. Viola, G. Petrucci, K. MacLeod, B. Croke, D. Ganora, L. Hermans, M. J. Polo, Z. Xu, M. Borga, J. Helmschrot, E. Toth, R., A. Castellarin, A. Hurford, M. Brilly, A. Viglione, G. Blöschl, M. Sivapalan, A. Domeneghetti, A. Marinelli, and G. Di Baldassarre, Adaptation of water resources systems to changing society and environment: a statement by the International Association of Hydrological Sciences, Hydrological Sciences Journal, 61(16), 2803-2817, doi:10.1080/02626667.2016.1230674, 2016.
    11. #Christelis, V., V. Bellos, and G. Tsakiris, Employing surrogate modelling for the calibration of a 2D flood simulation model, Sustainable Hydraulics in the Era of Global Change: Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016), A. S. Erpicum, M. Pirotton, B. Dewals, P. Archambeau (editors), CRC Press, 2016.
    12. Nauditt, A., C. Birkel, C. Soulsby, and L. Ribbe, Conceptual modelling to assess the influence of hydroclimatic variability on runoff processes in data scarce semi-arid Andean catchments, Hydrological Sciences Journal, 62(4), 515-532, doi:10.1080/02626667.2016.1240870, 2017.

  1. A. Efstratiadis, Y. Dialynas, S. Kozanis, and D. Koutsoyiannis, A multivariate stochastic model for the generation of synthetic time series at multiple time scales reproducing long-term persistence, Environmental Modelling and Software, 62, 139–152, doi:10.1016/j.envsoft.2014.08.017, 2014.

    A time series generator is presented, employing a robust three-level multivariate scheme for stochastic simulation of correlated processes. It preserves the essential statistical characteristics of historical data at three time scales (annual, monthly, daily), using a disaggregation approach. It also reproduces key properties of hydrometeorological and geophysical processes, namely the long-term persistence (Hurst-Kolmogorov behaviour), the periodicity and intermittency. Its efficiency is illustrated through two case studies in Greece. The first aims to generate monthly runoff and rainfall data at three reservoirs of the hydrosystem of Athens. The second involves the generation of daily rainfall for flood simulation at five rain gauges. In the first emphasis is given to long-term persistence – a dominant characteristic in the management of large-scale hydrosystems, comprising reservoirs with carry-over storage capacity. In the second we highlight to the consistent representation of intermittency and asymmetry of daily rainfall, and the distribution of annual daily maxima.

    Additional material:

    See also: http://dx.doi.org/10.1016/j.envsoft.2014.08.017

    Other works that reference this work (this list might be obsolete):

    1. Huo, S.-C., S.-L. Lo, C.-H. Chiu, P.-T. Chiueh, and C.-S. Yang, Assessing a fuzzy model and HSPF to supplement rainfall data for nonpoint source water quality in the Feitsui reservoir watershed, Environmental Modelling and Software, 72, 110-116, doi:10.1016/j.envsoft.2015.07.002, 2015.
    2. Read, L., and R. M. Vogel, Reliability, return periods, and risk under nonstationarity, Water Resources Research, 51(8), 6381–6398, doi:10.1002/2015WR017089, 2015.
    3. Steidl, J., J. Schuler, U. Schubert, O. Dietrich, and P. Zander, Expansion of an existing water management model for the analysis of opportunities and impacts of agricultural irrigation under climate change conditions, Water, 7, 6351-6377, doi:10.3390/w7116351, 2015.
    4. Hao, Z., and V. P. Singh, Review of dependence modeling in hydrology and water resources, Progress in Physical Geography, 40(4), 549-578, doi:10.1177/0309133316632460, 2016.
    5. Srivastav, R., K. Srinivasan, and S. P. Sudheer, Simulation-optimization framework for multi-site multi-season hybrid stochastic streamflow modeling, Journal of Hydrology, 542, 506-531, doi:10.1016/j.jhydrol.2016.09.025, 2016.
    6. Dialynas, Y. G., S. Bastola, R. L. Bras, E. Marin-Spiotta, W. L. Silver, E. Arnone, and L. V. Noto, Impact of hydrologically driven hillslope erosion and landslide occurrence on soil organic carbon dynamics in tropical watersheds, Water Resources Research, 52(11), 8895–8919, doi:10.1002/2016WR018925, 2016.
    7. Stojković, M., S. Kostić, J. Plavšić, and S. Prohaska, A joint stochastic-deterministic approach for long-term and short-term modelling of monthly flow rates, Journal of Hydrology, 544, 555–566, doi:10.1016/j.jhydrol.2016.11.025, 2017.
    8. Bardsley, E., A finite mixture approach to univariate data simulation with moment matching, Environmental Modelling & Software, 90, 27-33, doi:10.1016/j.envsoft.2016.11.019, 2017.
    9. Dialynas, Y. D., R. L. Bras, and D. deB. Richter, Hydro-geomorphic perturbations on the soil-atmosphere CO2 exchange: How (un)certain are our balances?, Water Resources Research, 53(2), 1664–1682, doi:10.1002/2016WR019411, 2017.
    10. Hua, Y., and B. Cui, Environmental flows and its satisfaction degree forecasting in the Yellow River, Ecological Indicators, doi:10.1016/j.ecolind.2017.02.017, 2017.
    11. Feng , M., P. Liu, S. Guo, Z. Gui, X. Zhang, W. Zhang, and L. Xiong, Identifying changing patterns of reservoir operating rules under various inflow alteration scenarios, Advances in Water Resources, 104, 23-26, doi:10.1016/j.advwatres.2017.03.003, 2017.
    12. Stojković, M., J. Plavšić, and S. Prohaska, Annual and seasonal discharge prediction in the middle Danube River basin based on a modified TIPS (Tendency, Intermittency, Periodicity, Stochasticity) methodology, Journal of Hydrology and Hydromechanics, 65(2), doi:10.1515/johh-2017-0012, 2017.

  1. A. Efstratiadis, A. D. Koussis, D. Koutsoyiannis, and N. Mamassis, Flood design recipes vs. reality: can predictions for ungauged basins be trusted?, Natural Hazards and Earth System Sciences, 14, 1417–1428, doi:10.5194/nhess-14-1417-2014, 2014.

    Despite the great scientific and technological advances in flood hydrology, everyday engineering practices still follow simplistic approaches that are easy to formally implement in ungauged areas. In general, these "recipes" have been developed many decades ago, based on field data from typically few experimental catchments. However, many of them have been neither updated nor validated across all hydroclimatic and geomorphological conditions. This has an obvious impact on the quality and reliability of hydrological studies, and, consequently, on the safety and cost of the related flood protection works. Preliminary results, based on historical flood data from Cyprus and Greece, indicate that a substantial revision of many aspects of flood engineering procedures is required, including the regionalization formulas as well as the modelling concepts themselves. In order to provide a consistent design framework and to ensure realistic predictions of the flood risk (a key issue of the 2007/60/EU Directive) in ungauged basins, it is necessary to rethink the current engineering practices. In this vein, the collection of reliable hydrological data would be essential for re-evaluating the existing "recipes", taking into account local peculiarities, and for updating the modelling methodologies as needed.

    Full text: http://www.itia.ntua.gr/en/getfile/1413/7/documents/nhess-14-1417-2014.pdf (207 KB)

    Additional material:

    See also: http://www.nat-hazards-earth-syst-sci.net/14/1417/2014/

    Other works that reference this work (this list might be obsolete):

    1. van Emmerik, T. H. M., G. Mulder, D. Eilander, M. Piet, and H. Savenije, Predicting the ungauged basin: Model validation and realism assessment, Frontiers in Earth Sciences, 3:62, doi:10.3389/feart.2015.00062, 2015.
    2. Biondi, D., and L. Da Luca, Process-based design flood estimation in ungauged basins by conditioning model parameters on regional hydrological signatures, Natural Hazards, 79(2), 1015-1038, doi:10.1007/s11069-015-1889-1, 2015.
    3. Yannopoulos, S., E. Eleftheriadou, S. Mpouri, and I. Giannopoulou, Implementing the requirements of the European Flood Directive: the case of ungauged and poorly gauged watersheds, Environmental Processes, 2(1), 191-207, doi:10.1007/s40710-015-0094-2, 2015.
    4. Wałęga, A., and A. Rutkowska, Usefulness of the modified NRCS-CN method for the assessment of direct runoff in a mountain catchment, Acta Geophysica, 63(5), 1423–1446, doi:10.1515/acgeo-2015-0043, 2015.
    5. Walega, A., B. Michalec, A. Cupak, and M. Grzebinoga, Comparison of SCS-CN determination methodologies in a heterogeneous catchment, Journal of Mountain Science, 12(5), 1084-1094, doi:10.1007/s11629-015-3592-9, 2015.
    6. Petroselli, A., and S. Grimaldi, Design hydrograph estimation in small and fully ungauged basins: a preliminary assessment of the EBA4SUB framework, Journal of Flood Risk Management, doi:10.1111/jfr3.12193, 2015.
    7. Awadallah, A.G., H. Saad, A. Elmoustafa, and A. Hassan, Reliability assessment of water structures subject to data scarcity using the SCS-CN model, Hydrological Sciences Journal, 61(4), 696-710, doi:10.1080/02626667.2015.1027709, 2016.
    8. Merheb, M., R. Moussa, C. Abdallah, F. Colin, C. Perrin, and N. Baghdadi, Hydrological response characteristics of Mediterranean catchments at different time scales: a meta-analysis, Hydrological Sciences Journal, 61(14), 2520-2539, doi:10.1080/02626667.2016.1140174, 2016.
    9. Kjeldsen, T., H. Kim, C. Jang, and H. Lee, Evidence and implications of nonlinear flood response in a small mountainous watershed, Journal of Hydrologic Engineering, 21(8), 04016024, doi:10.1061/(ASCE)HE.1943-5584.0001343, 2016.
    10. Taghvaye Salimi, E., A. Nohegar, A. Malekian, M. Hoseini, and A. Holisaz, Estimating time of concentration in large watersheds, Paddy and Water Environment, 15(1), 123-132, doi:10.1007/s10333-016-0534-2, 2017.
    11. Biondi, D., and D. L. De Luca, Rainfall-runoff model parameter conditioning on regional hydrological signatures: application to ungauged basins in southern Italy, Hydrology Research, doi:10.2166/nh.2016.097, 2016.
    12. Attakora-Amaniampong, E., E. Owusu-Sekyere, and D. Aboagye, Urban floods and residential rental values nexus in Kumasi, Ghana, Ghana Journal of Development Studies, 13(2), 176-194, 2016.
    13. #Destro, E., E. I. Nikolopoulos, J. D. Creutin, and M. Borga, Floods, Environmental Hazards Methodologies for Risk Assessment and Management, Dalezios, N. R. (editor), Chapter 4, IWA Publishing, 2017.
    14. van Noordwijk, M., L. Tanika, L., and B. Lusiana, Flood risk reduction and flow buffering as ecosystem services – Part 1: Theory on flow persistence, flashiness and base flow, Hydrology and Earth System Sciences, 21, 2321-2340, doi:10.5194/hess-21-2321-2017, 2017.

  1. A. Efstratiadis, A. Tegos, A. Varveris, and D. Koutsoyiannis, Assessment of environmental flows under limited data availability – Case study of Acheloos River, Greece, Hydrological Sciences Journal, 59 (3-4), 731–750, doi:10.1080/02626667.2013.804625, 2014.

    The lower course of Acheloos River is an important hydrosystem of Greece, heavily modified by a cascade of four hydropower dams, which is now being extended by two more dams in the upper course. The design of the dams and hydropower facilities that are in operation has not considered any environmental criteria. However, in the last fifty years, numerous methodologies have been proposed to assess the negative impacts of such projects to both the abiotic and biotic environment, and to provide decision support towards establishing appropriate constraints on their operation, typically in terms of minimum flow requirements. In this study, seeking for a more environmental-friendly operation of the hydrosystem, we investigate the outflow policy from the most downstream dam, examining alternative environmental flow approaches. Accounting for data limitations, we recommend the Basic Flow Method, which is parsimonious and suitable for Mediterranean rivers, whose flows exhibit strong variability across seasons. We also show that the wetted perimeter – discharge method, which is an elementary hydraulic approach, provides consistent results, even without using any flow data. Finally, we examine the adaptation of the proposed flow policy (including artificial flooding) to the real-time hydropower generation schedule, and the management of the resulting conflicts.

    Additional material:

    See also: http://dx.doi.org/10.1080/02626667.2013.804625

    Other works that reference this work (this list might be obsolete):

    1. Acreman, M. C., I. C. Overton, J. King, P. Wood, I. G. Cowx, M. J. Dunbar, E. Kendy, and W. Young, The changing role of ecohydrological science in guiding environmental flows, Hydrological Sciences Journal, 59(3–4), 1–18, 2014.
    2. #Egüen, M., M. J. Polo, Z. Gulliver, E. Contreras, C. Aguilar, and M. A. Losada, Flood risk trends in coastal watersheds in South Spain: direct and indirect impact of river regulation, Changes in Flood Risk and Perception in Catchments and Cities, Proc. IAHS, 370, 51-56, doi:10.5194/piahs-370-51-2015, 2015.
    3. Aguilar, C., and M. J. Polo, Assessing minimum environmental flows in nonpermanent rivers: The choice of thresholds, Environmental Modelling and Software, 79, 120-134, doi:10.1016/j.envsoft.2016.02.003, 2016.
    4. Nerantzaki, S. D., G. V. Giannakis, N. P. Nikolaidis, I. Zacharias, G. P. Karatzas, and I. A. Sibetheros, Assessing the impact of climate change on sediment loads in a large Mediterranean watershed, Soil Science, 181(7), 306-314, 2016.
    5. Poncelet, C., V. Andréassian, L. Oudin, and C. Perrin, The Quantile Solidarity approach for the parsimonious regionalization of flow duration curves, Hydrological Sciences Journal, doi:10.1080/02626667.2017.1335399, 2017.

  1. M. Rianna, A. Efstratiadis, F. Russo, F. Napolitano, and D. Koutsoyiannis, A stochastic index method for calculating annual flow duration curves in intermittent rivers, Irrigation and Drainage, 62 (S2), 41–49, doi:10.1002/ird.1803, 2013.

    Flow duration curves are useful tools to estimate available surface water resources, at the basin scale. These represent the percentage of time during which discharge values are exceeded, irrespective of their temporal sequence. Annual flow duration curves are useful tools for evaluating all flow quantiles of a river and their confidence intervals, by removing the effects of variability from year to year. However, these tools fail to represent the hydrological regime of ephemeral rivers, since they cannot account for zero flows. In this work we propose a technique for calculating annual flow duration curves and their standard deviation in the case of intermittent rivers. In particular, we propose a generalization of the stochastic index method, in which we use the concept of total probability and order statistics. The method is proposed to determine the conditional distribution of positive flows, for given probability dry, and is implemented on three catchments in Italy and Greece, with low (<5%) and high (>40%) frequency of zero flows, respectively.

    See also: http://dx.doi.org/10.1002/ird.1803

    Other works that reference this work (this list might be obsolete):

    1. Ubertini, L., and F. R. Miralles-Wilhelm, New frontiers of hydrology: Soil, water, and vegetation monitoring and modelling, Irrigation and Drainage, 62(S2), iii-iv, 2013.
    2. Müller, M. F., D. N. Dralle, and S. E. Thompson, Analytical model for flow duration curves in seasonally dry climates, Water Resources Research, 50(7), 5510-5531, 2014.
    3. Atieh, M., B. Gharabaghi, and R. Rudra, Entropy-based neural networks model for flow duration curves at ungauged sites, Journal of Hydrology, 529(3), 1007–1020, doi:10.1016/j.jhydrol.2015.08.068, 2015
    4. Varouchakis, E. A., K. Spanoudaki, D. Hristopulos, G. P. Karatzas, and G. A. Corzo Perez, Stochastic modeling of aquifer level temporal fluctuations based on the conceptual basis of the soil-water balance equation, Soil Science, 181(6), 224–231, doi:10.1097/SS.0000000000000157, 2016.
    5. #Rianna, M., F. Lombardo, B. Boccanera, and M. Giglioni, On the evaluation of FDC by the use of spot measurements, AIP Conference Proceedings, 1738, 430005, Rhodes, 2016.
    6. Ridolfi, E., M. Rianna, G. Trani, L. Alfonso, G. Di Baldassarre, F. Napolitano, and F. Russo, A new methodology to define homogeneous regions through an entropy based clustering method, Advances in Water Resources, doi:10.1016/j.advwatres.2016.07.007, 2016.

  1. J. A. P. Pollacco, B. P. Mohanty, and A. Efstratiadis, Weighted objective function selector algorithm for parameter estimation of SVAT models with remote sensing data, Water Resources Research, 49 (10), 6959–6978, doi:10.1002/wrcr.20554, 2013.

    The objective function of the inverse problem in Soil Vegetation Atmosphere Transfer (SVAT) models can be expressed as the aggregation of two criteria, accounting for the uncertainties of surface soil moisture (θ) and evapotranspiration (ET), retrieved from remote sensing (RS). In this context, we formulate a Weighted Objective Function (WOF) with respect to model effective soil hydraulic parameters, comprising of two components for θ and ET, respectively, and a dimensionless coefficient w. Given that the sensitivity of θ is increased by omitting the periods when soil moisture decoupling occurs, we also introduce within the WOF a threshold, θd, which outlines the decoupling of the surface and root-zone moisture. The optimal values of w and θd are determined by using a novel framework, Weighted Objective Function Selector Algorithm (WOFSA). This performs numerical experiments, assuming known reference conditions. In particular, it solves the inverse problem for different sets of θ and ET, considering the uncertainties of retrieving them from RS, and then runs the hydrological model to obtain the simulated water fluxes and their residuals, ΔWF, against the reference responses. It estimates the two unknown variables, w and θd, by maximizing the linear correlation between the WOF and maximum ΔWF. The framework is tested using a modified Soil-Water-Atmosphere-Plant (SWAP) model, under 22 contrasting hydroclimatic scenarios. It is shown that for each texture class, w can be expressed as function of the average θ and ET-fraction, while that for all scenarios θd can be modeled as function of the average θ, average ET and standard deviation of ET. Based on the outcomes of this study, we also provide recommendations on the most suitable time period for soil moisture measurements for capturing its dynamics and thresholds. Finally, we propose the implementation of WOFSA within multiobjective calibration, as a generalized tool for recognizing robust solutions from the Pareto front.

    Full text: http://www.itia.ntua.gr/en/getfile/1383/2/documents/WRR_paper.pdf (2717 KB)

    Additional material:

    See also: http://dx.doi.org/10.1002/wrcr.20554

    Other works that reference this work (this list might be obsolete):

    1. Mohanty, B. P., Soil hydraulic property estimation using remote sensing: a review, Vadose Zone Journal, 12(4), 2013.
    2. Wöhling, T., S. Gayler, E. Priesack, J. Ingwersen, H.-D. Wizemann, P. Högy, M. Cuntz, S. Attinger, V. Wulfmeyer, and T. Streck, Multiresponse, multiobjective calibration as a diagnostic tool to compare accuracy and structural limitations of five coupled soil-plant models and CLM3.5, Water Resources Research, 49(12), 8200–8221, 2013.
    3. #Gupta, M., N. K. Garg, P. K Srivastava, and T. Islam, Integration of TRMM rainfall in numerical model for pesticide prediction in subtropical climate, Proceedings of 11th International Conference on Hydroinformatics (HIC 2014), New York City, 2014.
    4. Gong, W., Q. Duan, J. Li, C. Wang, Z. Di, Y. Dai, A. Ye, and C. Miao, Multi-objective parameter optimization of common land model using adaptive surrogate modelling, Hydrology and Earth System Sciences, 19, 2409–2425, doi:10.5194/hess-19-2409-2015, 2015.
    5. Garg, N. K., and M. Gupta, Assessment of improved soil hydraulic parameters for soil water content simulation and irrigation scheduling, Irrigation Science, 33(4), 247-264, doi:10.1007/s00271-015-0463-7, 2015.
    6. Larsen, M. A. D., J. C. Refsgaard, K. H. Jensen, M. B. Butts, S. Stisen, and M. Mollerup, Calibration of a distributed hydrology and land surface model using energy flux measurements, Agricultural and Forest Meteorology, 217, 74–88, doi:10.1016/j.agrformet.2015.11.012, 2016.
    7. #Gupta, M., P. K Srivastava, and T. Islam, Integrative use of near-surface satellite soil moisture and precipitation for estimation of improved irrigation scheduling parameters, Satellite Soil Moisture Retrieval: Techniques and Applications , P. K. Srivastava, G. Petropoulos, and Y. H. Kerr (editors), 271-288, doi:10.1016/B978-0-12-803388-3.00014-0, 2016.
    8. Maurya, S., P. K. Srivastava, M. Gupta, T. Islam, and D. Han, Integrating soil hydraulic parameter and microwave precipitation with morphometric analysis for watershed prioritization, Water Resources Management, doi:10.1007/s11269-016-1494-4, 2016.

  1. N. Mamassis, A. Efstratiadis, and E. Apostolidou, Topography-adjusted solar radiation indices and their importance in hydrology, Hydrological Sciences Journal, 57 (4), 756–775, doi:10.1080/02626667.2012.670703, 2012.

    Solar radiation, direct and diffuse, is affected by surface characteristics, such as slope, aspect, altitude and shading. The paper examines the effects of topography on radiation, at multiple spatiotemporal scales, using suitable geometrical methods for the direct and diffuse components. Two indices are introduced for comparing the direct radiation received by areas at the same and different latitudes, respectively. To investigate the profile of direct radiation through the Greek territory, these are evaluated from hourly to annual basis, via GIS techniques. Moreover, different approaches are examined for estimating the actual global radiation at operational spatial scales (sub-basin and terrain), according to the available meteorological data. The study indicates that the errors of typical hydrometeorological modelling formulas, ignoring the topographic effects and the seasonal allocation of direct and diffuse radiation, depend on the spatial scale and they are non-uniformly distributed in time. In all cases, the estimations are improved by applying the proposed adjusting approaches. In particular, the adjustment of the measured global radiation ensures up to 10% increase of efficiency, while the modified Angström formula achieves slight (i.e. 2-4%) increase of efficiency and notable reduction of bias.

    See also: http://dx.doi.org/10.1080/02626667.2012.670703

    Other works that reference this work (this list might be obsolete):

    1. Kunkel, V., T. Wells, and G. R. Hancock, Soil temperature dynamics at the catchment scale, Geoderma, 273, 32–44, doi:10.1016/j.geoderma.2016.03.011, 2016.

  1. A. Efstratiadis, and K. Hadjibiros, Can an environment-friendly management policy improve the overall performance of an artificial lake? Analysis of a multipurpose dam in Greece, Environmental Science and Policy, 14 (8), 1151–1162, doi:10.1016/j.envsci.2011.06.001, 2011.

    Taking as example a multipurpose dam in Greece, we wish to show that by following a rational operation policy, where the improvement of the broader environmental system becomes a high-priority target, it is possible to achieve a much more efficient allocation of its “traditional” water uses. In this context, we review the 50-year history of the Plastiras reservoir in central Greece, to highlight the multiple negative impacts from a non-systematic, abstraction-oriented, operation policy. This kind of management is contrasted to a hypothetical one, obtained through a multidisciplinary methodological framework that has been developed ten years ago, which aimed to compromise a number of conflicting water uses. This required establishing a minimum allowable level for agricultural abstractions and stabilising the annual releases for irrigation and drinking water supply. The criteria under study are, directly or indirectly, related to the water storage in the lake. Therefore, the key idea is to investigate the performance of each criterion with regard to the variability of the level, by examining alternative level vs. abstraction control rules. Thus, the quantity of water that would be yearly available is a function of the minimum level allowed and the desirable reliability. In fact, objective analysis indicates that the maintenance of the reservoir level as high as possible is necessary for the conservation of the quality of the lake’s landscape, for the development of tourist activity and also for providing drinking water of good quality. The advantages of the proposed framework are then exhibited through a back-analysis that focuses to the recent period. The implementation of this management policy not only would improve the water and landscape quality as well as the tourist perspectives, but also allow for a much more efficient planning of the agricultural and, under some premises, hydroelectric energy needs. Thus, the adoption of a constant annual release, irrespective of the recent sequence of inflows, may be beneficial for the long-term interests of all social groups and, therefore, conflicts among drinking water supply, tourism, landscape quality, irrigation and hydroelectric production would become less intense. Yet, the practice showed that a consensus between scientists, authorities and stakeholders for establishing the suggested policy is a considerably difficult task.

    See also: http://dx.doi.org/10.1016/j.envsci.2011.06.001

    Other works that reference this work (this list might be obsolete):

    1. Tajziehchi, S., S. M. Monavari, and A. Karbassi, An effective participatory-based method for dam social impact assessment, Polish Journal of Environmental Studies, 21(6), 1841-1848, 2012.
    2. #Makrogianni, S., and K. Hadjibiros, Interdisciplinarity in environmental research: an analysis based on scientific publications, Proceedings of the 13th International Conference on Environmental Science and Technology, CEST2013_0681, Athens, 2013.
    3. #Shukla, P., Performance Evaluation of Conservation Programmes for Lakes of the Nainital Region, Research paper, 14 p., GRIN Verlag GmbH, 2014.#Shukla, P., Performance Evaluation of Conservation Programmes for Lakes of the Nainital Region, Research paper, 14 p., GRIN Verlag GmbH, 2014.
    4. #Patsialis, T., I. Kougias, J. Ganoulis, and N. Theodossiou, Irrigation dams for renewable energy production, Economics of Water Management in Agriculture, Bournaris, T., J. Berbel, B. Manos, and D. Viaggi (editors), CRC Press, 2014.
    5. Dias-Sardinha, I., and D. Ross, Perceived impact of the Alqueva dam on regional tourism development, Tourism Planning and Development, 12(3), 362-375, 2015.
    6. Martin-Utrillas, M., F. Juan-Garcia, J. Canto-Perello, and Jorge Curiel-Esparza, Optimal infrastructure selection to boost regional sustainable economy, International Journal of Sustainable Development & World Ecology, 22(1), 30-38, 2015.

  1. D. Koutsoyiannis, A. Christofides, A. Efstratiadis, G. G. Anagnostopoulos, and N. Mamassis, Scientific dialogue on climate: is it giving black eyes or opening closed eyes? Reply to “A black eye for the Hydrological Sciences Journal” by D. Huard, Hydrological Sciences Journal, 56 (7), 1334–1339, 2011.

    Remarks:

    The full text is available at the journal's web site: http://dx.doi.org/10.1080/02626667.2011.610759

    Huard's Discussion can be accessed again from the journal's web site: http://dx.doi.org/10.1080/02626667.2011.610758

    Weblog discussions can be seen in Climate Science, ABC News Watch, Fabius Maximus, Itia.

    Related works:

    • [15] A comparison of local and aggregated climate model outputs with observed data

    Full text: http://www.itia.ntua.gr/en/getfile/1140/1/documents/2011HSJ_OpeningClosedEyes.pdf (88 KB)

    Additional material:

    See also: http://dx.doi.org/10.1080/02626667.2011.610759

    Other works that reference this work (this list might be obsolete):

    1. Jiang, P., M. R. Gautam, J. Zhu and Z. Yu, How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States?, Journal of Hydrology, 479, 75-85, 2013.
    2. Chun, K. P., H. S. Wheater, and C. Onof, Comparison of drought projections using two UK weather generators, Hydrological Sciences Journal, 58(2), 1–15, 2013.
    3. #Ranzi, R., Influence of climate and anthropogenic feedbacks on the hydrological cycle, water management and engineering, Proceedings of 2013 IAHR World Congress, 2013.
    4. Kundzewicz, Z.W., S. Kanae, S. I. Seneviratne, J. Handmer, N. Nicholls, P. Peduzzi, R. Mechler, L. M. Bouweri, N. Arnell, K. Mach, R. Muir-Wood, G. R. Brakenridge, W. Kron, G. Benito, Y. Honda, K. Takahashi, and B. Sherstyukov, Flood risk and climate change: global and regional perspectives, Hydrological Sciences Journal, 59(1), 1-28, doi:10.1080/02626667.2013.857411, 2014.
    5. #Jiménez Cisneros, B.E., T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, P. Döll, T. Jiang, and S.S. Mwakalila, Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269, 2014.
    6. Hesse, C., V. Krysanova, A. Stefanova, M. Bielecka, and D. A. Domnin, Assessment of climate change impacts on water quantity and quality of the multi-river Vistula Lagoon catchment, Hydrological Sciences Journal, 60(5), 890-911, doi:10.1080/02626667.2014.967247, 2015.
    7. Nayak, P. C., R. Wardlaw, and A. K. Kharya, Water balance approach to study the effect of climate change on groundwater storage for Sirhind command area in India, International Journal of River Basin Management, 13(2), 243-261, doi:10.1080/15715124.2015.1012206, 2015.
    8. Frank, P., Negligence, non-science, and consensus climatology, Energy and Environment, 26(3), doi:10.1260/0958-305X.26.3.391, 2015.
    9. Kara, F., I. Yucel, and Z. Akyurek, Climate change impacts on extreme precipitation of water supply area in Istanbul: Use of ensemble climate modelling and geo-statistical downscaling, Hydrological Sciences Journal, 61(14), 2481-2495, doi:10.1080/02626667.2015.1133911, 2016.
    10. Refsgaard, J. C., T. O. Sonnenborg, M. B. Butts, J. H. Christensen, S. Christensen, M. Drews, K. H. Jensen, F. Jørgensen, L. F. Jørgensen, M. A. D. Larsen, S. H. Rasmussen, L. P. Seaby, D. Seifert, and T. N. Vilhelmsen, Climate change impacts on groundwater hydrology – where are the main uncertainties and can they be reduced?, Hydrological Sciences Journal, 61(13), 2312-2324, doi:10.1080/02626667.2015.1131899, 2016.
    11. Kundzewicz, Z. W., V. Krysanova, R. Dankers, Y. Hirabayashi, S. Kanae, F. F. Hattermann, S. Huang, P. C. D. Milly, M. Stoffel, P. P. J. Driessen, P. Matczak, P. Quevauviller, and H.-J. Schellnhuber, Differences in flood hazard projections in Europe – their causes and consequences for decision making, Hydrological Sciences Journal, 62(1), 1-14, doi:10.1080/02626667.2016.1241398, 2017.

  1. I. Nalbantis, A. Efstratiadis, E. Rozos, M. Kopsiafti, and D. Koutsoyiannis, Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems, Hydrology and Earth System Sciences, 15, 743–758, doi:10.5194/hess-15-743-2011, 2011.

    The modelling of human-modified basins that are inadequately measured constitutes a challenge for hydrological science. Often, models for such systems are detailed and hydraulics-based for only one part of the system while for other parts oversimplified models or rough assumptions are used. This is typically a bottom-up approach, which seeks to exploit knowledge of hydrological processes at the micro-scale at some components of the system. Also, it is a monomeric approach in two ways: first, essential interactions among system components may be poorly represented or even omitted; second, differences in the level of detail of process representation can lead to uncontrolled errors. Additionally, the calibration procedure merely accounts for the reproduction of the observed responses using typical fitting criteria. The paper aims to raise some critical issues, regarding the entire modelling approach for such hydrosystems. For this, two alternative modelling strategies are examined that reflect two modelling approaches or philosophies: a dominant bottom-up approach, which is also monomeric and, very often, based on output information, and a top-down and holistic approach based on generalized information. Critical options are examined, which codify the differences between the two strategies: the representation of surface, groundwater and water management processes, the schematization and parameterization concepts and the parameter estimation methodology. The first strategy is based on stand-alone models for surface and groundwater processes and for water management, which are employed sequentially. For each model, a different (detailed or coarse) parameterization is used, which is dictated by the hydrosystem schematization. The second strategy involves model integration for all processes, parsimonious parameterization and hybrid manual-automatic parameter optimization based on multiple objectives. A test case is examined in a hydrosystem in Greece with high complexities, such as extended surface-groundwater interactions, ill-defined boundaries, sinks to the sea and anthropogenic intervention with unmeasured abstractions both from surface water and aquifers. Criteria for comparison are the physical consistency of parameters, the reproduction of runoff hydrographs at multiple sites within the studied basin, the likelihood of uncontrolled model outputs, the required amount of computational effort and the performance within a stochastic simulation setting. Our work allows for investigating the deterioration of model performance in cases where no balanced attention is paid to all components of human-modified hydrosystems and the related information. Also, sources of errors are identified and their combined effect are evaluated.

    Full text: http://www.itia.ntua.gr/en/getfile/1055/11/documents/hess-15-743-2011.pdf (1733 KB)

    Additional material:

    See also: http://dx.doi.org/10.5194/hess-15-743-2011

    Works that cite this document: View on Google Scholar or ResearchGate

    Other works that reference this work (this list might be obsolete):

    1. Gharari, S., M. Hrachowitz, F. Fenicia, and H. H. G. Savenije, Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment, Hydrology and Earth System Sciences, 15, 3275-3291, doi:10.5194/hess-15-3275-2011, doi:10.5194/hess-15-3275-2011, 2011.
    2. #Gharari, S., M. Hrachowitz, F. Fenicia, and H. H. G Savenije, Moving beyond traditional model calibration or how to better identify realistic model parameters: sub-period calibration, Hydrology and Earth System Science Discussions,, 9, 1885-1918, doi:10.5194/hessd-9-1885-2012, 2012.
    3. Flipo, N., C. Monteil, M. Poulin, C. de Fouquet, and M. Krimissa, Hybrid fitting of a hydrosystem model: Long term insight into the Beauce aquifer functioning (France), Water Recourses Research, 48, W05509, doi:10.1029/2011WR011092, 2012.
    4. Wang, X., T. Liu and W. Yang, Development of a robust runoff-prediction model by fusing the rational equation and a modified SCS-CN method, Hydrological Sciences Journal, 57(6), 1118-1140, doi:10.1080/02626667.2012.701305, 2012.
    5. Maneta, M. P., and W. W. Wallender, Pilot-point based multi-objective calibration in a surface–subsurface distributed hydrological model, Hydrological Sciences Journal, 58(2), 390-407, doi:10.1080/02626667.2012.754987, 2013.
    6. Hrachowitz, M., H.H.G. Savenije, G. Blöschl, J.J. McDonnell, M. Sivapalan, J.W. Pomeroy, B. Arheimer, T. Blume, M.P. Clark, U. Ehret, F. Fenicia, J.E. Freer, A. Gelfan, H.V. Gupta, D.A. Hughes, R.W. Hut, A. Montanari, S. Pande, D. Tetzlaff, P.A. Troch, S. Uhlenbrook, T. Wagener, H.C. Winsemius, R.A. Woods, E. Zehe, and C. Cudennec, A decade of Predictions in Ungauged Basins (PUB) — a review, Hydrological Sciences Journal, 58(6), 1198-1255, 2013.
    7. #Loukas, A., and L. Vasiliades, Review of applied methods for flood-frequency analysis in a changing environment in Greece, In: A review of applied methods in Europe for flood-frequency analysis in a changing environment, Floodfreq COST action ES0901: European procedures for flood frequency estimation (ed. by H. Madsen et al.), Centre for Ecology & Hydrology, Wallingford, UK, 2013.
    8. Flipo, N., A. Mouhri, B. Labarthe, S. Biancamaria, A. Rivière and P. Weill, Continental hydrosystem modelling: the concept of nested stream–aquifer interfaces, Hydrology and Earth System Sciences, 18, 3121-3149, doi:10.5194/hess-18-3121-2014, 2014.
    9. Ivkovic, K. M., B. F. W. Croke and R. A.Kelly, Overcoming the challenges of using a rainfall-runoff model to estimate the impacts of groundwater extraction on low flows in an ephemeral stream, Hydrology Research, 45(1), 58-72, doi:10.2166/nh.2013.204, 2014.
    10. Mateo, C. M., N. Hanasaki, D. Komori, K. Tanaka, M. Kiguchi, A. Champathong, T. Sukhapunnaphan, D.Yamazaki, and T. Oki, Assessing the impacts of reservoir operation to floodplain inundation by combining hydrological, reservoir management, and hydrodynamic models, Water Resources Research, 50(9), 7245–7266, doi:10.1002/2013WR014845, 2014.
    11. Gharari, S., M. Hrachowitz, F. Fenicia, H. Gao, and H. H. G. Savenije, Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration, Hydrology and Earth System Sciences, 18, 4839-4859, doi:10.5194/hess-18-4839-2014, 2015.
    12. Thirel, G., V. Andréassian, C. Perrin, J.-N. Audouy, L. Berthet, P. Edwards, N. Folton, C. Furusho, A. Kuentz, J. Lerat, G. Lindström, E. Martin, T. Mathevet, R. Merz, J. Parajka, D. Ruelland, and J. Vaze, Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments, Hydrological Sciences Journal, 60(7-8), 1184-1199, doi:10.1080/02626667.2014.9672482014, 2015.
    13. Pryet, A., B. Labarthe, F. Saleh, M. Akopian and N. Flipo, Reporting of stream-aquifer flow distribution at the regional scale with a distributed process-based model, Water Resources Management, 10.1007/s11269-014-0832-7, 29(1), 139-159, 2015.
    14. Donnelly, C., J. C. M. Andersson, and B. Arheimer, Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe, Hydrological Sciences Journal, 61(2), 255-273, doi:10.1080/02626667.2015.1027710, 2016.
    15. Bellin, A., B. Majone, O. Cainelli, D. Alberici, and F. Villa, A continuous coupled hydrological and water resources management model, Environmental Modelling and Software, 75, 176–192, doi:10.1016/j.envsoft.2015.10.013, 2016.
    16. Ajmal, M., J.-H. Ahn, and , T.-W. Kim, Excess stormwater quantification in ungauged watersheds using an event-based modified NRCS model, Water Resources Management, 30(4), 1433-1448, doi:10.1007/s11269-016-1231-z, 2016.
    17. Ma, L., C. He, H. Bian, and L. Sheng, MIKE SHE modeling of ecohydrological processes: Merits, applications, and challenges, Ecological Engineering, doi:10.1016/j.ecoleng.2016.01.008, 2016.
    18. Tigkas, D., V. Christelis, and G. Tsakiris, Comparative study of evolutionary algorithms for the automatic calibration of the Medbasin-D conceptual hydrological model, Environmental Processes, 3(3), 629–644, doi:10.1007/s40710-016-0147-1, 2016.
    19. Ercan, A., E. C. Dogrul, and T. N. Kadir, Investigation of the groundwater modelling component of the Integrated Water Flow Model (IWFM), Hydrological Sciences Journal, doi:10.1080/02626667.2016.1161765, 2016.

  1. G. G. Anagnostopoulos, D. Koutsoyiannis, A. Christofides, A. Efstratiadis, and N. Mamassis, A comparison of local and aggregated climate model outputs with observed data, Hydrological Sciences Journal, 55 (7), 1094–1110, doi:10.1080/02626667.2010.513518, 2010.

    We compare the output of various climate models to temperature and precipitation observations at 55 points around the globe. We spatially aggregate model output and observations over the contiguous USA using data from 70 stations, and we perform comparison at several temporal scales, including a climatic (30-year) scale. Besides confirming the findings of a previous assessment study that model projections at point scale are poor, results show that the spatially integrated projections do not correspond to reality any better.

    Remarks:

    The paper has been discussed in weblogs and forums.

    Weblogs and forums that discussed this article during 2010:

    1. Very Important New Paper “A Comparison Of Local And Aggregated Climate Model Outputs With Observed Data” By Anagnostopoulos Et Al 2010 (Climate Science: Roger Pielke Sr.)
    2. New peer reviewed paper shows just how bad the climate models really are (Watts Up With That?)
    3. Missing News: No skill in climate modelling (ABC News Watch)
    4. Missing News: Climate models disputed (ABC News Watch)
    5. New peer reviewed paper shows just how bad the climate models really are (repost 1) (Countdown to critical mass)
    6. New peer reviewed paper shows just how bad the climate models really are (repost2 ) (Climate Observer)
    7. New Major Peer-Reviewed Study: Climate Models' Predictions Found To Be Shitty (C3)
    8. New peer reviewed paper shows just how bad the climate models really are - A response to the Climate Change Misinformation at wattsupwiththat.com (Wott's Up With That?)
    9. Climate model abuse (Niche Modeling)
    10. Very Important New Paper on models versus reality (Greenie Watch)
    11. New paper shows that there is no means of reliably predicting climate variables (Greenie Watch 2)
    12. A comparison of local and aggregated climate model outputs with observed data (Fire And Ice)
    13. Peer Reviewed Study States The Obvious (US Message Board)
    14. Climate models don’t work, in hindsight (Herald Sun Andrew Bolt Blog)
    15. Climate models don’t work, in hindsight (repost) (The Daily Telegraph)
    16. No abuse hides the fact:  warmist models cannot even predict our past (Herald Sun Andrew Bolt Blog 2)
    17. No abuse hides the fact: the warmist models cannot even predict our past (PA Pundits – International)
    18. Aussie rains – IPCC models are bunkum, Energy tsunami, CCNet updates, Exit EU petition (clothcap)
    19. Aussie rains – IPCC models are bunkum, Energy tsunami, CCNet updates, Exit EU petition (repost) (My Telegraph)
    20. Science not politics (ecomyths)
    21. More evidence that Global Climate computer models are worthless (Tucano's Perch)
    22. Model skill? (Retread Resources Blog)
    23. Estudo sobre modelos climáticos (MeteoPT.com - Fórum de Meteorologia)
    24. Strategie di verifica delle prestazioni dei GCM, i risultati degli idrologi dell’università di Atene (Climate Monitor)
    25. Strategie di verifica delle prestazioni dei GCM, i risultati degli idrologi dell’università di Atene (repost) (Blog All Over The World)
    26. Klima - spådommer og målinger (ABC News)
    27. "Scam for the Ages" Makes Madoff Look Like Small Change (Al Fin)
    28. Teoria do AGA: um passado duvidoso, um presente mal contado e um futuro pior ainda. (Sou Engenheiro)

    Related works:

    • [93] Credibility of climate predictions revisited (predecessor presentation)
    • [18] On the credibility of climate predictions (previous related publication)

    Full text: http://www.itia.ntua.gr/en/getfile/978/1/documents/928051726__.pdf (1309 KB)

    Additional material:

    See also: http://dx.doi.org/10.1080/02626667.2010.513518

    Works that cite this document: View on Google Scholar or ResearchGate

    Other works that reference this work (this list might be obsolete):

    1. Kundzewicz, Z. W., and E. Z. Stakhiv, Are climate models “ready for prime time” in water resources management applications, or is more research needed? Hydrological Sciences Journal, 55(7), 1085–1089, 2010.
    2. #Liebscher, H.-J., and H. G. Mendel, Vom empirischen Modellansatz zum komplexen hydrologischen Flussgebietsmodell – Rückblick und Perspektiven, 132 p., Koblenz, Bundesanstalt für Gewässerkunde, 2010.
    3. Stockwell, D. R. B., Critique of drought models in the Australian Drought Exceptional Circumstances Report (DECR), Energy and Environment, 21(5), 425-436, 2010.
    4. Di Baldassarre, G., M. Elshamy, A. van Griensven, E. Soliman, M. Kigobe, P. Ndomba, J. Mutemi, F. Mutua, S. Moges, J.-Q. Xuan, D. Solomatine, and S. Uhlenbrook, Future hydrology and climate in the River Nile basin: a review, Hydrological Sciences Journal, 56(2), 199-211, 2011.
    5. Carlin, A., A multidisciplinary, science-based approach to the economics of climate change, International Journal of Environmental Research and Public Health, 8(4), 985-1031, 2011.
    6. Fildes, R., and N. Kourentzes, Validation and forecasting accuracy in models of climate change, International Journal of Forecasting, 27(4), 968-995, 2011.
    7. Kundzewicz, Z. W., Nonstationarity in water resources – Central European perspective, Journal of the American Water Resources Association, 47(3), 550-562, 2011.
    8. Sivakumar, B., Water crisis: From conflict to cooperation – an overview, Hydrological Sciences Journal, 56(4), 531-552, 2011.
    9. Loehle, C., Criteria for assessing climate change impacts on ecosystems, Ecology and Evolution, 1 (1), 63–72, 2011.
    10. Ward, J. D., A. D. Werner, W. P. Nel, and S. Beecham, The influence of constrained fossil fuel emissions scenarios on climate and water resource projections, Hydrology and Earth System Sciences, 15, 1879-1893, 2011.
    11. #Idso, C., R. M. Carter, and S. F. Singer, Climate models and their limitations, Climate Change Reconsidered: 2011 Interim Report of the Nongovernmental International Panel on Climate Change (NIPCC), Chapter 1, 32 pp., 2011.
    12. #Huard, D., The challenges of climate change interpretation, Ouranos Newsletter, Montreal, Quebec, 3 pp., 21 September 2011.
    13. Stakhiv, E. Z., Pragmatic approaches for water management under climate change uncertainty, JAWRA Journal of the American Water Resources Association, 47(6), 1183-1196, 2011.
    14. Huard, D., A black eye for the Hydrological Sciences Journal, Discussion of “A comparison of local and aggregated climate model outputs with observed data”, by G. G. Anagnostopoulos et al. (2010, Hydrol. Sci. J. 55 (7), 1094–1110), Hydrological Sciences Journal, 56(7), 1330–1333, 2011.
    15. #Martin, T. E., Mine waste management in wet, mountainous terrain: Some British Columbia perspectives, Part II – Creating, managing and judging our legacy, Proceedings Tailings and Mine Waste 2011, Vancouver, BC, Canada, 2011.
    16. #Kundzewicz, Z. W., Comparative assessment: fact or fiction? Paper presented at the Workshop Including long-term climate change in hydrologic design, World Bank, Washington, D.C., USA, November 21, 2011.
    17. Okruszko, T., H. Duel, M. Acreman, M. Grygoruk, M. Flörke, and C. Schneider, Broad-scale ecosystem services of European wetlands — overview of the current situation and future perspectives under different climate and water management scenarios, Hydrological Sciences Journal, 56(8), 1501–1517, 2011.
    18. Stanislawska, K., K Krawiec, and Z. W. Kundzewicz, Modeling global temperature changes with genetic programming, Computers and Mathematics with Applications, 64(12), 3717-3728, 2012.
    19. Petheram, C., P. Rustomji, T. R. McVicar, W. Cai, F. H. S. Chiew, J. Vleeshouwer, T. G. Van Niel, L.-T. Li, R. G. Cresswell, R. J. Donohue, J. Teng, and J.-M. Perraud, Estimating the impact of projected climate change on runoff across the tropical savannas and semi-arid rangelands of northern Australia, Journal of Hydrometeorology, 13 (2), 483-503, 2012.
    20. #Fekete, B. M., and E. Stakhiv, Water management preparation strategies for adaptation to changing climate, Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies, C. R. Goldman, M. Kumagai, and R. D. Robarts (eds.), 413-427, 2012.
    21. #Asian Development Bank, Guidelines for climate proofing investment in agriculture, rural development and food security, 101 pp., Mandaluyong City, Philippines, ISBN 978-92-9092-900-0, 2012.
    22. Hromadka, T. V., M. Jaye, M. Phillips, T. Hromadka, and D. Phillips, A mathematical model of cryospheric response to climate changes, Journal of Cold Regions Engineering, 27 (2), 67-93, 2013.
    23. Serrat-Capdevila, A., J. B. Valdes, F. Dominguez, and S. Rajagopal, Characterizing the water extremes of the new century in the US South-west: a comprehensive assessment from state-of-the-art climate model projections, International Journal of Water Resources Development, 29 (2), 152-171, 2013.
    24. Nastos, P. T., N. Politi, and J. Kapsomenakis, Spatial and temporal variability of the aridity index in Greece, Atmospheric Research, 19, 140-152, 2013.
    25. Jiang, P., M. R. Gautam, J. Zhu, and Z. Yu, How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States?, Journal of Hydrology, 479, 13-23, 2013.
    26. Nazemi, A., H. S. Wheater, K. P. Chun, and A. Elshorbagy, A stochastic reconstruction framework for analysis of water resource system vulnerability to climate-induced changes in river flow regime, Water Resources Research, 49(1), 291-305, doi:10.1029/2012WR012755, 2013.
    27. Chun, K. P., H. S. Wheater, and C. Onof, Comparison of drought projections using two UK weather generators, Hydrological Sciences Journal, 58(2), 1–15, 2013.
    28. Pielke, Sr. R.A., Comment on “The North American Regional Climate Change Assessment Program: Overview of Phase I Results”, Bulletin of the American Meteorological Society, 94(7), 1075-1077, 2013.
    29. Piniewski, M., F. Voss, I. Bärlund, T. Okruszko and Z. W. Kundzewicz, Effect of modelling scale on the assessment of climate change impact on river runoff, Hydrological Sciences Journal, 58 (4), 737-754, 2013.
    30. #Pielke R. A. Sr., J. Adegoke, F. Hossain, G. Kallos, D. Niyogi, T. Seastedt, K. Suding, C. Y. Wright, and D. Staley, Preface, Climate Vulnerability: Understanding and Addressing Threats to Essential Resources, Pielke, R. (editor), xxi-xxix, Elsevier Science, 2013.
    31. #Lang, M. A., Renewable energy and water resources, Climate Vulnerability: Understanding and Addressing Threats to Essential Resources, Pielke, R. (editor), Vol. 3, 149-166, Elsevier Science, 2013.
    32. #He, Y., F. Pappenberger, D. Manful, H. Cloke, P. Bates, F. Wetterhall, and B. Parkes, Flood inundation dynamics and socioeconomic vulnerability under environmental change, Climate Vulnerability: Understanding and Addressing Threats to Essential Resources, Pielke, R. (editor), Vol. 5, 241-255, Elsevier Science, 2013.
    33. Kumar, S., P. A. Dirmeyer, V. Merwade, T. DelSole, J. M. Adams, and D. Niyogi, Land use/cover change impacts in CMIP5 climate simulations – A new methodology and 21st century challenges, Journal of Geophysical Research: Atmospheres, 118(12), 6337-6353, 2013.
    34. #Loukas, A., and L. Vasiliades, Review of applied methods for flood-frequency analysis in a changing environment in Greece, In: A review of applied methods in Europe for flood-frequency analysis in a changing environment, Floodfreq COST action ES0901: European procedures for flood frequency estimation (ed. by H. Madsen et al.), Centre for Ecology & Hydrology, Wallingford, UK, 2013.
    35. Ruffault, J., N. K .Martin-StPaul, C. Duffet, F. Goge and F. Mouillot, Projecting future drought in Mediterranean forests: bias correction of climate models matters!, Theoretical and Applied Climatology, 117 (1-2), 113-122, 2014.
    36. Nazemi, A., and H. S. Wheater, How can the uncertainty in the natural inflow regime propagate into the assessment of water resource systems? Advances in Water Resources, 63, 131-142, 2014.
    37. Kundzewicz, Z. W., S. Kanae, S. I. Seneviratne, J. Handmer, N. Nicholls, P. Peduzzi, R. Mechler, L. M. Bouweri, N. Arnell, K. Mach, R. Muir-Wood, G. R. Brakenridge, W. Kron, G. Benito, Y. Honda, K. Takahashi, and B. Sherstyukov, Flood risk and climate change: global and regional perspectives, Hydrological Sciences Journal, 59(1), 1–28, 2014.
    38. Grygoruk, M., U. Biereżnoj-Bazille, M. Mazgajski and J.Sienkiewicz, Climate-induced challenges for wetlands: revealing the background for the adaptive ecosystem management in the Biebrza Valley, Poland, Advances in Global Change Research, 58, 209-232, 2014.
    39. Gilioli, G., S. Pasquali, S. Parisi and S. Winter, Modelling the potential distribution of Bemisia tabaci in Europe considering climate change scenario, Pest Management Science, 70(1), 1611–1623, 10.1002/ps.3734, 2014.
    40. Krakauer, N. Y., and B. M. Fekete, Are climate model simulations useful for forecasting precipitation trends? Hindcast and synthetic-data experiments, Environmental Research Letters, 9(2), 024009, 2014.
    41. Hughes, D. A., S. Mantel and T. Mohobane, An assessment of the skill of downscaled GCM outputs in simulating historical patterns of rainfall variability in South Africa, Hydrology Research, 45 (1), 134-147, 2014.
    42. #Jiménez Cisneros, B.E., T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, P. Döll, T. Jiang, and S.S. Mwakalila, Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269, 2014.
    43. Hromadka, T. V., H. D. McInvale, B. Gatzke, M. Phillips, and B. Espinosa, Cumulative departure model of the cryosphere during the Pleistocene, Journal of Cold Regions Engineering, 06014002, 2014.
    44. Nova, J., Government monopoly in science and the role of independent scientists, Energy and Environment, 25(6-7), 1219–1224, 2014.
    45. #McKitrick, R., Climate Policy Implications of the Hiatus in Global Warming, Fraser Institute, 2014.
    46. Galbraith, H., D. W. DesRochers, S. Brown and J. M. Reed, Predicting vulnerabilities of North American shorebirds to climate change, PLoS ONE, 9(9), 10.1371/journal.pone.0108899, 2014.
    47. Yao, Y., S. Zhao, Y. Zhang, K. Jia and M. Liu, Spatial and decadal variations in potential evapotranspiration of China based on reanalysis datasets during 1982–2010, Atmosphere, 5(4), 737-754, 2014.
    48. Kundzewicz, Z., and D. Gerten, Grand challenges related to assessment of climate change impacts on freshwater resources, Journal of Hydrologic Engineering, 20 (1), 10.1061/(ASCE)HE.1943-5584.0001012, A4014011, 2015.
    49. Hromadka II, T.V., H.D. McInvale, M. Phillips and B. Espinosa, Assessment of ice volume changes in the cryosphere via simplified heat transport model, American Journal of Climate Change, 3, 421-428, 2014.
    50. Hesse, C., V. Krysanova, A. Stefanova, M. Bielecka and D. A. Domnin, Assessment of climate change impacts on water quantity and quality of the multi-river Vistula Lagoon catchment, Hydrological Sciences Journal, 60(5), 890-911, doi:10.1080/02626667.2014.967247, 2015.
    51. Stefanova, A., V. Krysanova, C. Hesse, and A. I. Lillebø, Climate change impact assessment on water inflow to a coastal lagoon: the Ria de Aveiro watershed, Portugal, Hydrological Sciences Journal, 60(5), 929-948, 2015.
    52. Hesse, C., A. Stefanova, and V. Krysanova, Comparison of water flows in four European lagoon catchments under a set of future climate scenarios, Water, 7(2), 716-746, doi:10.3390/w7020716, 2015.
    53. Gelfan, A., V. A. Semenov, E. Gusev, Y. Motovilov, O. Nasonova, I. Krylenko, and E. Kovalev, Large-basin hydrological response to climate model outputs: uncertainty caused by the internal atmospheric variability, Hydrology and Earth System Sciences, 19, 2737-2754, doi:10.5194/hess-19-2737-2015, 2015.
    54. Nayak, P. C., R. Wardlaw, and A. K. Kharya, Water balance approach to study the effect of climate change on groundwater storage for Sirhind command area in India, International Journal of River Basin Management, 13(2), 243-261, doi:10.1080/15715124.2015.1012206, 2015.
    55. Yu, Z., P. Jiang, M. R. Gautam, Y. Zhang, and K. Acharya, Changes of seasonal storm properties in California and Nevada from an ensemble of climate projections, Journal of Geophysical Research: Atmospheres, 120(7), 2676-2688, doi:10.1002/2014JD022414, 2015.
    56. Legates, D. R., W. Soon, W. M. Briggs and C. Monckton of Brenchley, Climate consensus and ‘misinformation’: a rejoinder to agnotology, scientific consensus, and the teaching and learning of climate change, Science and Education, 24, 299-318, doi:10.1007/s11191-013-9647-9, 2015.
    57. Frank, P., Negligence, non-science, and consensus climatology, Energy and Environment, 26(3), doi:10.1260/0958-305X.26.3.391, 2015.
    58. Kundzewicz, Z.W., Climate change track in river floods in Europe, Proc. IAHS, 369, 189–194, 10.5194/piahs-369-189-2015, 2015.
    59. Kara, F., I. Yucel, and Z. Akyurek, Climate change impacts on extreme precipitation of water supply area in Istanbul: Use of ensemble climate modelling and geo-statistical downscaling, Hydrological Sciences Journal, 61(14), 2481-2495, doi:10.1080/02626667.2015.1133911, 2016.
    60. Refsgaard, J. C., T. O. Sonnenborg, M. B. Butts, J. H. Christensen, S. Christensen, M. Drews, K. H. Jensen, F. Jørgensen, L. F. Jørgensen, M. A. D. Larsen, S. H. Rasmussen, L. P. Seaby, D. Seifert, and T. N. Vilhelmsen, Climate change impacts on groundwater hydrology – where are the main uncertainties and can they be reduced?, Hydrological Sciences Journal, 61(13), 2312-2324, doi:10.1080/02626667.2015.1131899, 2016.
    61. #Kundzewicz, Z. W., Climate change impacts and adaptation in water and land context, Environmental Resource Management and the Nexus Approach – Managing Water, Soil, and Waste in the Context of Global Change, H. Hettiarachchi, and R. Ardakanian (editors), 11-39, Springer, doi:10.1007/978-3-319-28593-1_2, 2016.
    62. #Serrat-Capdevila, A., D. A. García Ramírez, and N. Tayebi, Key global water challenges and the role of remote sensing, Earth Observation for Water Resources Management: Current Use and Future Opportunities for the Water Sector, 9-31, doi:10.1596/978-1-4648-0475-5_ch1, 2016.
    63. Jiang, P., Z. Yu, M. R. Gautam, F. Yuan, and K. Acharya, Changes of storm properties in the United States: Observations and multimodel ensemble projections, Global and Planetary Change, 142, 41–52, doi:10.1016/j.gloplacha.2016.05.001, 2016.
    64. Gupta, H. V., G. Sapriza-Azuri, J. Jódar, and J. Carrera, Circulation pattern-based assessment of projected climate change for a catchment in Spain, Journal of Hydrology, doi:10.1016/j.jhydrol.2016.06.032, 2016.
    65. #Fekete, B. M., G. Pisacane, and D. Wisser, Crystal balls into the future: are global circulation and water balance models ready?, Proc. IAHS, 374, 41-51, doi:10.5194/piahs-374-41-2016, 2016.
    66. Kundzewicz, Z. W., V. Krysanova, R. Dankers, Y. Hirabayashi, S. Kanae, F. F. Hattermann, S. Huang, P. C. D. Milly, M. Stoffel, P. P. J. Driessen, P. Matczak, P. Quevauviller, and H.-J. Schellnhuber, Differences in flood hazard projections in Europe – their causes and consequences for decision making, Hydrological Sciences Journal, 62(1), 1-14, doi:10.1080/02626667.2016.1241398, 2017.
    67. Grygoruk, M., and S. Rannowb, Mind the gap! Lessons from science-based stakeholder dialogue in climate-adapted management of wetlands, Journal of Environmental Management, 186, 108-119, doi:10.1016/j.jenvman.2016.10.066, 2017.
    68. Hossain, F., E. Beighley, S. Burian, J. Chen, A. Mitra, D. Niyogi, R. Pielke Sr, and D. Wegner, Review of approaches and recommendations for improving resilience of water management infrastructure: the case for large dams, Journal of Infrastructure Systems, doi:10.1061/(ASCE)IS.1943-555X.0000370, 2017.
    69. Gusev, Y. M., V. A. Semenov, O. N. Nasonova, and E E. Kovalev, Weather noise impact on the uncertainty of simulated water balance components of river basins, Hydrological Sciences Journal, doi:10.1080/02626667.2017.1319064, 2017.
    70. Loehle, C., The epistemological status of general circulation models, Climate Dynamics, doi:10.1007/s00382-017-3717-7, 2017.
    71. #Shalby, A., M. Elshemy, and B. A. Zeidan, Selecting of regional climate model simulations for modeling climate change impacts on the water quality status of Lake Burullus, Egypt, Twentieth International Water Technology Conference, Hurghada, 2017.

  1. A. Efstratiadis, and D. Koutsoyiannis, One decade of multiobjective calibration approaches in hydrological modelling: a review, Hydrological Sciences Journal, 55 (1), 58–78, 2010.

    One decade after the first publications on multiobjective hydrological calibration, we summarize the experience gained so far, by underlining the key perspectives offered by such approaches to improve parameter identifiability. After reviewing the fundamentals of vector optimization theory and the algorithmic issues, we link the multicriteria calibration approach with the concepts of uncertainty and equifinality. Specifically, the multicriteria framework enables recognizing and handling errors and uncertainties, and detecting prominent behavioural solutions with acceptable trade-offs. Particularly in models of complex parameterization, a multiobjective approach becomes essential for improving the identifiability of parameters and augmenting the information contained in calibration, by means of both multiresponse measurements and empirical metrics (“soft” data), which account for the hydrological expertise. Based on the literature review, we also provide alternative techniques to treat with conflicting and non-commeasurable criteria, and hybrid strategies to utilize the information gained towards identifying promising compromise solutions that ensure consistent and reliable calibrations.

    Full text: http://www.itia.ntua.gr/en/getfile/924/2/documents/919806565_.pdf (290 KB)

    Additional material:

    See also: http://dx.doi.org/10.1080/02626660903526292

    Works that cite this document: View on Google Scholar or ResearchGate

    Other works that reference this work (this list might be obsolete):

    1. Booij, M. J., and M. S. Krol, Balance between calibration objectives in a conceptual hydrological model, Hydrological Sciences Journal, 55(6), 1017-1032, 2010.
    2. Moussa, R., When monstrosity can be beautiful while normality can be ugly: assessing the performance of event-based flood models, Hydrological Sciences Journal, 55(6), 1074-1084, 2010.
    3. Moussu, F., L. Oudin, V. Plagnes, A. Mangin, and H. Bendjoudi, A multi-objective calibration framework for rainfall-discharge models applied to karst systems, Journal of Hydrology, 400(3-4), 364-376, 2011.
    4. Guinot, V., B. Cappelaere, C. Delenne, and D. Ruelland, Towards improved criteria for hydrological model calibration: Theoretical analysis of distance- and weak form-based functions, Journal of Hydrology, 401(1-2), 1-13, 2011.
    5. Peel, M. C., and G. Blöschl, Hydrological modelling in a changing world, Progress in Physical Geography, 35 (2), 249-261, 2011.
    6. Ford, D. E., and M. C. Kennedy, Assessment of uncertainty in functional–structural plant models, Annals of Botany, 108 (6), 1043-1053, 2011.
    7. #Shinma, T. A., and L. F. R. Reis, Multiobjective automatic calibration of the storm water management model (SWMM) using non-dominated sorting genetic algorithm II (NSGA-II), Proceedings of the 2011 World Environmental and Water Resources Congress: Bearing Knowledge for Sustainability, 598-607, 2011.
    8. Mediero, L., L. Garrote and F. J. Martín-Carrasco, Probabilistic calibration of a distributed hydrological model for flood forecasting, Hydrological Sciences Journal, 56(7), 1129–1149, 2011.
    9. Kennedy, M. C., and E. D. Ford, Using multicriteria analysis of simulation models to understand complex biological systems, BioScience, 61(12), 994–1004, 2011.
    10. #Van Hoey, S., P. Seuntjens, J. van der Kwast, J.-L. de Kok, G. Engelen, and I. Nopens, Flexible framework for diagnosing alternative model structures through sensitivity and uncertainty analysis, In: Chan, F., D. Marinova, and R. S. Anderssen (eds.), MODSIM2011, 19th International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand, December 2011, pp. 3924-3930, ISBN: 978-0-9872143-1-7, 2011.
    11. Reed, P. M., and J. B. Kollat, Save now, pay later? Multi-period many-objective groundwater monitoring design given systematic model errors and uncertainty, Advances in Water Resources, 35, 55-68, 2012.
    12. Pushpalatha, R., C. Perrin, N. Le Moine, and V. Andréassian, A review of efficiency criteria suitable for evaluating low–flow simulations, Journal of Hydrology, 420-421, 171-182, 2012.
    13. Ruelland, D., S. Ardoin-Bardin, L. Collet, and P. Roucou, Simulating future trends in hydrological regime of a large Sudano-Sahelian catchment under climate change, Journal of Hydrology, 424-425, 207-216, 2012.
    14. Andréassian, V., N. Le Moine, C. Perrin, M.-H. Ramos, L. Oudin, T. Mathevet, J. Lerat, and L. Berthet, All that glitters is not gold: the case of calibrating hydrological models, Hydrological Processes, 26(14), 2206-2210, 2012.
    15. Kollat, J. B., P. M. Reed, and T. Wagener, When are multiobjective calibration trade-offs in hydrologic models meaningful?, Water Resources Research, 48, W03520, 2012.
    16. Dumedah, G., A. A. Berg, and M. Wineberg, Evaluating autoselection methods used for choosing solutions from Pareto-optimal set: Does nondominance persist from calibration to validation phase? Journal of Hydrologic Engineering, 17(1), 150-159, 2012.
    17. Hill, M. C., D. Kavetski, M. Clark, M. Ye, and D. Lu, Uncertainty quantification 2012: Uncertainty quantification for environmental models, Society for Industrial and Applied Mathematics News, 45(9), 2012.
    18. Rye, C. J., I. Willis, N. S. Arnold, and J. Kohler, On the need for automated multi-objective optimization and uncertainty estimation of glacier mass balance models, Journal of Geophysical Research, 117, F02005, doi: 10.1029/2011JF002184, 2012.
    19. Rothfuss, Y., I. Braud, N. Le Moine, P. Biron, J.-L. Durand, M. Vauclin, and T. Bariac, Factors controlling the isotopic partitioning between soil evaporation and plant transpiration: assessment using a multi-objective calibration of SiSPAT-Isotope under controlled conditions, Journal of Hydrology, 442-443, 161-179, 2012.
    20. Peng, W., R. V. Mayorga, and S. Imran, A rapid fuzzy optimisation approach to multiple sources water blending problem in water distribution systems, Urban Water Journal, 9(3), 177-187, 2012.
    21. Flipo, N., C. Monteil, M. Poulin, C. de Fouquet, and M. Krimissa, Hybrid fitting of a hydrosystem model: Long term insight into the Beauce aquifer functioning (France), Water Recourses Research, 48, W05509, DOI: 10.1029/2011WR011092, 2012.
    22. Pollacco, J. A. P., and B. P. Mohanty, Uncertainties of water fluxes in SVAT models: inverting surface soil moisture and evapotranspiration retrieved from remote sensing, Vadose Zone Journal, 11(3), vzj2011.0167, 2012.
    23. Muleta, M. K., Model performance sensitivity to objective function during automated calibrations, Journal of Hydrologic Engineering, 17(6), 756-767, 2012.
    24. Dumedah, G., Formulation of the evolutionary-based data assimilation and its implementation in hydrological forecasting, Water Resources Management, 26(13), 3853-3870, 2012.
    25. Reichert, P., and N. Schuwirth, Linking statistical bias description to multiobjective model calibration, Water Resources Research, 48, W09543, doi:10.1029/2011WR011391, 2012.
    26. Price, K., S. T. Purucker, S. R. Kraemer, and J. Babendreier, Tradeoffs among watershed model calibration targets for parameter estimation, Water Resources Research, 48, W10542, doi:10.1029/2012WR012005, 2012.
    27. Krauße, T., J. Cullmann, P. Saile, and G. H. Schmitz, Robust multi-objective calibration strategies – possibilities for improving flood forecasting, Hydrology and Earth System Sciences, 16, 3579-3606, 2012.
    28. Koskela, J. J., B. Croke, H. Koivusalo, A. Jakeman, and T. Kokkonen, Bayesian inference of uncertainties in precipitation-streamflow modeling in a snow affected catchment, Water Resources Research, 48, W11513, doi: 10.1029/2011WR011773, 2012.
    29. Jarvis, N., and M. Larsbo, MACRO (V5.2): Model use, calibration, and validation, Transactions of the ASABE, 55(4), 1413-1423, 2012.
    30. Hallema, D. W., R. Moussa, P. Andrieux, and M. Voltz, Parameterisation and multi-criteria calibration of a distributed storm flow model applied to a Mediterranean agricultural catchment, Hydrological Processes, 27(10), 1379-1398, 2013.
    31. Gharari, S., M. Hrachowitz, F. Fenicia and H. H. G. Savenije, An approach to identify time consistent model parameters: sub-period calibration, Hydrology and Earth System Sciences, 17, 149-161, 10.5194/hess-17-149-2013, 2013.
    32. Kasprzyk, J. R, S. Nataraj, P. M. Reed, and R. J. Lempert, Many objective robust decision making for complex environmental systems undergoing change, Environmental Modelling & Software, 42, 55-71, 2013.
    33. Reed, P. M., D. Hadka, J. D. Herman, J. R. Kasprzyk, and J. B. Kollat, Evolutionary multiobjective optimization in water resources: the past, present, and future, Advances in Water Resources, 51, 438-456, 2013.
    34. Spaaks, J. H. and W. Bouten, Resolving structural errors in a spatially distributed hydrologic model using ensemble Kalman filter state updates, Hydrology and Earth System Sciences, 17, 3455–3472, 2013.
    35. Wöhling, T., L. Samaniego, and R. Kumar, Evaluating multiple performance criteria to calibrate the distributed hydrological model of the upper Neckar catchment, Environmental Earth Sciences, 69(2), 453-468, 2013.
    36. Ghimire, S. R., and J. M. Johnston, Impacts of domestic and agricultural rainwater harvesting systems on watershed hydrology: A case study in the Albemarle-Pamlico river basins (USA), Ecohydrology & Hydrobiology, 13(2), 159-171, 2013.
    37. Hartmann, A., T. Wagener, A. Rimmer, J. Lange, H. Brielmann, and M. Weiler, Testing the realism of model structures to identify karst system processes using water quality and quantity signatures, Water Resources Research, 49(6), 3345-3358, 2013.
    38. Hill, M. C., C. C. Faunt, W. R. Belcher, D. S. Sweetkind, C. R. Tiedeman and D. Kavetski, Knowledge, transparency, and refutability in groundwater models, an example from the Death Valley regional groundwater flow system, Physics and Chemistry of the Earth, 64, 105-116, 2013.
    39. Muñoz, E., J. L. Arumí and D. Rivera, Watersheds are not static: Implications of climate variability and hydrologic dynamics in modeling [Las cuencas no son estacionarias: implicancias de la variabilidad climática y dinámicas hidrológicas en la modelación, Bosque, 34 (1), 7-11, 2013.
    40. Hrachowitz, M., H.H.G. Savenije, G. Blöschl, J.J. McDonnell, M. Sivapalan, J.W. Pomeroy, B. Arheimer, T. Blume, M.P. Clark, U. Ehret, F. Fenicia, J.E. Freer, A. Gelfan, H.V. Gupta, D.A. Hughes, R.W. Hut, A. Montanari, S. Pande, D. Tetzlaff, P.A. Troch, S. Uhlenbrook, T. Wagener, H.C. Winsemius, R.A. Woods, E. Zehe, and C. Cudennec, A decade of Predictions in Ungauged Basins (PUB) — a review, Hydrological Sciences Journal, 58(6), 1198-1255, 2013.
    41. Xu, C., H. Chen, and S. Guo, Hydrological modeling in a changing environment: issues and challenges, Journal of Water Resources Research, 2, 85-95, 2013.
    42. Ramin, M., and G. B. Arhonditsis, Bayesian calibration of mathematical models: Optimization of model structure and examination of the role of process error covariance, Ecological Informatics, 18, 107-116, 2013.
    43. Dumedah, G., and P. Coulibaly, Evaluating forecasting performance for data assimilation methods: the Ensemble Kalman Filter, the Particle Filter, and the Evolutionary-based assimilation Advances in Water Resources, 60, 47-63, 2013.
    44. Wöhling, T., S. Gayler, E. Priesack, J. Ingwersen, H.-D. Wizemann, P. Högy, M. Cuntz, S. Attinger, V. Wulfmeyer, and T. Streck, Multiresponse, multiobjective calibration as a diagnostic tool to compare accuracy and structural limitations of five coupled soil-plant models and CLM3.5, Water Resources Research, 49(12), 8200–8221, 2013.
    45. Romanowicz, R., M. Osuch and M. Grabowiecka, On the choice of calibration periods and objective functions: A practical guide to model parameter identification, Acta Geophysica, 61(6), 1477-1503, 10.2478/s11600-013-0157-6, 2013.
    46. Rientjes, T.H.M., L.P. Muthuwatta, M.G. Bos, M.J. Booij, and H.A. Bhatti, Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration, Journal of Hydrology, 505, 276-290, 2013.
    47. Guerrero, J. L., I. K. Westerberg, S. Halldin, L.-C. Lundin, and C.-Y. Xu, Exploring the hydrological robustness of model-parameter values with alpha shapes, Water Resources Research, 49 (10), 6700-6715, 2013.
    48. Hsie, M., S. W. Yan and N. F. Pan, Improvement of rainfall-runoff simulations using the Runoff-Scale Weighting Method, Journal of Hydrologic Engineering, 19(7), 1330-1339, 10.1061/(ASCE)HE.1943-5584.0000921, 2014.
    49. Gharari, S., M. Shafiei, M. Hrachowitz, F. Fenicia, H. V. Gupta, and H. H. G. Savenije, A constraint-based search algorithm for parameter identification of environmental models, Hydrology and Earth System Sciences, 18, 4861-4870, doi:10.5194/hess-18-4861-2014, 2014.
    50. Shinma, T. A., and L. F. A. Reis, Incorporating multi-event and multi-site data in the calibration of SWMM, Procedia Engineering, 70, 75-84, 2014.
    51. Coron, L., V. Andréassian, C. Perrin, M. Bourqui, and F. Hendrickx, On the lack of robustness of hydrologic models regarding water balance simulation – a diagnostic approach on 20 mountainous catchments using three models of increasing complexity, Hydrology and Earth System Sciences, 18, 727-746, 2014.
    52. Dumedah, G., and J. P. Walker, Evaluation of model parameter convergence when using data assimilation for soil moisture estimation, Journal of Hydrometeorology, 15(1), 359-375, 2014.
    53. Black, D. C., P. J. Wallbrink, and P. W. Jordan, Towards best practice implementation and application of models for analysis of water resources management scenarios, Environmental Modelling and Software, 52, 136-148, 2014.
    54. Loukas, A., and L. Vasiliades, Streamflow simulation methods for ungauged and poorly gauged watersheds, Natural Hazards and Earth System Sciences, 14, 1641-1661, doi:10.5194/nhess-14-1641-2014, 2014.
    55. Brauer, C. C., P. J. J. F. Torfs, A. J. Teuling, and R. Uijlenhoet, The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrology and Earth System Sciences , 18, 4007-4028, 10.5194/hess-18-4007-2014, 2014.
    56. Kloss, S., N. Schütze, and U. Schmidhalter, Evaluation of very high soil-water tension threshold values in sensor-based deficit irrigation systems, Journal of Irrigation and Drainage Engineering, 140 (9), 10.1061/(ASCE)IR.1943-4774.0000722, 2014.
    57. Brauer, C. C., A. J. Teuling, P. J. J. F. Torfs, and R. Uijlenhoet, The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall–runoff model for catchments with shallow groundwater, Geoscientific Model Development, 7, 2313-2332, doi:10.5194/gmd-7-2313-2014, 2014.
    58. #Hörmann, G., N. Fohrer, and W. Kluge, Modelle zum Wasserhaushalt, Handbuch der Umweltwissenschaften, 2014.
    59. Zeff, H. B., J. R. Kasprzyk, J. D. Herman, P. M. Reed, and G. W. Characklis, Navigating financial and supply reliability tradeoffs in regional drought management portfolios, Water Resources Research, 50(6), 4906–4923, 2014.
    60. Minville, M., D. Cartier, C. Guay, L.-A. Leclaire, C. Audet, S. Le Digabel, and J. Merleau, Improving process representation in conceptual hydrological model calibration using climate simulations, Water Resources Research, 50(6), 5044–5073, 2014.
    61. Gao, W., F. Zhou, Y.-J. Dong, H.-C. Guo, J.-T. Peng, P. Xu, and , L. Zhao, PEST-based multi-objective automatic calibration of hydrologic parameters for HSPF model, Journal of Natural Resources, 29(5), 855-867, 2014.
    62. #Houle, E., and J. Kasprzyk, Investigating parameter sensitivity for management in snow-driven watersheds, Proceedings of 7th International Congress on Environmental Modelling and Software, Daniel P. Ames, Nigel W.T. Quinn and Andrea E. Rizzoli (eds.), San Diego, CA, USA, 2014.
    63. #Kasprzyk, J., J. Kollat, and C. Danilo, Balancing conflicting management objectives using interactive, three-dimensional visual analytics, Proceedings of 7th International Congress on Environmental Modelling and Software, Daniel P. Ames, Nigel W.T. Quinn and Andrea E. Rizzoli (eds.), San Diego, CA, USA, 2014.
    64. Reynoso-Meza, G., J. Sanchis, X. Blasco, and S. García-Nieto, Physical programming for preference driven evolutionary multi-objective optimisation, Applied Soft Computing, 24, 341-362, 2014
    65. Zhang, Y. Y., Q. X. Shao, A. Z. Ye and H. T. Xing, An integrated water system model considering hydrological and biogeochemical processes at basin scale: model construction and application, Hydrol. Earth Syst. Sci. Discuss., 11, 9219-9279, 10.5194/hessd-11-9219-2014, 2014.
    66. Mayr, E., M. Juen, C. Mayer, R. Usubaliev and W. Hagg, Modeling runoff from the Inylchek glaciers and filling of ice‐dammed Lake Merzbacher, Central Tian Shan, Geografiska Annaler: Series A, Physical Geography, 96(4), 609–625, 10.1111/geoa.12061, 2014.
    67. Matos, J. P., M. M. Portela, and D. Juízo, Uma forma alternativa de enfrentar a escassez de dados na bacia do rio Zambeze com vista à calibração de modelos hidrológicos (An alternative approach to face the scarcity of data in the Zambezi River basin aiming at calibrating hydrological models), Revista Recursos Hídricos, 35(1), 37-52, 2014.
    68. Asadzadeh, M., B. Tolson, and D. H. Burn, A new selection metric for multiobjective hydrologic model calibration, Water Resources Research, 50(9), 7082–7099, doi:10.1002/2013WR014970, 2014.
    69. Haghnegahdar, A., B. A. Tolson, B. Davison, F. R. Seglenieks, E. Klyszejko, E. D. Soulis, V. Fortin, and L. S. Matott, Calibrating environment Canada's MESH modelling system over the Great Lakes Basin, Atmosphere-Ocean, 52(4), 281-293, 2014.
    70. Hrachowitz, M., O. Fovet, L. Ruiz, T. Euser, S. Gharari, R. Nijzink, J. Freer, H.H.G. Savenije, and C. Gascuel-Odoux, Process consistency in models: The importance of system signatures, expert knowledge, and process complexity, Water Resources Research, 50(9), 7445–7469, doi: 10.1002/2014WR015484, 2014.
    71. Doppler, T., M. Honti, U. Zihlmann, P. Weisskopf, and C. Stamm, Validating a spatially distributed hydrological model with soil morphology data, Hydrology and Earth System Sciences, 18, 3481-3498, doi:10.5194/hess-18-3481-2014, 2014.
    72. Newman, J. P., G. C. Dandy, and H. R. Maier, Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization, Water Resources Research, 50(10), 7915–7938, doi:10.1002/2013WR015233, 2014.
    73. Werisch, S., J. Grundmann, H. Al-Dhuhli, E. Algharibi, and F. Lennartz, Multiobjective parameter estimation of hydraulic properties for a sandy soil in Oman, Environmental Earth Sciences, 72(12), 4935-4956, 2014.
    74. Piscopo, A. N., J. R. Kasprzyk, and R. M. Neupauer, An iterative approach to multi-objective engineering design: Optimization of engineered injection and extraction for enhanced groundwater remediation, Environmental Modelling & Software, 69, 253-261, 2015.
    75. Andréassian, V., F. Bourgin, L. Oudin, T. Mathevet, C. Perrin, J. Lerat, L. Coron, and L. Berthet, Seeking genericity in the selection of parameter sets: Impact on hydrological model efficiency, Water Resources Research, 50(10), 8356–8366, 2014.
    76. Ficklin, D. L., and B. L. Barnhart, SWAT hydrologic model parameter uncertainty and its implications for hydroclimatic projections in snowmelt-dependent watersheds, Journal of Hydrology, 519(B), 2081–2090, 2014.
    77. Yang, J., F. Castelli and Y. Chen, Multiobjective sensitivity analysis and optimization of distributed hydrologic model MOBIDIC, Hydrology and Earth System Sciences, 18, 4101-4112, 10.5194/hess-18-4101-2014, 2014.
    78. #Matos, J.P., Hydraulic-hydrologic model for the Zambezi River using satellite data and artificial intelligence techniques, Communications du Laboratoire de Constructions Hydrauliques ISSN 1661-1179, Ecole Polytechnique Fédérale de Lausanne, 2014.
    79. Dumedah, G., Toward essential union between evolutionary strategy and data assimilation for model diagnostics: An application for reducing the search space of optimization problems using hydrologic genome map, Environmental Modelling & Software, 69, 342-352, 2015.
    80. Gao, W., H. C. Guo, and Y. Liu, Impact of calibration objective on hydrological model performance in ungauged watersheds, Journal of Hydrologic Engineering, 20(8), 04014086, doi:10.1061/(ASCE)HE.1943-5584.0001116, 2015.
    81. Koch, J., K. Høgh Jensen, and S. Stisen, Toward a true spatial model evaluation in distributed hydrological modeling: Kappa statistics, Fuzzy theory, and EOF analysis benchmarked by the human perception and evaluated against a modeling case study, Water Resources Research, 51(2), 1225–1246, doi:10.1002/2014WR016607, 2015.
    82. #Perrin , C ., M.-H . Ramos , V. Andréassian , P. Nicolle , L. Crochemore , and R. Pushpalatha, Improved rainfall-runoff modelling tools for low-flow forecasting: Application to French catchments, Drought: Research and Science-Policy Interfacing, J. Andreu Alvarez, A. Solera, J. Paredes-Arquiola, D. Haro-Monteagudo, and H. van Lanen (editors), Chapter 38, 259–265, CRC Press, doi:10.1201/b18077-45, 2015.
    83. Seong, C., Y. Her, and B. L. Benham, Automatic calibration tool for hydrologic simulation program-FORTRAN using a shuffled complex evolution algorithm, Water, 7, 503-527, doi:10.3390/w7020503, 2015.
    84. Wi, S., Y.C.E. Yang, S. Steinschneider, A. Khalil, and C.M. Brown, Calibration approaches for distributed hydrologic models in poorly gaged basins: implication for streamflow projections under climate change, Hydrology and Earth System Sciences, 19, 857-876, doi:10.5194/hess-19-857-2015, 2015.
    85. Chang, C.-H., Development of ocean color algorithms for estimating chlorophyll-a concentrations and inherent optical properties using gene expression programming (GEP), Optics Express, 23(5), 5417-5437, doi:10.1364/OE.23.005417, 2015.
    86. Hauduc, H., M.B. Neumann, D. Muschalla, V. Gamerith, S. Gillot, and P.A. Vanrolleghem, Efficiency criteria for environmental model quality assessment: A review and its application to wastewater treatment, Environmental Modelling and Software, 68, 196-204, doi:10.1016/j.envsoft.2015.02.004, 2015.
    87. Peel, M. C., R. Srikanthan, T. A. McMahon, and D. J. Karoly, Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data, Hydrology and Earth System Sciences, 19, 1615-1639, doi:10.5194/hess-19-1615-2015, 2015.
    88. Silvestro, F., S. Gabellani, R. Rudari, F. Delogu, P. Laiolo, P., and G. Boni, Uncertainty reduction and parameter estimation of a distributed hydrological model with ground and remote sensing data, Hydrology and Earth System Sciences, 19, 1727-1751, doi:10.5194/hess-19-1727-2015, 2015.
    89. Thirel, G., V. Andréassian, and C. Perrin, On the need to test hydrological models under changing conditions, Hydrological Sciences Journal, 60(7-8), 1165-1173, doi:10.1080/02626667.2015.1050027, 2015.
    90. #Simmons, J. A., L. A. Marshall, I. L. Turner, K. D. Splinter, R. J. Cox, M. D. Harley, D. J. Hanslow, and M. A. Kinsela, A more rigorous approach to calibrating and assessing the uncertainty of coastal numerical models, Australasian Coasts & Ports Conference 2015, Auckland, New Zealand, 2015.
    91. Hublart, P., D. Ruelland, A. Dezetter, and H. Jourde, Reducing structural uncertainty in conceptual hydrological modeling in the semi-arid Andes, Hydrology and Earth System Sciences, 19, 2295–2314, doi:10.5194/hess-19-2295-2015, 2015.
    92. Chiew, F. H. S., and J. Vaze, Hydrologic nonstationarity and extrapolating models to predict the future: overview of session and proceeding, Proc. IAHS, 371, 17–21, doi:10.5194/piahs-371-17-2015, 2015.
    93. Lazzaro, G., and G. Botter, Run-of-river power plants in Alpine regions: Whither optimal capacity?, Water Resources Research, 51(7), 5658–5676, doi:10.1002/2014WR016642, 2015.
    94. Bardsley, W.E., V. Vetrova, and S. Liu, Toward creating simpler hydrological models: A LASSO subset selection approach, Environmental Modelling and Software, 72, 33-43, doi:10.1016/j.envsoft.2015.06.008, 2015.
    95. Zhang, Y., G. Fu, B. Sun, S. Zhang, and B. Men, Simulation and classification of the impacts of projected climate change on flow regimes in the arid Hexi Corridor of Northwest China, Journal of Geophysical Research: Atmospheres, 120(15), 7429–7453, doi:10.1002/2015JD023294, 2015.
    96. Piccolroaz, S., B. Majone, F. Palmieri, G. Cassiani, and A. Bellin, On the use of spatially distributed, time-lapse microgravity surveys to inform hydrological modeling, Water Resources Research, 51(9), 7270–7288, doi:10.1002/2015WR016994, 2015.
    97. Gelleszun, M., P. Kreye and G. Meon, Lexicographic calibration strategy for efficient parameter estimation in highly resolved rainfall-runoff models, Hydrologie Und Wasserbewirtschaftung, 59 (3), 84-95, 10.5675/HyWa_2015,3_1, 2015.
    98. Doncieux, S., J. Liénard, B. Girard, M. Hamdaoui and J. Chaskalovic, Multi-objective analysis of computational models, arXiv:1507.06877, 2015.
    99. Serpa, D., J. P. Nunes, J. Santos, E. Sampaio, R. Jacinto, S. Veiga, J. C. Lima, M. Moreira, J. Corte-Real, J. J. Keizer, and N. Abrantes, Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments, Science of the Total Environment, 538, 64-77, doi:10.1016/j.scitotenv.2015.08.033, 2015.
    100. #Sun, N.-Z., and A. Sun, Multiobjective inversion and regularization, Model Calibration and Parameter Estimation for Environmental and Water Resource Systems, 69-105, 2015.
    101. #Cho, H.-J., M. C. Hwang, and C. C. Hsu, A calibration framework of a mixed-traffic signal optimization model by multi-objective evolutionary approach, MSV'15 - The 12th International Conference on Modeling, Simulation and Visualization Methods, 44-47, Las Vegas, 2015.
    102. Inzoli, S., and M. Giudici, A comparison between single- and multi-objective optimization to fit spectral induced polarization data from laboratory measurements on alluvial sediments, Journal of Applied Geophysics, 122, 149-158, doi:10.1016/j.jappgeo.2015.09.017, 2015.
    103. Sikorska, A.E., D. Del Giudice, K. Banasik, and J. Rieckermann, The value of streamflow data in improving TSS predictions - Bayesian multi-objective calibration, Journal of Hydrology, 530, 241–254, doi:10.1016/j.jhydrol.2015.09.051, 2015.
    104. Zhang, Y. Y., Q. X. Shao, A. Z. Ye, H. T. Xing, and J. Xia, Integrated water system simulation by considering hydrological and biogeochemical processes: model development, parameter sensitivity and autocalibration, Hydrology and Earth System Sciences, 20, 529-553, doi:10.5194/hess-20-529-2016, 2016.
    105. #Ward, A. D., S. W. Trimble, S. R. Burckhard, and J. G. Lyon, Environmental Hydrology, 3rd edition, CRC Press, 2016.
    106. Hughes, J. D., S. S. H. Kim, D. Dutta, and J. Vaze, Optimisation of a multiple gauge, regulated river–system model. A system approach, Hydrological Processes, 30(12), 1955-1967, doi:10.1002/hyp.10752, 2016.
    107. Fernández-Rodríguez, S., P. Durán-Barroso, I. Silva-Palacios, R. Tormo-Molina, J. M. Maya-Manzano, and Á. Gonzalo-Garijo, Quercus long-term pollen season trends in the southwest of the Iberian Peninsula, Process Safety and Environmental Protection, 101, 152–159, doi:10.1016/j.psep.2015.11.008, 2016.
    108. Chang, C.-H., J. F. Harrison, and Y.‐C. Huang, Modeling typhoon‐induced alterations on river sediment transport and turbidity based on dynamic landslide inventories: Gaoping river basin, Taiwan, Water, 7, 6910–6930, doi:10.3390/w7126666, 2015.
    109. Houska, T., P. Kraft, A. Chamorro-Chavez, and L. Breuer, SPOTting model parameters using a ready-made Python package, PLoS ONE 10(12), e0145180, doi:10.1371/journal.pone.0145180, 2015.
    110. Guo, S., C. Xu, H. Chen, and D. Liu, Review and assessment of interaction between watershed hydrology and society system, Journal of Water Resources Research, 5(1), 1-15, doi:10.12677/jwrr.2016.51001, 2016.
    111. Oni, S. K., M. N. Futter, J. L. J. Ledesma, C. Teutschbein, J. Buttle, and H. Laudon, Using dry and wet hydroclimatic extremes to guide future hydrologic predictions, Hydrology and Earth System Sciences, 20, 2811-2825, doi:10.5194/hess-2016-7, 2016.
    112. Le Bourgeois, O., C. Bouvier, P. Brunet, and P.-A. Ayral, Inverse modeling of soil water content to estimate the hydraulic properties of a shallow soil and the associated weathered bedrock, Journal of Hydrology, 541, 116-126, doi:10.1016/j.jhydrol.2016.01.067, 2016.
    113. Silva-Palacios, I., S. Fernández-Rodríguez, P. Durán-Barroso, R. Tormo-Molina, J. M. Maya-Manzano, and Á. Gonzalo-Garijo, Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula, International Journal of Biometeorology, 60(2), 297-306, doi:10.1007/s00484-015-1026-6, 2016.
    114. Fowler, K. J. A., M. C. Peel, A. W. Western, L. Zhang, and T. J. Peterson, Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall-runoff models, Water Resources Research, 52(3), 1820–1846, doi:10.1002/2015WR018068, 2016.
    115. Dariane , A. B., and M. M. Javadianzadeh, Towards an efficient rainfall–runoff model through partitioning scheme, Water, 8, 63; doi:10.3390/w8020063, 2016.
    116. Fernández-Rodríguez , S., P. Durán-Barroso, I. Silva-Palacios, R. Tormo-Molina, J. M. Maya-Manzano, and Á. Gonzalo-Garijo, Regional forecast model for the Olea pollen season in Extremadura (SW Spain), International Journal of Biometeorology, 60(10), 1509-1517, doi:10.1007/s00484-016-1141-z, 2016.
    117. #Tian, F., Y. Sun, H. Hu, and H. Li, Searching for an optimized single-objective function matching multiple objectives with automatic calibration of hydrological models, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-88, 2016.
    118. Smith, A., C. Welch, and T. Stadnyk, Assessment of a lumped coupled flow-isotope model in data scarce Boreal catchments, Hydrological Processes, doi:10.1002/hyp.10835, 2016.
    119. Rogelis, M. C., M. Werner, N. Obregón, and N. Wright, Hydrological model assessment for flood early warning in a tropical high mountain basin, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-30, 2016.
    120. Senapati, N., P.-E. Jansson, P. Smith, and A. Chabbi, Modelling heat, water and carbon fluxes in mown grassland under multi-objective and multi-criteria constraints, Environmental Modelling & Software, 80, 201-224, doi:10.1016/j.envsoft.2016.02.025, 2016.
    121. Pathiraja, S., L. Marshall, A. Sharma, and H. Moradkhani, Hydrologic modeling in dynamic catchments: A data assimilation approach, Water Resources Research, 52(5), 3350–3372, doi:10.1002/2015WR017192, 2016.
    122. Seibert, S. P., U. Ehret, and E. Zehe, Disentangling timing and amplitude errors in streamflow simulations, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-145, 2016.
    123. #Echevarría , Y., L. Sánchez, and C. Blanco, Assessment of multi-objective optimization algorithms for parametric identification of a Li-Ion Battery model, Hybrid Artificial Intelligent Systems, Vol. 9648, Lecture Notes in Computer Science, 250-260, doi: 10.1007/978-3-319-32034-2_21, 2016.
    124. Charizopoulos, N., and A. Psilovikos, Hydrologic processes simulation using the conceptual model Zygos: the example of Xynias drained Lake catchment (central Greece), Environmental Earth Sciences, 75:777, doi:10.1007/s12665-016-5565-x, 2016.
    125. Zhang, Y., Q. Shao, and J. A. Taylor, A balanced calibration of water quantity and quality by multi-objective optimization for integrated water system model, Journal of Hydrology, 538, 802-816, doi:10.1016/j.jhydrol.2016.05.001, 2016.
    126. Zhang, Y., Q. Shao, S. Zhang, X. Zhai, and D. She, Multi-metric calibration of hydrological model to capture overall flow regimes, Journal of Hydrology, 539, 525–538, doi:10.1016/j.jhydrol.2016.05.053, 2016.
    127. Hitsov, I., L. Eykens, K. De Sitter, C. Dotremont, L. Pinoy, B. Van der Bruggen, and I. Nopens, Calibration and analysis of a direct contact membrane distillation model using Monte Carlo filtering, Journal of Membrane Science, 515, 63–78, doi:10.1016/j.memsci.2016.05.041, 2016.
    128. Fernández-Rodríguez, S., P. Durán-Barroso, I. Silva-Palacios, R. Tormo-Molina, J. M. Maya-Manzano, and Á. Gonzalo-Garijo, Forecast model of allergenic hazard using trends of Poaceae airborne pollen over an urban area in SW Iberian Peninsula (Europe), Natural Hazards, 84(1), 121-137, doi:10.1007/s11069-016-2411-0, 2016.
    129. Yen, H., M. J. White, J. G. Arnold, S. C. Keitzer, M.-V. V. Johnson, J. D. Atwood, P. Daggupati, M. E. Herbert, S. P. Sowa, S. A. Ludsin, D. M. Robertson, R. Srinivasan, and C. A. Rewa, Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios, Science of the Total Environment, 569-570, 1265–1281, doi:10.1016/j.scitotenv.2016.06.202, 2016.
    130. Yu, X., C. Duffy, Y. Zhang, G. Bhatt, and Y. Shi, Virtual experiments guide calibration strategies for a real-world watershed application of coupled surface-subsurface modeling, Journal of Hydrologic Engineering, 04016043, doi:10.1061/(ASCE)HE.1943-5584.0001431, 2016.
    131. Davison, B., A. Pietroniro, V. Fortin, R. Leconte, M. Mamo, and M. K. Yau, What is missing from the prescription of hydrology for land surface schemes?, Journal of Hydrometeorology, 17(7), 2013-2039, doi:10.1175/JHM-D-15-0172.1, 2016.
    132. Mendez, M., and L. Calvo-Valverde, Development of the HBV-TEC hydrological model, Procedia Engineering, 154, 1116-1123, doi:10.1016/j.proeng.2016.07.521, 2016.
    133. Huo, J., L. Liu, and Y. Zhang, Comparative research of optimization algorithms for parameters calibration of watershed hydrological model, Journal of Computational Methods in Sciences and Engineering, 16(3), 653-669, doi:10.3233/JCM-160647, 2016.
    134. #Hernández, F. and X., Liang, X., Hybridizing sequential and variational data assimilation for robust high-resolution hydrologic forecasting, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-454, 2016.
    135. Pagel, H., C. Poll, J. Ingwersen, E. Kandeler, and T. Streck, Modeling coupled pesticide degradation and organic matter turnover: From gene abundance to process rates, Soil Biology and Biochemistry, 103, 349-364, doi:10.1016/j.soilbio.2016.09.014, 2016.
    136. Bisselink, B., M. Zambrano-Bigiarini, P. Burek, and A. de Roo, Assessing the role of uncertain precipitation estimates on the robustness of hydrological model parameters under highly variable climate conditions, Journal of Hydrology: Regional Studies, 8, 112-129, doi:10.1016/j.ejrh.2016.09.003, 2016.
    137. Vernier, F., O. Leccia-Phelpin, J.-M. Lescot, S. Minette, A. Miralles, D. Barberis, C. Scordia, V. Kuentz-Simonet, and J.-P. Tonneau, Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France), Environmental Science and Pollution Research, 24(8), 6923–6950, doi:10.1007/s11356-016-7657-2, 2017.
    138. Piotrowski, A. P., M. J. Napiorkowski, J. J. Napiorkowski, M. Osuch, and Z. W. Kundzewicz, Are modern metaheuristics successful in calibrating simple conceptual rainfall–runoff models?, Hydrological Sciences Journal, 62(4), 606-625, doi:10.1080/02626667.2016.1234712, 2017.
    139. #De Paola, F., M. Giugni, and F. Pugliese, A harmony-based calibration tool for urban drainage systems, Proceedings of the Institution of Civil Engineers - Water Management, doi:10.1680/jwama.16.00057, 2016.
    140. #Meza, G. R., X. B. Ferragud, J. S. Saez, and J. M. H. Durá, Background on multiobjective optimization for controller tuning, Controller Tuning with Evolutionary Multiobjective Optimization - A Holistic Multiobjective Optimization Design Procedure, Intelligent Systems, Control and Automation: Science and Engineering, Vol. 85, 23-58, doi:10.1007/978-3-319-41301-3_2, 2017.
    141. Seiller, G., R. Roy, and F. Anctil, Influence of three common calibration metrics on the diagnosis of climate change impacts on water resources, Journal of Hydrology, 547, 280–295, doi:10.1016/j.jhydrol.2017.02.004, 2017.
    142. Chang, Y., J. Wu, G. Jiang, and Z. Kang, Identification of the dominant hydrological process and appropriate model structure of a karst catchment through stepwise simplification of a complex conceptual model, Journal of Hydrology, 548, 75-87, doi:10.1016/j.jhydrol.2017.02.050, 2017.
    143. Kumarasamy, K., and P. Belmont, Multiple domain evaluation of watershed hydrology models, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2017-121, 2017.
    144. Jung, D., Y. H. Choi, and J. H. Kim, Multiobjective automatic parameter calibration of a hydrological model, Water, 9(3), 187, doi:10.3390/w9030187, 2017.
    145. Pouget, D. P., A. Vera, M. Villacís, T. Condom, M. Escobar, P. Le Goulven, and R. Calvez, Glacio-hydrological modelling and water resources management in the Ecuadorian Andes: the example of Quito, Hydrological Sciences Journal, 62(3), 431-446, doi:10.1080/02626667.2015.1131988, 2017.
    146. Chen, J., R. Arsenault, and F. P. Brissette, An experimental approach to reduce the parametric dimensionality for rainfall–runoff models, Hydrology Research, 48(1), 48-65, doi:10.2166/nh.2016.145, 2017.
    147. Aphale, O., and D. J. Tonjes, Multimodel validity assessment of groundwater flow simulation models using area metric approach, Groundwater, 55(2), 219–226, doi:10.1111/gwat.12470, 2017.
    148. Simmons, J. A., M. D. Harley, L. A. Marshall, I. L. Turner, K. D. Splinter, and R. J. Cox, Calibrating and assessing uncertainty in coastal numerical models, Coastal Engineering, 125, 28-41, doi:10.1016/j.coastaleng.2017.04.005, 2017.
    149. Stahn, P., S. Busch, T. Salzmann, B. Eichler-Löbermann, and K. Miegel, Combining global sensitivity analysis and multiobjective optimisation to estimate soil hydraulic properties and representations of various sole and mixed crops for the agro-hydrological SWAP model, Environmental Earth Sciences, 76, 367, doi:10.1007/s12665-017-6701-y, 2017.
    150. Kiesel, J., B. Guse, M. Pfannerstill, K. Kakouei, S. C. Jähnig, and N. Fohrer, Improving hydrological model optimization for riverine species, Ecological Indicators, doi:10.1016/j.ecolind.2017.04.032, 2017.

  1. D. Koutsoyiannis, C. Makropoulos, A. Langousis, S. Baki, A. Efstratiadis, A. Christofides, G. Karavokiros, and N. Mamassis, Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability, Hydrology and Earth System Sciences, 13, 247–257, doi:10.5194/hess-13-247-2009, 2009.

    Since 1990 extensive funds have been spent on research in climate change. Although Earth Sciences, including climatology and hydrology, have benefited significantly, progress has proved incommensurate with the effort and funds, perhaps because these disciplines were perceived as “tools” subservient to the needs of the climate change enterprise rather than autonomous sciences. At the same time, research was misleadingly focused more on the “symptom”, i.e. the emission of greenhouse gases, than on the “illness”, i.e. the unsustainability of fossil fuel-based energy production. Unless energy saving and use of renewable resources become the norm, there is a real risk of severe socioeconomic crisis in the not-too-distant future. A framework for drastic paradigm change is needed, in which water plays a central role, due to its unique link to all forms of renewable energy, from production (hydro and wave power) to storage (for time-varying wind and solar sources), to biofuel production (irrigation). The extended role of water should be considered in parallel to its other uses, domestic, agricultural and industrial. Hydrology, the science of water on Earth, must move towards this new paradigm by radically rethinking its fundamentals, which are unjustifiably trapped in the 19th-century myths of deterministic theories and the zeal to eliminate uncertainty. Guidance is offered by modern statistical and quantum physics, which reveal the intrinsic character of uncertainty/entropy in nature, thus advancing towards a new understanding and modelling of physical processes, which is central to the effective use of renewable energy and water resources.

    Remarks:

    Blogs and forums that have discussed this article: Climate science; Vertical news; Outside the cube.

    Update 2011-09-26: The removed video of the panel discussion of Nobelists entitled “Climate Changes and Energy Challenges” (held in the framework of the 2008 Meeting of Nobel Laureates at Lindau on Physics) which is referenced in footnote 1 of the paper, still cannot be located online. However, Larry Gould has an audio file of the discussion here.

    Full text: http://www.itia.ntua.gr/en/getfile/878/17/documents/hess-13-247-2009.pdf (1476 KB)

    Additional material:

    See also: http://dx.doi.org/10.5194/hess-13-247-2009

    Works that cite this document: View on Google Scholar or ResearchGate

    Other works that reference this work (this list might be obsolete):

    1. Andréassian, V., C. Perrin, L. Berthet, N. Le Moine, J. Lerat, C. Loumagne, L. Oudin, T. Mathevet, M.-H. Ramos, and A. Valéry, HESS Opinions "Crash tests for a standardized evaluation of hydrological models", Hydrology and Earth System Sciences, 13, 1757-1764, 2009.
    2. Hunt, D. V. L., I. Jefferson, M. R. Gaterell, and C. D. F. Rogers, Planning for sustainable utility infrastructure, Proceedings of the Institution of Civil Engineers – Urban Design and Planning, 162(DP4), 187-201, 2009.
    3. Makropoulos, C. K., and D. Butler, Distributed water infrastructure for sustainable communities, Water Resources Management, 24(11), 2795-2816, 2010.
    4. Jódar, J., J. Carrera, and A. Cruz, Irrigation enhances precipitation at the mountains downwind, Hydrology and Earth System Sciences, 14, 2003-2010, 2010.
    5. #Ladanai, S., and J. Vinterbäck, Biomass for Energy versus Food and Feed, Land Use Analyses and Water Supply, Report 022, Swedish University of Agricultural Sciences, ISSN 1654-9406, Uppsala, 2010.
    6. Ward, J. D., A. D. Werner, W. P. Nel, and S. Beecham, The influence of constrained fossil fuel emissions scenarios on climate and water resource projections, Hydrology and Earth System Sciences, 15, 1879-1893, 2011.
    7. #Montanari, A, Uncertainty of hydrological predictions, In: P. Wilderer (ed.) Treatise on Water Science, Vol. 2, 459–478, Oxford Academic Press, 2011.
    8. #Willems, P., J. Olsson, K. Arnbjerg-Nielsen, S. Beecham, A. Pathirana, I. Bulow Gregersen, H. Madsen, V.-T.-V. Nguyen, Practices and Impacts of Climate Change on Rainfall Extremes and Urban Drainage, IWA Publishing, London, 2012.
    9. Andrés-Doménech, I., A. Montanari and J. B. Marco, Efficiency of storm detention tanks for urban drainage systems under climate variability, Journal of Water Resources Planning and Management, 138 (1), 36-46, 2012.
    10. Montanari, A., Hydrology of the Po River: looking for changing patterns in river discharge, Hydrology and Earth System Sciences, 16, 3739-3747, doi:10.5194/hess-16-3739-2012, 2012.
    11. Voulvoulis, N., Water and sanitation provision in a low carbon society: The need for a systems approach, Journal of Renewable and Sustainable Energy, 4(4), 041403, 2012.
    12. #Skaggs, R., K. A. Hibbard, T. C. Janetos, and J. S. Rice, Climate and energy-water-land system interactions, Technical report to the U.S. Department of Energy in Support of the National Climate Assessment, Report No. PNNL-21185, Pacific Northwest National Laboratory, Richland, WA, 152 pp., 2012.
    13. Gunasekara, N. K., S. Kazama, D. Yamazaki and T. Oki, The effects of country-level population policy for enhancing adaptation to climate change, Hydrol. Earth Syst. Sci., 17, 4429-4440, 2013.
    14. Nastos, P. T., N. Politi, and J. Kapsomenakis, Spatial and temporal variability of the aridity index in Greece, Atmospheric Research, 19, 140-152, 2013.
    15. Hrachowitz, M., H.H.G. Savenije, G. Blöschl, J.J. McDonnell, M. Sivapalan, J.W. Pomeroy, B. Arheimer, T. Blume, M.P. Clark, U. Ehret, F. Fenicia, J.E. Freer, A. Gelfan, H.V. Gupta, D.A. Hughes, R.W. Hut, A. Montanari, S. Pande, D. Tetzlaff, P.A. Troch, S. Uhlenbrook, T. Wagener, H.C. Winsemius, R.A. Woods, E. Zehe, and C. Cudennec, A decade of Predictions in Ungauged Basins (PUB) — a review, Hydrological Sciences Journal, 58(6), 1198-1255, 2013.
    16. Thompson, S. E., M. Sivapalan, C. J. Harman, V. Srinivasan, M. R. Hipsey, P. Reed, A. Montanari and G. and Blöschl, Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene, Hydrology and Earth System Sciences, 17, 5013-5039, 2013.
    17. #Voulvoulis, N., The potential of water reuse as a management option for water security under the ecosystem services approach, Win4Life Conference, Tinos Island, Greece, 2013.
    18. Dette, H., and K. Sen, Goodness-of-fit tests in long-range dependent processes under fixed alternatives, ESAIM: Probability and Statistics, 17, 432-443, 2013.
    19. Ilich, N., An effective three-step algorithm for multi-site generation of stochastic weekly hydrological time series, Hydrological Sciences Journal, 59 (1), 85-98, 2014.
    20. Jain, S., Reference climate and water data networks for India, Journal of Hydrologic Engineering, 20(4), 02515001, doi:10.1061/(ASCE)HE.1943-5584.0001170, 2015.
    21. Voulvoulis, N., The potential of water reuse as a management option for water security under the ecosystem services approach, Desalination and Water Treatment, 53 (12), 3263-3271, 2015.
    22. #Rohli, R. V., Overview of applied climatology and water/energy resources, Selected Readings in Applied Climatology, R. V. Rohli and T. A. Joyner (editors), 144-155, Cambridge Scholars Publishing, 2015.
    23. #Kim, S.S.H., J.D. Hughes, D. Dutta, and J. Vaze, Why do sub-period consistency calibrations outperform traditional optimisations in streamflow prediction? Proceedings of 21st International Congress on Modelling and Simulation, 2061-2067, Gold Coast, Australia, 2015.
    24. Kim, S. S. H., J. D. Hughes, J. Chen, D. Dutta, and J. Vaze, Determining probability distributions of parameter performances for time-series model calibration: A river system trial, Journal of Hydrology, 530, 361–371, doi:10.1016/j.jhydrol.2015.09.073, 2015.
    25. Clark, C., Two rural temperature records in Somerset, UK, Weather, 70(10), 280-284, doi:10.1002/wea.2512, 2015.
    26. Tsonis, A. A., Randomness: a property of the mathematical and physical systems, Hydrological Sciences Journal, 61(9), 1591-1610, doi:10.1080/02626667.2014.992434, 2016.
    27. Di Baldassarre, G., L. Brandimarte, and K. Beven, The seventh facet of uncertainty: wrong assumptions, unknowns and surprises in the dynamics of human-water systems, Hydrological Sciences Journal, 61(9), 1748-1758, doi:10.1080/02626667.2015.1091460, 2016.
    28. Chrs, C. C., Models, the establishment, and the real world: Why do so many flood problems remain in the UK?, Journal of Geoscience and Environment Protection, 5, 44-59, doi:10.4236/gep.2017.52004, 2017.
    29. Madani, E. M., P. E. Jansson, and I. Babelon, Differences in water balance between grassland and forest watersheds using long-term data, derived using the CoupModel, Hydrology Research, doi:10.2166/nh.2017.154, 2017.

  1. D. Koutsoyiannis, A. Efstratiadis, N. Mamassis, and A. Christofides, On the credibility of climate predictions, Hydrological Sciences Journal, 53 (4), 671–684, 2008.

    Geographically distributed predictions of future climate, obtained through climate models, are widely used in hydrology and many other disciplines, typically without assessing their reliability. Here we compare the output of various models to temperature and precipitation observations from eight stations with long (over 100 years) records from around the globe. The results show that models perform poorly, even at a climatic (30-year) scale. Thus local model projections cannot be credible, whereas a common argument that models can perform better at larger spatial scales is unsupported.

    Remarks:

    The paper has been widely discussed in weblogs and forums.

    Weblogs and forums that discussed this article during 2008:

    1. Koutsoyiannis et al 2008: On the credibility of climate predictions (Climate Audit by Steve McIntyre) Reaction by first author * * * Additional reactions: 2 * 3 * 4 * 5 * 6 * more
    2. On the credibility of climate predictions by Koutsoyiannis et al. 2008 (Climate Science by Roger Pielke Sr. 1)
    3. Comments on a New Report on Climate Change in Colorado… (Climate Science by Roger Pielke Sr. 2)
    4. New Paper On Dynamic Downscaling Of Climate Models By Rockel Et. Al. Published (Climate Science by Roger Pielke Sr. 3)
    5. Hypothesis testing and long range memory (Real Climate by Gavin A. Schmidt) Reaction by 1st author; * * * Additional reaction
    6. Koutsoyiannis vs RealClimate.ORG (The Reference Frame by Luboš Motl) Reaction by 1rst author
    7. Modellen en vroegere werkelijkheid: een test (Klimaat by Marcel Severijnen 1)
    8. Nog eens: Modellen en vroegere werkelijkheid (Klimaat by Marcel Severijnen 2)
    9. Far from model predictions. As for the CSIRO’s… (Andrew Bolt Blog 1)
    10. Dud studies behind Rudd’s freakish claims (Andrew Bolt Blog 2)
    11. Rudd’s dud study (Andrew Bolt Blog 3)
    12. November snows all over the CSIRO (Andrew Bolt Blog 4)
    13. New paper demonstrates lack of credibility for climate model predictions (Jennifer Marohasy Blog 1)
    14. Ten of the Best Climate Research Papers (Nine Peer-Reviewed): A Note from Cohenite (Jennifer Marohasy Blog 2)
    15. Ten Worst Man-Made Disasters (Jennifer Marohasy Blog 3)
    16. Climate models struggling for credibility (Al Fin)
    17. Climate models fuzz (European Tribune)
    18. If it wasn't so serious then it'd be funny (Kerplunk - Common sense from Down Under)
    19. Laying the boot into climate models (The Tizona Group)
    20. More model mania (Planet Gore)
    21. New research on the credibility of climate predictions (SciForums)
    22. New paper demonstrates lack of credibility for climate model predictions 2 (Blogotariat)
    23. New study: climate models fail again (MSNBC Boards 1)
    24. Global Climate Models Fail (Again) (MSNBC Boards 2)
    25. On the credibility of climate predictions (Chronos)
    26. Sane skepticism, part 2 (Helicity)
    27. Science. On the credibility of climate predictions (Greenhouse Bullcrap)
    28. Testing global warming models (Assorted Meanderings)
    29. Climate cuttings 21 (Bishop Hill blog)
    30. Models, Climate Change and Credibility... (21st Century Schizoid Man)
    31. Two valuable perspectives on global warming (Fabius Maximus)
    32. Unreliability of climate models? (Climate Change)
    33. Crumbling Consensus: Global Climate Models Fail (Stubborn Facts)
    34. The Australian government's climate castle is built on sand (Greenie Watch)
    35. Koutsoyiannis et al 2008 (Detached Ideas)
    36. Credibility of Climate Predictions Paper (TWO community)
    37. "Climate consensus" continues to unravel (Solomonia)
    38. Climate models have no predictive value (Acadie 1755)
    39. Global Warming Summary series, Part 5: The Earth’s Greenhouse Gas – CO2 and IPCC Climate Modeling (Global Warming Science)
    40. Reducing Vulnerability to Climate-Sensitive Risks is the Best Insurance Policy (Cato Unbound)
    41. Global Warming News of the Week (No Oil for Pacifists)
    42. A few more cooling blasts at hot air balloons (Clothcap2 : My Telegraph)
    43. IPCC-Klimamodell unbrauchbar (jetzt Sueddeutsche)
    44. Uups II: IPCC-Klimamodelle fantasieren (Die Achse des Guten)
    45. Griechische Unsicherheiten (Climate Review)
    46. El fracaso de los modelos (Valdeperrillos)
    47. Klimamodeller er usikre (Debattcentralen - Aftenposten.no)
    48. Studie: Klimatmodellernas trovärdighet låg (Klimatsvammel)
    49. Credibilidad de las predicciones climáticas (FAEC Mitos y Fraudes)

    Other reactions in weblogs, forums and Internet resources during 2008:

    Climate Audit 2 * Climate Audit 3 * Real Climate 2 * Junk Science * Wikipedia * Wikipedia Talk 1 * Wikipedia Talk 2 * Wikipedia Talk 3 * Global Warming Clearinghouse 1 * Global Warming Clearinghouse 2 * Global Warming Clearinghouse 3 * ICECAP * Climate Feedback (Nature) * Google Groups - alt.global-warming 1 * Google Groups - alt.global-warming 2 * Google Groups - alt.politics.usa * Google Groups - sci.environment * Google Groups - sci.physics * Yahoo Tech Groups * Yahoo Message Boards * Andrew Bolt Blog 5 * Andrew Bolt Blog 6 * Andrew Bolt Blog 7 * Andrew Bolt Blog 8 * Andrew Bolt Blog 9 * Andrew Bolt Blog 10 * Andrew Bolt Blog 11 * Andrew Bolt Blog 12 * Andrew Bolt Blog 13 * Jennifer Marohasy Blog 4 * Jennifer Marohasy Blog 5 * Jennifer Marohasy Blog 6 * Jennifer Marohasy Blog 7 * Jennifer Marohasy Blog 8 * Jennifer Marohasy Blog 9 * Jennifer Marohasy Blog 10 * Jennifer Marohasy Blog 11 * Jennifer Marohasy Blog 12 * Jennifer Marohasy Blog 13 * Jennifer Marohasy Blog 14 * The Blackboard 1 * The Blackboard 2 * The Motley Fool Discussion Boards 1 * The Motley Fool Discussion Boards 2 * The Daily Bayonet * FinanMart * JREF Forum 1 * JREF Forum 2 * JREF Forum 3 * AccuWeather * Climate Change Fraud 1 * Climate Change Fraud 2 * Climate Change Fraud 4 * Climate Change Fraud 5 * Watts Up With That? 1 * Watts Up With That? 2 * Watts Up With That? 3 * Watts Up With That? 4 * Watts Up With That? 5 * City-Data Forum * Climate Brains * Dvorak Uncensored * Newspoll * The Australian 1 * The Australian 2 * ABC Unleashed 1 * ABC Unleashed 2 * ABC Unleashed 3 * ABC Unleashed 4 * ABC Science Online Forum * Global Warming Skeptics * Niche Modeling * Dot Earth - The New York Times 1 * Dot Earth - The New York Times 2 * Dot Earth - The New York Times 3 * Dot Earth - The New York Times 4 * Dot Earth - The New York Times 5 * Dot Earth - The New York Times 6 * Bart Verheggen * WE Blog * Globe and Mail 1 * Globe and Mail 2 * Small Dead Animals * forums.ski.com.au * ABC Message Board * Sydney Morning Herald 1 (also published in the print version of the newspaper) * Sydney Morning Herald 2 * Sydney Morning Herald 3 * PistonHeads * Clipmarks * British Blogs * The Devil's Kitchen * Peak Oil Journal * The Volokh Conspiracy * Weather Underground * Capitol Grilling * Science & Environmental Policy Project * SookNET Technology * Climate Review 2 * Social Science News Central * Urban75 Forums * Wolf Howling * Launch Magazine Online * Popular Technology * The Environment Site Forums * CNC zone * Solar Cycle 24 Forums * Wired Science * Climate 411 * Daimnation * The Forum * Global Warming Information * Christian Forums 1 * Christian Forums 2 * CommonDreams.org 1 * CommonDreams.org 2 * Greenhouse Bullcrap 2 * Derkeiler Newsgroup * YouTube * Fresh Video * Topix * WeerOnline * The Air Vent * Greenfyre’s * Crikey * ChangeBringer * Scotsman.com News * Climate Change Controversies - David Pratt * Skeptical Science * Block’s Indicator of Sustainable Growth * Digg * Millard Fillmore’s Bathtub * News Busters * AgoraVox * Notre Planete * France 5 * Wissen - Sueddeutsche * Telepolis-Blogforen 1 * Telepolis-Blogforen 2 * Telepolis-Blogforen 3 * WirtschaftsWoche * Antizyklisches Forum * Oekologismus.de * Público.es * Uppsalainitiativet * Tiede.fi 1 * Tiede.fi 2 * Tiede.fi 3 * kolumbus.fi/ * De Rerum Natura * Ilmastonmuutos - totta vai tarua * Politics.be * Keisarin uudet vaatteet * Keskustelut * Que Treta * Svensson * Punditokraterne * StumbleUpon * Scribd

    Related works:

    • [94] Assessment of the reliability of climate predictions based on comparisons with historical time series (predecessor presentation)
    • [15] A comparison of local and aggregated climate model outputs with observed data (follow up study)

    Full text: http://www.itia.ntua.gr/en/getfile/864/1/documents/2008HSJClimPredictions.pdf (997 KB)

    Additional material:

    See also: http://dx.doi.org/10.1623/hysj.53.4.671

    Works that cite this document: View on Google Scholar, ResearchGate or ResearchGate (additional)

    Other works that reference this work (this list might be obsolete):

    1. Carter, R. M., Knock, knock: Where is the evidence for dangerous human-caused global warming?, Economic Analysis & Policy, 38(2), 177-202, 2008.
    2. #Crockford, S., Some things we know — and don’t know —about polar bears, Report, Science and Public Policy Institute, 2008.
    3. #Green, K. C., J. S. Armstrong and W. Soon, Benchmark forecasts for climate change, Munich Personal RePEc Archive, 2008.
    4. #Drinkwater, K., M. Skogen, S. Hjøllo, C. Schrum, I. Alekseeva, M. Huret and F. Léger, The effects of future climate change on the physical oceanography and comparisons of the mean and variability of the future physical properties with present day conditions, Report, RECLAIM EU/FP6 project (REsolving CLimAtic IMpacts on fish stocks), WP4 Future oceanographic changes, 28 pp., 2008.
    5. Halley, J. M., Using models with long-term persistence to interpret the rapid increase of earth’s temperature, Physica A: Statistical Mechanics and its Applications, 388(12), 2492-2502, 2009.
    6. Kundzewicz, Z. W., L. J. Mata, N. W. Arnell, P. Döll, B. Jimenez, K. Miller, T. Oki and Z. Şen, Water and climate projections—Reply to discussion “Climate, hydrology and freshwater: towards an interactive incorporation of hydrological experience into climate research”, Hydrological Sciences Journal, 54(2), 406-415, 2009.
    7. Hollowed, A. B., N. A. Bond, T. K. Wilderbuer, W. T. Stockhausen, Z. T. Amar, R. J. Beamish, J. E. Overland, and M. J. Schirripa, A framework for modelling fish and shellfish responses to future climate change, ICES Journal Of Marine Science, 66(7), 1584-1594, 2009.
    8. MacDonald, A. M., R. C. Calow, D. M. J. MacDonald, W. G. Darling, and B. É. Ó. Dochartaigh, What impact will climate change have on rural groundwater supplies in Africa?, Hydrological Sciences Journal, 54(4), 690-703, 2009.
    9. #Pilkey, O. H., and R. Young, The Rising Sea, 203 p., Island Press, Washington, DC, 2009.
    10. Chiew, F.H.S., J. Tenga, J. Vazea, and D.G.C. Kirono, Influence of global climate model selection on runoff impact assessment, Journal of Hydrology, 379(1-2), 172-180, 2009.
    11. McIntyre, D.R., James Hansen's 1988 predictions compared to observations, Energy and Environment, 20(4), 587-594, 2009.
    12. Matthews, J., and A. J. Wickel, Embracing uncertainty in freshwater climate change adaptation: A natural history approach, Climate and Development, 1(3), 269-279, 2009.
    13. #Taylor, P., Chill, a reassessment of global warming theory: does climate change mean the world is cooling, and if so what should we do about it?, Clairview Books, 404 pp., 2009.
    14. #Franklin, J., What Science Knows: And How It Knows It, Encounter Books, New York, 2009.
    15. Pittock, J., Lessons for climate change adaptation from better management of rivers, Climate and Development, 1(3), 194-211, 2009.
    16. #McKenzie, J. M., D. I. Siegel, and D. O. Rosenberry, Improving conceptual models of water and carbon transfer through peat, Northern Peatlands and Carbon Cycling, Baird, A. J., L. R. Belyea, X. Comas, A. S. Reeve, and L. D. Slater (eds.), American Geophysical Union Geophysical Monograph Series, 184, 265-275, 2009.
    17. #Roudier, P., et P. Quirion, Bilan des changements climatiques passés et futurs au Mali: rapport pour action contre la faim, Centre International de Recherche sur l’Environnement et le Développement (CIRED), 42 p., Juin 2009.
    18. Blöschl, G., and A. Montanari, Climate change impacts - throwing the dice?, Hydrological Processes, 24(3), 374-381, 2010.
    19. Kundzewicz, Z. W., Y. Hirabayashi and S. Kanae, River floods in the changing climate—Observations and projections, Water Resources Management, 24(11), 2633-2646, 2010.
    20. Romanowicz, R. J., A. Kiczko and J. J. Napiórkowski, Stochastic transfer function model applied to combined reservoir management and flow routing, Hydrological Sciences Journal, 55(1), 27–40, 2010.
    21. Liu, S., X. Mo, Z. Lin, Y. Xu, J. Ji, G. Wen, and J. Richey, Crop yield responses to climate change in the Huang-Huai-Hai Plain of China, Agricultural Water Management, 97(8), 1195-1209, 2010.
    22. Kawasaki, A., M. Takamatsu, J. He, P. Rogers, and S. Herath, An integrated approach to evaluate potential impact of precipitation and land-use change on streamflow in Srepok River Basin, Theory and Applications of GIS, 2010.
    23. Vastila, K., M. Kummu, C. Sangmanee, and S. Chinvanno, Modelling climate change impacts on the flood pulse in the Lower Mekong floodplains, Journal of Water and Climate Change, 01.1, 67-86, 2010.
    24. Kundzewicz, Z. W., and E. Z. Stakhiv, Are climate models “ready for prime time” in water resources management applications, or is more research needed? Hydrological Sciences Journal, 55(7), 1085–1089, 2010.
    25. Zhang, S.-F., Y. Gu, and J. Lin, Uncertainty analysis in the application of climate models, Shuikexue Jinzhan/Advances in Water Science, 21(4), 504-511, 2010.
    26. Wu, S.-Y., Potential impact of climate change on flooding in the Upper Great Miami River Watershed, Ohio, USA: a simulation-based approach, Hydrological Sciences Journal, 55(8), 1251-1263, 2010.
    27. Soon, W., and D. R. Legates, Avoiding carbon myopia: three considerations for policy makers concerning manmade carbon dioxide, Ecology Law Currents, 37(1), 2010.
    28. #Liebscher, H.-J., and H. G. Mendel, Vom empirischen Modellansatz zum komplexen hydrologischen Flussgebietsmodell – Rückblick und Perspektiven, 132 p., Koblenz, Bundesanstalt für Gewässerkunde, 2010.
    29. #Maletta, H. E., and E. Maletta, Climate Change, Agriculture and Food Security in Latin America and the Caribbean, 319 p., 2010.
    30. Stockwell, D. R. B., Critique of drought models in the Australian Drought Exceptional Circumstances Report (DECR), Energy and Environment, 21(5), 425-436, 2010.
    31. Kigobe, M., N. McIntyre, H. Wheater and R. Chandler, Multi-site stochastic modelling of daily rainfall in Uganda, Hydrological Sciences Journal, 56(1), 17–33, 2011.
    32. Hänggi, P., and R. Weingartner, Inter-annual variability of runoff and climate within the Upper Rhine River basin, 1808–2007, Hydrological Sciences Journal, 56(1), 34–50, 2011.
    33. Di Baldassarre, G., M. Elshamy, A. van Griensven, E. Soliman, M. Kigobe, P. Ndomba, J. Mutemi, F. Mutua, S. Moges, J.-Q. Xuan, D. Solomatine and S. Uhlenbrook, Future hydrology and climate in the River Nile basin: a review, Hydrological Sciences Journal, 56(2), 199-211, 2011.
    34. Fatichi, S., V. Y. Ivanov, and E. Caporali, Simulation of future climate scenarios with a weather generator, Advances in Water Resources, 34(4), 448-467, doi: 10.1016/j.advwatres.2010.12.013, 2011.
    35. Mann, M. E., On long range dependence in global surface temperature series, Climatic Change, 107 (3), 267-276, 2011.
    36. Kundzewicz, Z. W., Nonstationarity in water resources – Central European perspective, Journal of the American Water Resources Association, 47(3), 550-562, 2011.
    37. #Carter, B., D. Evans, S. Franks and W. Kininmonth, Scientific audit of a report from the Climate Commission: The Critical Decade ‐ Climate science, risks and responses, 14 pp., 2011.
    38. Tertrais, B., The climate wars myth, The Washington Quarterly, 34 (3), 17-29, 2011.
    39. Kiem, A. S., and D. C. Verdon-Kidd, Steps toward “useful” hydroclimatic scenarios for water resource management in the Murray-Darling Basin, Water Resources Research, 47, W00G06, doi: 10.1029/2010WR009803, 2011.
    40. Sivakumar, B., Water crisis: From conflict to cooperation – an overview, Hydrological Sciences Journal, 56(4), 531-552, 2011.
    41. Burke, E. J., Understanding the sensitivity of different drought metrics to the drivers of drought under increased atmospheric CO2, Journal of Hydrometeorology, 12(6), 1378-1394, 2011.
    42. #Rolim da Paz, A., C. Uvo, J. Bravo, W. Collischonn and H. R. da Rocha, Seasonal precipitation forecast based on artificial neural networks, Computational Methods for Agricultural Research: Advances and Applications, IGI Global, 326-354, doi: 10.4018/978-1-61692-871-1.ch016, 2011.
    43. Fildes, R., and N. Kourentzes, Validation and forecasting accuracy in models of climate change, International Journal of Forecasting, 27(4), 968-995, 2011.
    44. #Huard, D., The challenges of climate change interpretation, Ouranos Newsletter, Montreal, Quebec, 3 pp., 21 September 2011.
    45. Rao, A. R., M. Azli and L. J. Pae, Identification of trends in Malaysian monthly runoff under the scaling hypothesis, Hydrological Sciences Journal, 56(6), 917–929, 2011.
    46. Huard, D., A black eye for the Hydrological Sciences Journal, Discussion of “A comparison of local and aggregated climate model outputs with observed data”, by G. G. Anagnostopoulos et al. (2010, Hydrol. Sci. J. 55 (7), 1094–1110), Hydrological Sciences Journal, 56(7), 1330–1333, 2011.
    47. Halley, J. M., and D. Kugiumtzis, Nonparametric testing of variability and trend in some climatic records, Climatic Change, 107(3-4), 267-276, 2011.
    48. Stakhiv, E. Z., Pragmatic approaches for water management under climate change uncertainty, JAWRA Journal of the American Water Resources Association, 47(6), 1183-1196, 2011.
    49. #Bourqui, M., T. Mathevet, J. Gailhard and F. Hendrickx, Hydrological validation of statistical downscaling methods applied to climate model projections, IAHS Publication 344, 32-38, 2011.
    50. #Kundzewicz, Z. W., Comparative assessment: fact or fiction? Paper presented at the Workshop Including long-term climate change in hydrologic design, World Bank, Washington, D.C., USA, November 21, 2011.
    51. Collischonn, B., J. A. Louzada, Impacto potencial de mudanças climáticas sobre as necessidades de irrigação da cultura do milho no Rio Grande do Sul, Revista de Gestão de Água da América Latina, 8(2), 19-29, 2011.
    52. del Monte-Luna, P., V. Guzmán-Hernández, E. A. Cuevas, F. Arreguín-Sánchez, and D. Lluch-Belda, Effect of North Atlantic climate variability on hawksbill turtles in the Southern Gulf of Mexico, Journal of Experimental Marine Biology and Ecology, 412, 103-109, 2012.
    53. Lacombe, G., C. T. Hoanh and V. Smakhtin, Multi-year variability or unidirectional trends? Mapping long-term precipitation and temperature changes in continental Southeast Asia using PRECIS regional climate model, Climatic Change, 113(2), 285-299, doi: 10.1007/s10584-011-0359-3, 2012.
    54. #Ortiz, R., Climate Change and Agricultural Production, Inter-American Development Bank, 2012.
    55. Whitfield, P. H., Floods in future climates: a review, Journal of Flood Risk Management, 5(4), 336–365, 2012.
    56. Fan, Z., T. Yue, and C. Chen, Downscaling of global mean annual temperature under different scenarios, Progress in Geography, 31(3), 267-274, 2012.
    57. Sivakumar, B., Socio-hydrology: not a new science, but a recycled and re-worded Hydrosociology, Hydrological Processes, 26(24), 3788–3790, 2012.
    58. Kim, J. J., H. S. Min, C.-H. Kim, J. Yoon and S. Kim, Prediction of the spawning ground of Todarodes pacificus under IPCC climate A1B scenario, Ocean and Polar Research, 34 (2), 253-264, 2012.
    59. #Mesa, O. J., V. K. Gupta, and P. E. O'Connell, Dynamical system exploration of the Hurst phenomenon in simple climate models, in: Extreme Events and Natural Hazards: The Complexity Perspective, Geophys. Monogr. Ser., vol. 196, edited by A. S. Sharma et al. 209–229, AGU, Washington, D. C., 2012.
    60. da Silva, W. T. P., A. C. L. Duarte and de M. A. A. Souza, Implementation and optimization project for CDM certification in wastewater treatment plant, Engenharia Sanitaria e Ambiental, 17(1), 13-24, 2012.
    61. #Fekete, B. M., and E. Stakhiv, Water management preparation strategies for adaptation to changing climate, Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies, C. R. Goldman, M. Kumagai, and R. D. Robarts (eds.), 413-427, 2012.
    62. #Hamilton, D. P., C. McBride, D. Özkundakci, M. Schallenberg, P. Verburg, M. de Winton, D. Kelly, C. Hendy, and W. Ye, Effects of climate change on New Zealand Lakes, Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies, C. R. Goldman, M. Kumagai, and R. D. Robarts (eds.), 337-366, 2012.
    63. #Verdon-Kidd, D., A. Kiem, and E. Austin, Decision-making under uncertainty – Bridging the gap between end user needs and science capability, National Climate Change Adaptation Research Facility, Gold Coast, pp.116., ISBN: 978-1-921609-67-1, 2012.
    64. Jiang, P., M. R. Gautam, J. Zhu, and Z. Yu, How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States?, Journal of Hydrology, 479, 13-23, 2013.
    65. Lien, W.-Y., C.-P. Tung, Y.-H. Ho, C.-H. Tai and L.-H. Chuang, Establish methods to evaluate the projection ability of general circulation models, Journal of Taiwan Agricultural Engineering, 59 (1), 1-14, 2013.
    66. Bayer, T. K., C. W. Burns, and M. Schallenberg, Application of a numerical model to predict impacts of climate change on water temperatures in two deep, oligotrophic lakes in New Zealand, Hydrobiologia, 713 (1), 53-71, 2013.
    67. Hrachowitz, M., H.H.G. Savenije, G. Blöschl, J.J. McDonnell, M. Sivapalan, J.W. Pomeroy, B. Arheimer, T. Blume, M.P. Clark, U. Ehret, F. Fenicia, J.E. Freer, A. Gelfan, H.V. Gupta, D.A. Hughes, R.W. Hut, A. Montanari, S. Pande, D. Tetzlaff, P.A. Troch, S. Uhlenbrook, T. Wagener, H.C. Winsemius, R.A. Woods, E. Zehe, and C. Cudennec, A decade of Predictions in Ungauged Basins (PUB) — a review, Hydrological Sciences Journal, 58(6), 1198-1255, 2013.
    68. Varotsos, C.A., M.N. Efstathiou, and A.P. Cracknell, On the scaling effect in global surface air temperature anomalies, Atmospheric Chemistry and Physics, 13, 5243-5253, doi:10.5194/acp-13-5243-2013, 2013.
    69. #Mortazavi, M., G. Kuczera, A. S. Kiem, B. Henley, B. Berghout and E. Turner, Robust optimisation of urban drought security for an uncertain climate, National Climate Change Adaptation Research Facility, Gold Coast, Australia, pp. 74, 2013.
    70. Kiem, A. S., and E. K. Austin, Drought and the future of rural communities: Opportunities and challenges for climate change adaptation in regional Victoria, Australia, Global Environmental Change, 23(5), 1307–1316, doi:10.1016/j.gloenvcha.2013.06.003, 2013.
    71. #Tomlinson, E., B. Kappel, G. Muhlestein, D. Hultstrand and T. Parzybok, Probable Maximum Precipitation Study for Arizona, Arizona Department of Water Resources, Arizona, USA, 2013.
    72. #Kappel, B., G. Muhlestein, E. Tomlinson, D. Hultstrand and M. Johnson, Calculating Arizona basin-specific PMP using the PMP evaluation tool, Association of State Dam Safety Officials Annual Conference 2013, Dam Safety 2013, 2, 904-969, 2013.
    73. Jayakody, P., P. B. Parajuli, T. P. Cathcart, Impacts of climate variability on water quality with best management practices in subtropical climate of USA, Hydrological Processes, 28(23), 5776–5790, 2014.
    74. Kundzewicz, Z.W., S. Kanae, S. I. Seneviratne, J. Handmer, N. Nicholls, P. Peduzzi, R. Mechler, L. M. Bouweri, N. Arnell, K. Mach, R. Muir-Wood, G. R. Brakenridge, W. Kron, G. Benito, Y. Honda, K. Takahashi, and B. Sherstyukov, Flood risk and climate change: global and regional perspectives, Hydrological Sciences Journal, 59(1), 1–28, 2014.
    75. Honti, M., A. Scheidegger, and C. Stamm, The importance of hydrological uncertainty assessment methods in climate change impact studies, Hydrology and Earth System Sciences, 18, 3301-3317, 10.5194/hess-18-3301-2014, 2014.
    76. Gilioli, G., S. Pasquali, S. Parisi and S. Winter, Modelling the potential distribution of Bemisia tabaci in Europe considering climate change scenario, Pest Management Science, 70(1), 1611–1623, 10.1002/ps.3734, 2014.
    77. #Jiménez Cisneros, B.E., T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, P. Döll, T. Jiang, and S.S. Mwakalila, Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269, 2014.
    78. #Kiem, A. S., Climate variability and change, ch. 2 in Climate Change and Water Resources, 31-67, 2014.
    79. Kiem, A. S., D. C. Verdon-Kidd, and E. K. Austin, Bridging the gap between end user needs and science capability: decision making under uncertainty, Climate Research, 61(1), 57-74, 2014.
    80. Stonevičius, E., G. Valiuškevičius, E. Rimkus and J. Kažys, Climate induced changes of Lithuanian rivers runoff in 1960–2009, Water Resources, 41 (5), 592-603, 2014.
    81. #McKitrick, R., Climate Policy Implications of the Hiatus in Global Warming, Fraser Institute, 2014.
    82. Yao, Y., S. Zhao, Y. Zhang, K. Jia and M. Liu, Spatial and decadal variations in potential evapotranspiration of China based on reanalysis datasets during 1982–2010, Atmosphere, 5(4), 737-754, 2014.
    83. #Verdon-Kidd, D. C., A. S. Kiem, and E. K. Austin, 7 Bridging the gap between researchers and decision-makers, ch. 7 in Applied Studies in Climate Adaptation (ed. by J. P. Palutikof, S. L. Boulter, J. Barnett, and D. Rissik) Applied Studies in Climate Adaptation, Wiley-Blackwell, Oxford, UK, 51-59, 2014.
    84. Nova, J., Government monopoly in science and the role of independent scientists, Energy and Environment, 25(6-7), 1219–1224, 2014.
    85. Bravo, J. M., W. Collischonn, A. R. Paz, D. Allasia, and F. Domecq, Impact of projected climate change on hydrologic regime of the Upper Paraguay River basin, Climatic Change, 127(1), 27–41, 2014.
    86. #Ranzi, R., and M. Tomirotti, Long term statistics of river flow regime: climatic or anthropogenic changes?, Proceedings of 3rd IAHR Europe Congress, Porto, 2014.
    87. Kundzewicz, Z., and D. Gerten, Grand challenges related to assessment of climate change impacts on freshwater resources, Journal of Hydrologic Engineering, 20 (1), 10.1061/(ASCE)HE.1943-5584.0001012, A4014011, 2015.
    88. Stefanova, A., V. Krysanova, C. Hesse, and A. I. Lillebø, Climate change impact assessment on water inflow to a coastal lagoon: the Ria de Aveiro watershed, Portugal, Hydrological Sciences Journal, 60(5), 929-948, 2015.
    89. Vallebona, C., E. Pellegrino, P. Frumento, and E. Bonari, Temporal trends in extreme rainfall intensity and erosivity in the Mediterranean region: a case study in southern Tuscany, Italy, Climatic Change, 128(1-2), 139-151, 2015.
    90. Gil-Alana, L.A., Linear and segmented trends in sea surface temperature data, Journal of Applied Statistics, 42(7), 1531-1546, doi:10.1080/02664763.2014.1001328, 2015.
    91. Wi, S., Y.C.E. Yang, S. Steinschneider, A. Khalil, and C.M. Brown, Calibration approaches for distributed hydrologic models in poorly gaged basins: implication for streamflow projections under climate change, Hydrology and Earth System Sciences, 19, 857-876, doi:10.5194/hess-19-857-2015, 2015.
    92. Hesse, C., A. Stefanova, and V. Krysanova, Comparison of water flows in four European lagoon catchments under a set of future climate scenarios, Water, 7(2), 716-746, doi:10.3390/w7020716, 2015.
    93. Yu, Z., P. Jiang, M. R. Gautam, Y. Zhang, and K. Acharya, Changes of seasonal storm properties in California and Nevada from an ensemble of climate projections, Journal of Geophysical Research: Atmospheres, 120(7), 2676-2688, doi:10.1002/2014JD022414, 2015.
    94. Mortazavi-Naeini, M., G. Kuczera, A. S. Kiem, L. Cui, B. Henley, B. Berghout, and E. Turner, Robust optimization to secure urban bulk water supply against extreme drought and uncertain climate change, Environmental Modelling and Software, 69, 437-451, doi:10.1016/j.envsoft.2015.02.021, 2015.
    95. Verdon-Kidd, D. C. and A. S. Kiem, Non–stationarity in annual maxima rainfall across Australia – implications for Intensity–Frequency–Duration (IFD) relationships, Hydrology and Earth System Sciences, 19, 4735-4746, doi:10.5194/hessd-12-3449-2015, 2015.
    96. Legates, D. R., W. Soon, W. M. Briggs and C. Monckton of Brenchley, Climate consensus and ‘misinformation’: a rejoinder to agnotology, scientific consensus, and the teaching and learning of climate change, Science and Education, 24, 299-318, 10.1007/s11191-013-9647-9, 2015.
    97. Deb, P., A. S. Kiem, M. S. Babel, S. T. Chu, and B. Chakma, Evaluation of climate change impacts and adaptation strategies for maize cultivation in the Himalayan foothills of India, Journal of Water and Climate Change, 6(3) 596-614, doi:10.2166/wcc.2015.070, 2015.
    98. Frank, P., Negligence, non-science, and consensus climatology, Energy and Environment, 26(3), 391-415, doi:10.1260/0958-305X.26.3.391, 2015.
    99. Oyekale, A. S., Factors explaining farm households’ access to and utilization of extreme climate forecasts in Sub-Saharan Africa (SSA), Environmental Economics, 6(1), 91-103, 2015.
    100. Munshi, J., A robust test for OLS trends in daily temperature data, Social Science Research Network, doi:10.2139/ssrn.2631298, 2015.
    101. #McKitrick, R. Energy policy and environmental stewardship: risk management not risk avoidance, Greer-Heard Point-Counterpoint Forum, 2015.
    102. Kiem, A. S., E. K. Austin, and D. C. Verdon-Kidd, Water resource management in a variable and changing climate: hypothetical case study to explore decision making under uncertainty, Journal of Water and Climate Change, 7(2), 263-279, doi:10.2166/wcc.2015.040, 2016.
    103. Jiang, P., Z. Yu, M. R. Gautam, F. Yuan, and K. Acharya, Changes of storm properties in the United States: Observations and multimodel ensemble projections, Global and Planetary Change, 142, 41–52, doi:10.1016/j.gloplacha.2016.05.001, 2016.
    104. Becker, M., M. Karpytchev, M. Marcos, S. Jevrejeva, and S. Lennartz-Sassinek, Do climate models reproduce complexity of observed sea level changes?, Geophysical Research Letters, 43(10), 5176-5184, doi:10.1002/2016GL068971, 2016.
    105. Kianfar, B., S. Fatichi, A. Paschalis, M. Maurer, and P. Molnar, Climate change and uncertainty in high-resolution rainfall extremes, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-536, 2016.
    106. #Fekete, B. M., G. Pisacane, and D. Wisser, Crystal balls into the future: are global circulation and water balance models ready?, Proc. IAHS, 374, 41-51, doi:10.5194/piahs-374-41-2016, 2016.
    107. #Ranzi, R., P. Caronna, and M. Tomirotti, Impact of climatic and land use changes on river flows in the Southern Alps, Sustainable Water Resources Planning and Management Under Climate Change, 61-83, Springer Singapore, doi:10.1007/978-981-10-2051-3_3, 2017.
    108. Manage, N. P., N. Lockart, G. Willgoose, G. Kuczera, A. S. Kiem, K. Chowdhury, L. Zhang, and C. Twomey, Statistical testing of dynamically downscaled rainfall data for the Upper Hunter region, New South Wales, Australia, Journal of Southern Hemisphere Earth Systems Science, 66, 203–227, 2016.
    109. Stakhiv, E. Z., W. Werick, and R. W. Brumbaugh, Evolution of drought management policies and practices in the United States, Water Policy, 18(S2), 122-152, doi:10.2166/wp.2016.017, 2016.
    110. Camici, S., L. Brocca, and T. Moramarco, Accuracy versus variability of climate projections for flood assessment in central Italy, Climatic Change, 141(2), 273–286, doi:10.1007/s10584-016-1876-x, 2017.
    111. Machiwal, D., D. Dayal, and S. Kumar, Long-term rainfall trends and change points in hot and cold arid regions of India, Hydrological Sciences Journal, doi:10.1080/02626667.2017.1303705, 2017.
    112. Munshi, J., Event attribution and the precipitation record for England and Wales, doi:10.2139/ssrn.2929159, 2017.

  1. A. Efstratiadis, I. Nalbantis, A. Koukouvinos, E. Rozos, and D. Koutsoyiannis, HYDROGEIOS: A semi-distributed GIS-based hydrological model for modified river basins, Hydrology and Earth System Sciences, 12, 989–1006, doi:10.5194/hess-12-989-2008, 2008.

    The HYDROGEIOS modelling framework represents the main processes of the hydrological cycle in heavily modified catchments, with decision-depended abstractions and interactions between surface and groundwater flows. A semi-distributed approach and a monthly simulation time step are adopted, which are sufficient for water resources management studies. The modelling philosophy aims to ensure consistency with the physical characteristics of the system, while keeping the number of parameters as low as possible. Therefore, multiple levels of schematisation and parameterisation are adopted, by combining multiple levels of geographical data. To optimally allocate human abstractions from the hydrosystem during a planning horizon or even to mimic the allocation occurred in a past period (e.g. the calibration period), in the absence of measured data, a linear programming problem is formulated and solved within each time step. With this technique the fluxes across the hydrosystem are estimated, and the satisfaction of physical and operational constraints is ensured. The model framework includes a parameter estimation module that involves various goodness-of-fit measures and state-of-the-art evolutionary algorithms for global and multiobjective optimisation. By means of a challenging case study, the paper discusses appropriate modelling strategies which take advantage of the above framework, with the purpose to ensure a robust calibration and reproduce natural and human induced processes in the catchment as faithfully as possible.

    Remarks:

    Permission is granted to reproduce and modify this paper under the terms of the Creative Commons NonCommercial ShareAlike 2.5 license. The discussion paper and its reviews are shown in the HESSD site.

    Full text: http://www.itia.ntua.gr/en/getfile/787/1/documents/hess-12-989-2008.pdf (3843 KB)

    Additional material:

    See also: http://dx.doi.org/10.5194/hess-12-989-2008

    Works that cite this document: View on Google Scholar or ResearchGate

    Other works that reference this work (this list might be obsolete):

    1. #Soulis, K., and N. Dercas, AgroHydroLogos: development and testing of a spatially distributed agro-hydrological model on the basis of ArcGIS, International Environmental Modelling and Software Society (iEMSs), 2010 International Congress on Environmental Modelling and Software, Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada, D. A. Swayne, Wanhong Yang, A. A. Voinov, A. Rizzoli, T. Filatova (Eds.), 2010.
    2. #Isidoro, J. M. G. P., J. I. J, Rodrigues, J. M. R. Martins, and J. L. M. P. De Lima, Evolution of urbanization in a small urban basin: DTM construction for hydrologic computation, Status and Perspectives of Hydrology in Small Basins, edited by A. Herrmann and S. Schumann, IAHS-AISH Publication 336, 109-114, 2010.
    3. Price, C., Y. Yair, A. Mugnai, K. Lagouvardos, M. C. Llasat, S. Michaelides, U. Dayan, S. Dietrich, E. Galanti, L. Garrote, N. Harats, D. Katsanos, M. Kohn, V. Kotroni, M. Llasat-Botija, B. Lynn, L. Mediero, E. Morin, K. Nicolaides, S. Rozalis, K. Savvidou, and B. Ziv, The FLASH Project: using lightning data to better understand and predict flash floods, Environmental Science and Policy, 14(7), 898-911, 2011.
    4. Bahadur, K. K. C., Assessing strategic water availability using remote sensing, GIS and a spatial water budget model: case study of the Upper Ing Basin, Thailand, Hydrological Sciences Journal, 56(6), 994-1014, 2011.
    5. #SIRRIMED (Sustainable use of irrigation water in the Mediterranean Region), D4.2 and D5.2 Report on Models to be Implemented in the District Information Systems (DIS) and Watershed Information Systems (WIS), 95 pp., Universidad Politécnica de Cartagena, 2011.
    6. Mediero, L., L. Garrote and F. J. Martín-Carrasco, Probabilistic calibration of a distributed hydrological model for flood forecasting, Hydrological Sciences Journal, 56(7), 1129–1149, 2011.
    7. Flipo, N., C. Monteil, M. Poulin, C. de Fouquet, and M. Krimissa, Hybrid fitting of a hydrosystem model: Long term insight into the Beauce aquifer functioning (France), Water Recourses Research, 48, W05509, doi: 10.1029/2011WR011092, 2012.
    8. Soulis, K.X., Development of a simplified grid cells ordering method facilitating GIS-based spatially distributed hydrological modeling, Computers & Geosciences, 54, 160-163, 2013.
    9. Hrachowitz, M., H.H.G. Savenije, G. Blöschl, J.J. McDonnell, M. Sivapalan, J.W. Pomeroy, B. Arheimer, T. Blume, M.P. Clark, U. Ehret, F. Fenicia, J.E. Freer, A. Gelfan, H.V. Gupta, D.A. Hughes, R.W. Hut, A. Montanari, S. Pande, D. Tetzlaff, P.A. Troch, S. Uhlenbrook, T. Wagener, H.C. Winsemius, R.A. Woods, E. Zehe, and C. Cudennec, A decade of Predictions in Ungauged Basins (PUB) — a review, Hydrological Sciences Journal, 58(6), 1198-1255, 2013.
    10. #Loukas, A., and L. Vasiliades, Review of applied methods for flood-frequency analysis in a changing environment in Greece, In: A review of applied methods in Europe for flood-frequency analysis in a changing environment, Floodfreq COST action ES0901: European procedures for flood frequency estimation (ed. by H. Madsen et al.), Centre for Ecology & Hydrology, Wallingford, UK, 2013.
    11. Varni, M., R. Comas, P. Weinzettel and S. Dietrich, Application of the water table fluctuation method to characterize groundwater recharge in the Pampa plain, Argentina, Hydrological Sciences Journal, 58 (7), 1445-1455, 2013.
    12. Han, J.-C., G.-H. Huang, H. Zhang, Z. Li, and Y.-P Li, Effects of watershed subdivision level on semi-distributed hydrological simulations: case study of the SLURP model applied to the Xiangxi River watershed, China, Hydrological Sciences Journal, 59(1), 108-125, 2014.
    13. Gharari, S., M. Hrachowitz, F. Fenicia, H. Gao, and H. H. G. Savenije, Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration, Hydrol. Earth Syst. Sci. Discuss., 10, 14801-14855, doi:10.5194/hessd-10-14801-2013, 2013.
    14. #Savvidou, E., O. Tzoraki and D. Skarlatos, Delineating hydrological response units in a mountainous catchment and its evaluation on water mass balance and model performance, Proc. SPIE 9229, Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014), 922918, 10.1117/12.2068592, 2014.
    15. Wi, S., Y.C.E. Yang, S. Steinschneider, A. Khalil, and C.M. Brown, Calibration approaches for distributed hydrologic models in poorly gaged basins: implication for streamflow projections under climate change, Hydrology and Earth System Sciences, 19, 857-876, doi:10.5194/hess-19-857-2015, 2015.
    16. Kallioras, A., and P. Marinos, Water resources assessment and management of karst aquifer systems in Greece, Environmental Earth Sciences, 74(1), 83-100, doi:10.1007/s12665-015-4582-5, 2015.
    17. #Soulis, K. X., D. Manolakos, J. Anagnostopoulos, and D. Panantonis, Assessing the hydropower potential of historical hydro sites using a geo-information system and hydrological modeling in poorly gauged areas, 9th World Congress of the European Water Resources Association (EWRA) “Water Resources Management in a Changing World: Challenges and Opportunities”, Istanbul, 2015.
    18. Bellin, A., B. Majone, O. Cainelli, D. Alberici, and F. Villa, A continuous coupled hydrological and water resources management model, Environmental Modelling and Software, 75, 176–192, doi:10.1016/j.envsoft.2015.10.013, 2016.
    19. Hughes, J. D., S. S. H. Kim, D. Dutta, and J. Vaze, Optimisation of a multiple gauge, regulated river–system model. A system approach, Hydrological Processes, doi:10.1002/hyp.10752, 2016.
    20. Merheb, M., R. Moussa, C. Abdallah, F. Colin, C. Perrin, and N. Baghdadi, Hydrological response characteristics of Mediterranean catchments at different time scales: a meta-analysis, Hydrological Sciences Journal, doi:10.1080/02626667.2016.1140174, 2016.
    21. Beskow, S., L. C. Timm, V. E. Q. Tavares, T. L. Caldeira, and L. S. Aquino, Potential of the LASH model for water resources management in data-scarce basins: a case study of the Fragata River basin, southern Brazil, Hydrological Sciences Journal, doi:10.1080/02626667.2015.1133912, 2016.
    22. Soulis, K. X., D. Manolakos, J. Anagnostopoulos, and D. Papantonis, Development of a geo-information system embedding a spatially distributed hydrological model for the preliminary assessment of the hydropower potential of historical hydro sites in poorly gauged areas, Renewable Energy, 92, 222-232, doi:10.1016/j.renene.2016.02.013, 2016.
    23. Ercan, A., E. C. Dogrul, and T. N. Kadir, Investigation of the groundwater modelling component of the Integrated Water Flow Model (IWFM), Hydrological Sciences Journal, doi:10.1080/02626667.2016.1161765, 2016.

  1. D. Koutsoyiannis, A. Efstratiadis, and K. Georgakakos, Uncertainty assessment of future hydroclimatic predictions: A comparison of probabilistic and scenario-based approaches, Journal of Hydrometeorology, 8 (3), 261–281, doi:10.1175/JHM576.1, 2007.

    During the last decade, numerous studies have been carried out to predict future climate based on climatic models run on the global scale and fed by plausible scenarios about anthropogenic forcing to climate. Based on climatic model output, hydrologic models attempt then to predict future hydrologic regimes at regional scales. Much less systematic work has been done to estimate climatic uncertainty and to assess the climatic and hydrologic model outputs within an uncertainty perspective. In this study, a stochastic framework for future climatic uncertainty is proposed, based on the following lines: (1) climate is not constant but rather varying in time and expressed by the long-term (e.g. 30-year) time average of a natural process, defined on a fine scale; (2) the evolution of climate is represented as a stochastic process; (3) the distributional parameters of a process, marginal and dependence, are estimated from an available sample by statistical methods; (4) the climatic uncertainty is the result of at least two factors, the climatic variability and the uncertainty of parameter estimation; (5) a climatic process exhibits a scaling behavior, also known as long-range dependence or the Hurst phenomenon; (6) because of this dependence, the uncertainty limits of the future are affected by the available observations of the past. The last two lines differ from classical statistical considerations and produce uncertainty limits that eventually are much wider than those of classical statistics. A combination of analytical and Monte Carlo methods is developed to determine uncertainty limits for the nontrivial scaling case. The framework developed is applied with temperature, rainfall and runoff data from a catchment in Greece, for which data exist for about a century. The uncertainty limits are then superimposed onto deterministic projections up to 2050, obtained for several scenarios and climatic models combined with a hydrologic model. These projections indicate a significant increase of temperature in the future, beyond uncertainty bands, and no significant change of rainfall and runoff as they lie well within uncertainty limits.

    Remarks:

    Erratum in equation (A3) in the final paper; see the correct version in preprint.

    Additional material:

    See also: http://dx.doi.org/10.1175/JHM576.1

    Works that cite this document: View on Google Scholar or ResearchGate

    Other works that reference this work (this list might be obsolete):

    1. Hamed, K.H., Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis, Journal of Hydrology, 349(3-4), 350-363, 2008.
    2. O’Hara, J.K., and K.P. Georgakakos, Quantifying the urban water supply impacts of climate change, Water Resources Management, 22(10), 1477-1497, 2008.
    3. #Shelton, M. L., Hydroclimatology: Perspectives and Applications, Cambridge University Press, 2008.
    4. #McKitrick, R., The T3 tax as a policy strategy for global warming, The Vancouver Volumes, Nakamura, A. (ed.), Vancouver, BC, Trafford Press, 2008.
    5. #Chung, F., J. Anderson, S. Arora, M. Ejeta, J. Galef, T. Kadir, K. Kao, A. Olson, C. Quan, E. Reyes, M. Roos, S. Seneviratne, J. Wang, H. Yin and N. Blomquist, Using Future Climate Projections to Support Water Resources Decision Making in California, 54 pp., California Department of Water Resources, California, 2009.
    6. Hou, D., K. Mitchell, Z. Toth, D. Lohmann, and H. Wei, The effect of large scale atmospheric uncertainty on streamflow predictability, Journal of Hydrometeorology, 10(3) 717-733, 2009.
    7. Kerkhoven, E., and T. Y. Gan, Unconditional uncertainties of historical and simulated river flows subjected to climate change, Journal of Hydrology, 396(1-2), 113-127, 2011.
    8. Lo, M.‐H., and J. S. Famiglietti, Precipitation response to land subsurface hydrologic processes in atmospheric general circulation model simulations, Journal of Geophysical Research, 116, D05107, doi: 10.1029/2010JD015134, 2011.
    9. Di Baldassarre, G., M. Elshamy, A. van Griensven, E. Soliman, M. Kigobe, P. Ndomba, J. Mutemi, F. Mutua, S. Moges, J.-Q. Xuan, D. Solomatine and S. Uhlenbrook, Future hydrology and climate in the River Nile basin: a review, Hydrological Sciences Journal, 56(2), 199-211, 2011.
    10. Wang, J., H. Yin, and F. Chung, Isolated and integrated effects of sea level rise, seasonal runoff shifts, and annual runoff volume on California’s largest water supply, Journal of Hydrology, 405(1-2), 83-92, 2011.
    11. Tao, F. L., and Z. Zhang, Dynamic response of terrestrial hydrological cycles and plant water stress to climate change in China, Journal of Hydrometeorology, 12(3), 371-393, 2011.
    12. Sheikh, V., and A. Bahremand, Trends in precipitation and stream flow in the semi-arid region of Atrak River, Desert, 16, 49-60, 2011.
    13. #Kerkhoven, E., T. Y.Gan, C.-C. Kuo, and Z. Islam, Unconditional uncertainties of historical and simulated river flows subjected to climate change, Proceedings of 20th Annual Conference of Canadian Society for Civil Engineering, Vol. 4 , 3238-3248, 2011.
    14. Di Baldassarre, G., M. Elshamy, A. van Griensven, E. Soliman, M. Kigobe, P. Ndomba, J. Mutemi, F. Mutua, S. Moges, Y. Xuan, D. Solomatine and S. Uhlenbrook, A Critical Discussion of Recent Studies Evaluating the Impacts of Climate Change on Water Resources in the Nile basin, Nile Basin Water Science & Engineering Journal, 4 (2), 94-100, 2011.
    15. Patil, A., and Z.-Q. Deng, Input data measurement-induced uncertainty in watershed modelling, Hydrological Sciences Journal, 57(1), 118–133, 2012.
    16. Bakker, A. M. R., and B. J. J. M. van den Hurk, Estimation of persistence and trends in geostrophic wind speed for the assessment of wind energy yields in Northwest Europe, Climate Dynamics, 39 (3-4), 767-782, 2012.
    17. Liu, L.-L.,T. Jiang, J.-G. Xu, J.-Q. Zhai and Y. Luo, Responses of hydrological processes to climate change in the Zhujiang river basin in the 21st century, Advances In Climate Change Research, 3(2), 84-91, 2012.
    18. #Qin, J., Z.-C. Hao, G.-X. Ou, L. Wang, and C.-J. Zhu, Impact of global climate change on regional water resources: A case study in the Huai River Basin, in: L. M. Druyan (editor), Climate Models, 336 pp., Chapter 5, 87-108, InTech Publications, 2012.
    19. #Samaras, A.G., and C.G. Koutitas, Climate change and its impact on sediment transport and morphology in the watershed – coast entity, Protection and Restoration of the Environment XI, 2547-2556, 2012.
    20. #Loukas, A., and L. Vasiliades, Review of applied methods for flood-frequency analysis in a changing environment in Greece, In: A review of applied methods in Europe for flood-frequency analysis in a changing environment, Floodfreq COST action ES0901: European procedures for flood frequency estimation (ed. by H. Madsen et al.), Centre for Ecology & Hydrology, Wallingford, UK, 2013.
    21. Liu, L., T. Fischer, T. Jiang, and Y. Luo, Comparison of uncertainties in projected flood frequency of the Zhujiang River, South China, Quaternary International, 304, 51-61, 2013.
    22. Panagoulia, D., and E. I. Vlahogianni, Non-linear dynamics and recurrence analysis of extreme precipitation for observed and general circulation model generated climates, Hydrological Processes, 28(4), 2281–2292, 2014.
    23. Graf, R., Reference statistics for the structure of measurement series of groundwater levels (Wielkopolska Lowland - western Poland), Hydrological Sciences Journal, 60(9), 1587-1606, doi:10.1080/02626667.2014.905689, 2015.
    24. Hosseinpour, A., L. Dolcine, and M. Fuamba, Natural flow reconstruction using Kalman filter and water balance–based methods I: Theory, Journal of Hydrologic Engineering, 10.1061/(ASCE)HE.1943-5584.0000977, 04014029, 2014.
    25. Samaras, A. G., and C. G. Koutitas, Modeling the impact of climate change on sediment transport and morphology in coupled watershed-coast systems: A case study using an integrated approach, International Journal of Sediment Research, 29(3), 304-315, 2014.
    26. #Viglione, A., and M. Rogger, Flood processes and hazards, in: P. Paron, G. Di Baldassarre, and J. F. Shroder Jr. (eds.), Hydro-Meteorological Hazards, Risks and Disasters, Chapter 1, 3–33, Elsevier, 2015.
    27. Turner, S. W. D., R. J. Blackwell, M. A. Smith, and P. J. Jeffrey, Risk-based water resources planning in England and Wales: challenges in execution and implementation, Urban Water Journal, 13(2), 182-197, doi:10.1080/1573062X.2014.955856, 2016.
    28. Lin, Y.-H., M.-H. Lo, and C. Chou, Potential negative effects of groundwater dynamics on dry season convection in the Amazon River basin, Climate Dynamics, 46, 1001-1013, doi:10.1007/s00382-015-2628-8, 2016.
    29. Tiwari, H., S. Pd. Rai, N. Sharma, and D. Kumar, Computational approaches for annual maximum river flow series, Ain Shams Engineering Journal, 8(1), 51-58, doi:10.1016/j.asej.2015.07.016, 2017.
    30. Paparrizos, S., and A. Matzarakis, Assessment of future climate change impacts on the hydrological regime of selected Greek areas with different climate conditions, Hydrology Research, 47(4), nh2016018; doi:10.2166/nh.2016.018, 2016.
    31. Tan, X., and T. Y. Gan, Multifractality of Canadian precipitation and streamflow, International Journal of Climatology, doi:10.1002/joc.5078, 2017.

  1. K. Hadjibiros, A. Katsiri, A. Andreadakis, D. Koutsoyiannis, A. Stamou, A. Christofides, A. Efstratiadis, and G.-F. Sargentis, Multi-criteria reservoir water management, Global Network for Environmental Science and Technology, 7 (3), 386–394, 2005.

    The Plastiras dam was constructed in the late 1950s mainly for electric power production, but it has also partially covered irrigation needs and water supply of the plain of Thessaly. Later, the site has been designated as an environment conservation zone because of ecological and landscape values, while tourist activities have been developed around the reservoir. Irrigation of agricultural land, hydroelectric production, drinking water supply, tourism, ecosystem water quality and scenery conservation have evidently been conflicting targets for many years. Good management would require a multi-criteria decision making. Historical data show that the irregular water release has resulted in a great annual fluctuation of the reservoir water level. This situation could be improved by a rational management of abstractions. Apparently, higher release leads simultaneously to more power production and to irrigation of a larger agricultural land. Moreover, demands for electricity and for irrigation are partially competing to each other, due to different optimal time schedules of releases. On the other hand, higher water release leads to lower water level in the reservoir and, therefore, it decreases the beauty of the scenery and deteriorates the trophic state of the lake. Such degradation affects the tourist potential as well as the quality of drinking water supplied by the reservoir. A multi-criteria approach uses different scenarios for the minimum permissible water level of the reservoir, if a constant annual release is applied. The minimum level concept is a simple and functional tool, because it is understood by people, easily certified and incorporated into regulations. The quantity of water that would be yearly available is a function of the minimum level allowed. The water quality depends upon the trophic state of the lake, mainly the concentration of chlorophyll-a, which determines the state of eutrophication and is estimated by water quality simulation models, taking into account pollutant loads such as nitrogen and phosphorus. The value of the landscape is much depending on the water level of the lake, because for lower levels a dead-zone appears between the surface of the water and the surrounding vegetation. When this dead zone is large, it seems lifeless and the lake appears partially empty. Quantification of this visual effect is not easy, but it is possible to establish a correspondence between the aesthetic assessment of the scenery and the minimum allowed reservoir level. Using results from hydrological analysis, water quality models and landscape evaluation, it seems possible to construct a multi-criteria table with different criteria described against alternatives and with a plot of three relative indices against the minimum level allowed. However, decision making has to take into account the fact that comparison or merging of indices corresponding to different criteria analysis encompasses a degree of arbitrariness. More objective decisions would be possible if different benefits and costs were measured in a common unit. Moreover, management will be sensitive to different social pressures.

    Related works:

    • [22] Publication focused on the logic of multicriteria decisions.

    Full text: http://www.itia.ntua.gr/en/getfile/704/1/documents/2006GnestPlastiras.pdf (114 KB)

    Additional material:

    See also: http://www.gnest.org/Journal/Vol7_No3.htm

    Other works that reference this work (this list might be obsolete):

    1. #Sarkar, A., & M. Chakrabarti, Feasibility of corridor between Singhalilla National Park and Senchal Wild Life Sanctuary: a study of five villages between Poobong and 14th Mile Village, Parks, Peace and Partnerships Conf., Waterton, Canada, 2007
    2. Chakrabarti, M., and S. K. Datta, Evolving an effective management information system to monitor co-management of forests, Economic and Political Weekly, 44(18), 53-60, 2009.
    3. Vassoney, E., A. M. Mochet, and C. Comoglio, Use of multicriteria analysis (MCA) for sustainable hydropower planning and management, Journal of Environmental Management, 196, 48–55, doi:10.1016/j.jenvman.2017.02.067, 2017.

  1. A. Christofides, A. Efstratiadis, D. Koutsoyiannis, G.-F. Sargentis, and K. Hadjibiros, Resolving conflicting objectives in the management of the Plastiras Lake: can we quantify beauty?, Hydrology and Earth System Sciences, 9 (5), 507–515, 2005.

    The possible water management of the Plastiras Lake, an artificial reservoir in central Greece, is examined. The lake and surrounding landscape are aesthetically degraded when the water level drops, and the requirement of maintaining a high quality of the scenery constitutes one of the several conflicting water uses, the other ones being irrigation, water supply, and power production. This environmental water use, and, to a lesser extent, the requirement for adequate water quality, results in constraining the annual release. Thus, the allowed fluctuation of reservoir stage is not defined by the physical and technical characteristics of the reservoir, but by a multi-criteria decision, the three criteria being maximising water release, ensuring adequate water quality, and maintaining a high quality of the natural landscape. Each of these criteria is analyzed separately. The results are then put together in a multicriterion tableau, which helps understand the implications of the possible alternative decisions. Several conflict resolution methods are overviewed, namely willingness to pay, hedonic prices, and multi-criteria decision analysis. All these methods attempt to quantify non-quantifiable qualities, and it is concluded that they don't necessarily offer any advantage over merely making a choice based on understanding.

    Remarks:

    Permission is granted to reproduce and modify this paper under the terms of the Creative Commons NonCommercial ShareAlike 2.5 license.

    Full text: http://www.itia.ntua.gr/en/getfile/683/1/documents/2005HESSPlastiras.pdf (404 KB)

    Additional material:

    See also: http://dx.doi.org/10.5194/hess-9-507-2005

    Other works that reference this work (this list might be obsolete):

    1. Chung, E. S., and K. S. Lee, A social-economic-engineering combined framework for decision making in water resources planning, Hydrology and Earth System Sciences, 13, 675-686, 2009.
    2. Parisopoulos, G. A., M. Malakou, and M. Giamouri, Evaluation of lake level control using objective indicators: The case of Micro Prespa, Journal of Hydrology, 367(1-2), 86-92, 2009.
    3. #Romanescu, G., C. Stoleriu, and A. Lupascu, Morphology of the lake basin and the nature of sediments in the area of Red Lake (Romania), Annals of the University of Oradea – Geography Series, XX(1), 44-57, 2010.
    4. #Sargentis G. F., V. Symeonidis, and N. Symeonidis, Rules and methods for the development of a prototype landscape (Almyro) in north Evia by the creation of a thematic park, Proceedings of the 12th International Conference on Environmental Science and Technology (CEST2011), Rhodes, Greece, 2011.
    5. Shamsudin, S., A. A. Rahman and Z. B. Haron, Water level evaluation at Southern Malaysia reservoir using fuzzy composite programming, International Journal of Engineering and Advanced Technology, 2 (4), 127-132, 2013.
    6. #Romanescu, G., C. C. Stoleriu, and A. Enea, Water management, Limnology of the Red Lake, Romania, Springer, 2013.
    7. Zhang, T., W. H. Zeng, S. R. Wang, and Z. K. Ni, Temporal and spatial changes of water quality and management strategies of Dianchi Lake in southwest China, Hydrology and Earth System Sciences, 18, 1493-1502, doi:10.5194/hess-18-1493-2014, 2014.
    8. Zhang, T., W. H. Zeng, and F. L. Yang, Applying a BP neural network approach to the evolution stage classification of China Rift Lakes, International Journal of Modeling and Optimization, 4(6), 450-454, 2014.

  1. E. Rozos, A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Calibration of a semi-distributed model for conjunctive simulation of surface and groundwater flows, Hydrological Sciences Journal, 49 (5), 819–842, doi:10.1623/hysj.49.5.819.55130, 2004.

    A hydrological simulation model was developed for conjunctive representation of surface and groundwater processes. It comprises a conceptual soil moisture accounting module, based on an enhanced version of the Thornthwaite model for the soil moisture reservoir, a Darcian multi-cell groundwater flow module and a module for partitioning water abstractions among water resources. The resulting integrated scheme is highly flexible in the choice of time (i.e. monthly to daily) and space scales (catchment scale, aquifer scale). Model calibration involved successive phases of manual and automatic sessions. For the latter, an innovative optimization method called evolutionary annealing-simplex algorithm is devised. The objective function involves weighted goodness-of-fit criteria for multiple variables with different observation periods, as well as penalty terms for restricting unrealistic water storage trends and deviations from observed intermittency of spring flows. Checks of the unmeasured catchment responses through manually changing parameter bounds guided choosing final parameter sets. The model is applied to the particularly complex Boeoticos Kephisos basin, Greece, where it accurately reproduced the main basin response, i.e. the runoff at its outlet, and also other important components. Emphasis is put on the principle of parsimony which resulted in a computationally effective modelling. This is crucial since the model is to be integrated within a stochastic simulation framework.

    Full text: http://www.itia.ntua.gr/en/getfile/630/1/documents/2004HSJCalibrSemiDistrModel.pdf (445 KB)

    Additional material:

    See also: http://dx.doi.org/10.1623/hysj.49.5.819.55130

    Works that cite this document: View on Google Scholar or ResearchGate

    Other works that reference this work (this list might be obsolete):

    1. Ireson, A., C. Makropoulos and C. Maksimovic, Water resources modelling under data scarcity: Coupling MIKE BASIN and ASM groundwater model, Water Resources Management, 20(4), 567-590, 2006.
    2. Goswami, M., and K.M. O'Connor, Comparative assessment of six automatic optimization techniques for calibration of a conceptual rainfall-runoff model, Hydrological Sciences Journal, 52(3), 432-449, 2007.
    3. #Watershed Science Centre, Research Priorities for Source Water Protection: Filling the Gap between Science and Implementation, Final Report, 333 p., Trent University, Ontario, 2007.
    4. #Burton, A., H. Fowler, C. Kilsby, and M. Marani, Investigation of intensity and spatial representations of rainfall within stochastic rainfall model, AquaTerra: Integrated modelling of the river-sediment-soil-groundwater system; advanced tools for the management of catchment areas and river basins in the context of global change, Deliverable H1.8, 57 pp., 2007.
    5. Malpica, J.A., J.G. Rejas, and M.C. Alonso, A projection pursuit algorithm for anomaly detection in hyperspectral imagery, Pattern Recognition, 41(11), 3313-3327, 2008.
    6. Burton, A., C.G. Kilsby, H.J. Fowler, P.S.P. Cowpertwait, and P.E. O'Connell, RainSim: A spatial–temporal stochastic rainfall modelling system, Environmental Modelling and Software, 23(12), 1356-1369, 2008.
    7. Kourakos, G., and A. Mantoglou, Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models, Advances in Water Resources, 32(4), 507-521, 2009.
    8. Wang, G.-S, J. Xia, and J.-F. Chen, A multi-parameter sensitivity and uncertainty analysis method to evaluate relative importance of parameters and model performance, Geographical Research, 29(2), 263-270, 2010.
    9. Kustamar, S., S. Sari, Y. Erni, and Sunik, ITN-2 River basin hydrology model: A distributed conceptual model for predicting flood without using calibration, Dinamika Teknik Sipil, 10(3), 233-240, 2010.
    10. #SIRRIMED (Sustainable use of irrigation water in the Mediterranean Region), D4.2 and D5.2 Report on Models to be Implemented in the District Information Systems (DIS) and Watershed Information Systems (WIS), 95 pp., Universidad Politécnica de Cartagena, 2011.
    11. Mediero, L., L. Garrote, and F. J. Martín-Carrasco, Probabilistic calibration of a distributed hydrological model for flood forecasting, Hydrological Sciences Journal, 56(7), 1129–1149, 2011.
    12. Flipo, N., C. Monteil, M. Poulin, C. de Fouquet, and M. Krimissa, Hybrid fitting of a hydrosystem model: Long term insight into the Beauce aquifer functioning (France), Water Recourses Research, 48, W05509, doi: 10.1029/2011WR011092, 2012.
    13. Korichi, K., and A. Hazzab, Hydrodynamic investigation and numerical simulation of intermittent and ephemeral flows in semi-arid Regions: Wadi Mekerra, Algeria, Journal of Hydrology and Hydromechanics, 60(2), 125-142, 2012.
    14. Wang, W.-C., C.-T. Cheng, K.-W. Chau, and D.-M. Xu, Calibration of Xinanjiang model parameters using hybrid genetic algorithm based fuzzy optimal model, Journal of Hydroinformatics, 14 (3), 784-799, 2012.
    15. Evrenoglou, L., S. A. Partsinevelou, P. Stamatis, A. Lazaris, E. Patsouris, C. Kotampasi, and P. Nicolopoulou-Stamati, Children exposure to trace levels of heavy metals at the north zone of Kifissos River, Science of The Total Environment, 443(15), 650-661, 2013.
    16. Kallioras, A., and P. Marinos, Water resources assessment and management of karst aquifer systems in Greece, Environmental Earth Sciences, 74(1), 83-100, doi:10.1007/s12665-015-4582-5, 2015.
    17. #Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers using radial basis function metamodels, Proceedings of 9th World Congress EWRA “Water Resources Management in a Changing World: Challenges and Opportunities”, Istanbul, 2015.
    18. Christelis, V., and A. Mantoglou, Coastal aquifer management based on the joint use of density-dependent and sharp interface models, Water Resources Management, 30(2), 861-876, doi:10.1007/s11269-015-1195-4, 2016.
    19. Merheb, M., R. Moussa, C. Abdallah, F. Colin, C. Perrin, and N. Baghdadi, Hydrological response characteristics of Mediterranean catchments at different time scales: a meta-analysis, Hydrological Sciences Journal, 61(14), 2520-2539, doi:10.1080/02626667.2016.1140174, 2016.
    20. Tigkas, D., V. Christelis, and G. Tsakiris, Comparative study of evolutionary algorithms for the automatic calibration of the Medbasin-D conceptual hydrological model, Environmental Processes, 3(3), 629–644, doi:10.1007/s40710-016-0147-1, 2016.
    21. Liao, S.-L., G. Li, Q.-Y. Sun, and Z.F. Li, Real-time correction of antecedent precipitation for the Xinanjiang model using the genetic algorithm, Journal of Hydroinformatics, 18(5), 803-815, doi:10.2166/hydro.2016.168, 2016.
    22. Charizopoulos, N., and A. Psilovikos, Hydrologic processes simulation using the conceptual model Zygos: the example of Xynias drained Lake catchment (central Greece), Environmental Earth Sciences, 75:777, doi:10.1007/s12665-016-5565-x, 2016.
    23. Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers assisted by adaptive metamodelling methods and radial basis functions, Water Resources Management, 30(15), 5845–5859, doi:10.1007/s11269-016-1337-3, 2016.
    24. Yu, X., C. Duffy, Y. Zhang, G. Bhatt, and Y. Shi, Virtual experiments guide calibration strategies for a real-world watershed application of coupled surface-subsurface modeling, Journal of Hydrologic Engineering, 04016043, doi:10.1061/(ASCE)HE.1943-5584.0001431, 2016.
    25. Partsinevelou, Α.-S., and L. Evrenoglou, Heavy metal contamination in surface water and impacts in public health. The case of Kifissos River, Athens, Greece, International Journal of Energy and Environment, 10, 213-218, 2016.
    26. #Christelis, V., V. Bellos, and G. Tsakiris, Employing surrogate modelling for the calibration of a 2D flood simulation model, Sustainable Hydraulics in the Era of Global Change: Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016), A. S. Erpicum, M. Pirotton, B. Dewals, P. Archambeau (editors), CRC Press, 2016.

  1. A. Efstratiadis, D. Koutsoyiannis, and D. Xenos, Minimising water cost in the water resource management of Athens, Urban Water Journal, 1 (1), 3–15, 2004.

    The minimisation of the water cost is examined in the framework of an integrated water resources planning and management model, implemented within the decision support system for the management of the Athens water supply system. The mathematical framework employs a simulation-optimisation scheme, where simulation is applied to faithfully represent the system operation, whereas optimisation is applied to derive the optimal management policy, which simultaneously minimises the risk and cost of decision-making. Real economic criteria in addition with virtual costs are appropriately assigned to preserve the physical constraints and water use priorities, ensuring also the lowest-cost transportation of water from the sources to the consumption. The proposed model is tested in the hydrosystem of Athens, in order to minimise the expected operational cost for several system configurations.

    Additional material:

    See also: http://dx.doi.org/10.1080/15730620410001732099

    Other works that reference this work (this list might be obsolete):

    1. #SIRRIMED (Sustainable use of irrigation water in the Mediterranean Region), D4.2 and D5.2 Report on Models to be Implemented in the District Information Systems (DIS) and Watershed Information Systems (WIS), 95 pp., Universidad Politécnica de Cartagena, 2011.
    2. Lerma, N., J. Paredes-Arquiola, J. Andreu, and A. Solera, Development of operating rules for a complex multi-reservoir system by coupling genetic algorithms and network optimization, Hydrological Sciences Journal, 58 (4), 797-812, 2013.
    3. Newman, J. P., G. C. Dandy, and H. R. Maier, Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization, Water Resources Research, doi:10.1002/2013WR015233, 2014.
    4. Salazar, J. Z., P. M. Reed, J. D. Herman, M. Giuliani, and A. Castelletti, A diagnostic assessment of evolutionary algorithms for multi-objective surface water reservoir control, Advances in Water Resources, doi:10.1016/j.advwatres.2016.04.006, 2016.

  1. D. Koutsoyiannis, G. Karavokiros, A. Efstratiadis, N. Mamassis, A. Koukouvinos, and A. Christofides, A decision support system for the management of the water resource system of Athens, Physics and Chemistry of the Earth, 28 (14-15), 599–609, doi:10.1016/S1474-7065(03)00106-2, 2003.

    The main components of a decision support system (DSS) developed to support the management of the water resource system of Athens are presented. The DSS includes information systems that perform data acquisition, management and visualisation, and models that perform simulation and optimisation of the hydrosystem. The models, which are the focus of the present work, are organised into two main modules. The first one is a stochastic hydrological simulator, which, based on the analysis of historical hydrological data, generates simulations and forecasts of the hydrosystem inputs. The second one allows the detailed study of the hydrosystem under alternative management policies implementing the parameterisation-simulation-optimisation methodology. The mathematical framework of this new methodology performs the allocation of the water resources to the different system components, keeping the number of control variables small and thus reducing the computational effort, even for a complex hydrosystem like the one under study. Multiple, competitive targets and constraints with different priorities can be set, which are concerned among others, with the system reliability and risk, the overall average operational cost and the overall guaranteed yield of the system. The DSS is in the final stage of its development and its results, some of which are summarised in the paper, have been utilised to support the new masterplan of the hydrosystem management.

    Additional material:

    See also: http://dx.doi.org/10.1016/S1474-7065(03)00106-2

    Works that cite this document: View on Google Scholar or ResearchGate

    Other works that reference this work (this list might be obsolete):

    1. de Kok, J.-L., and H. G. Wind, Design and application of decision-support systems for integrated water management: lessons to be learnt, Physics and Chemistry of the Earth, 28(14-15), 571-578, 2003.
    2. #Xu, C., Huang, Q., Zhao, M., and Tian, F., Economical operation of hydropower plant based on self-adaptive mutation evolutionary programming, Fifth World Congress on Intelligent Control and Automation, Vol. 6, 5646-5648, 2004.
    3. Parcharidis, I., E. Lagios, V. Sakkas, D. Raucoules, D. Feurer, S. Le Mouelic, C. King, C. Carnec, F. Novali, A. Ferretti, R. Capes, and G. Cooksley, Subsidence monitoring within the Athens Basin (Greece) using space radar interferometric techniques, Earth Planets Space, 58(5), 505-513, 2006.
    4. #Makropoulos, C., Decision support tools for water demand management, Water Demand Management, D. Butler and F.A. Memon (eds.), IWA Publishing, 331-353, 2006.
    5. #Othman, F., and M. Naseri, Decision support systems in water resources management, Proceedings of the 9th Asia Pacific Industrial Engineering and Management Systems Conference, 1772-1780, Nusa Dua, Bali, 2008.
    6. Kizito, F., H. Mutikanga, G. Ngirane-Katashaya, and R. Thunvik, Development of decision support tools for decentralised urban water supply management in Uganda: An Action Research approach, Computers, Environment and Urban Systems, 33(2), 122-137, 2009.
    7. #Comas, J., and M. Poch, Decision support systems for integrated water resources management under water scarcity, Water Scarcity in the Mediterranean: Perspectives Under Global Change, S. Sabater and D. Barcelo (eds.), The Handbook of Environmental Chemistry, Springer-Verlag Berlin Heidelberg, 2009.
    8. Silva-Hidalgo, H., I. R. Martín-Domínguez, M. T. Alarcón-Herrera, and A. Granados-Olivas, Mathematical modelling for the integrated management of water resources in hydrological basins, Water Resources Management, 23 (4), 721-730, 2009.
    9. #Wang, B., and H. Cheng, Regional environmental risk management decision support system based on optimization model for Minhang District in Shanghai, Challenges in Environmental Science and Computer Engineering, 1, 14-17, 2010 International Conference on Challenges in Environmental Science and Computer Engineering, 2010.
    10. #Zhang, R., J. Wei, J. Lu, and G. Zhang, A Decision Support System for Ore Blending Cost Optimization Problem of Blast Furnaces, In: G. Phillips-Wren et al. (Eds.), Advances in Intelligent Decision Technologies, Smart Innovation, Systems and Technologies, 1(4), III, 143-152, Springer-Verlag Berlin Heidelberg, 2010.
    11. #Καρύμπαλης, Ε., Το νερό της Αθήνας: οι επιπτώσεις στον Μόρνο και τον Εύηνο, Γεωγραφίες, 15, 75-93, 2010.
    12. Sechi, G. M., and A. Sulis, Drought mitigation using operative indicators in complex water systems, Physics and Chemistry of the Earth, Parts A/B/C, 35(3-5), 195-203, 2010.
    13. Zhang, R., J. Lu, and G. Zhang, A knowledge-based multi-role decision support system for ore blending cost optimization of blast furnaces, European Journal of Operational Research, 215(1), 194-203, doi: 10.1016/j.ejor.2011.05.037, 2011.
    14. Gallardo, M. M., P. Merino, L. Panizo, and A. Linares, A practical use of model checking for synthesis: generating a dam controller for flood management, Software: Practice and Experience, 41(11), 1329-1347, DOI: 10.1002/spe.1048, 2011.
    15. Zeng, Y., Y. Cai, P. Jia, and H. Jee, Development of a web-based decision support system for supporting integrated water resources management in Daegu City, South Korea, Expert Systems with Applications, 39(11), 10091-10102, 2012.
    16. Patil, A., and Z.-Q. Deng, Input data measurement-induced uncertainty in watershed modelling, Hydrological Sciences Journal, 57(1), 118–133, 2012.
    17. Zhang, X. Q., H. Gao, and X. Yu, A multiobjective decision framework for river basin management, Applied Mechanics and Materials, 238, 288-291, 2012.
    18. Ge, Y., X. Li, C. Huang, and Z. Nan, A decision support system for irrigation water allocation along the middle reaches of the Heihe River Basin, Northwest China, Environmental Modelling & Software, 47, 182-192, 2013.
    19. Adewumi, J. R., A. A. Ilemobade, and J. E. van Zyl, Application of a multi-criteria decision support tool in assessing the feasibility of implementing treated wastewater reuse, International Journal of Decision Support System Technology, 5(1), 1-23, 2013.
    20. Sahoo, S. N., and P. Sreeja, A review of decision support system applications in flood management, International Journal of Hydrology Science and Technology, 3, 206–220, 2013.
    21. #Aher, P. D., J. Adinarayana, S. D. Gorantiwar, and S. A. Sawant, Information system for integrated watershed management using remote sensing and GIS, Remote Sensing Applications in Environmental Research, 17-34, Society of Earth Scientists Series, 2014.
    22. Nouiri, I., Multi-objective tool to optimize the water resources management using genetic algorithm and the Pareto optimality concept, Water Resources Management, 28(10), 2885-2901, 2014.
    23. Heracleous, C., Z. Zinonos, and C. Panayiotou, Water supply optimization: An IPA approach, IFAC Proceedings Volumes: 12th IFAC/IEEE Workshop on Discrete Event Systems, 47(2), 265-270, doi:10.3182/20140514-3-FR-4046.00088, 2014.
    24. #Heidari A., and E. Bozorgzadeh, Decision Support System for water resources planning in Karun river basin, International Symposium on Dams in a Global Environmental Challenges, 35-45, Bali, Indonesia, 2014.
    25. Stefanovic, N., I. Radojevic, A. Ostojic, L. Comic, and M. Topuzovic, Composite web information system for management of water resources, Water Resources Management, 29(7), 2285-2301, doi:10.1007/s11269-015-0941-y, 2015.
    26. Nouiri, I., F. Chemak, D. Mansour, H. Bellali, J. Ghrab, J. Baaboub, and M. K. Chahed, Impacts of irrigation water management on consumption indicators and exposure to the vector of Zoonotic Cutaneous Leishmaniasis (ZCL) in Sidi Bouzid, Tunisia, International Journal of Agricultural Policy and Research, 3(2), 93-103, doi:10.15739/IJAPR.031, 2015.
    27. Nouiri , I., M. Yitayew, J. Maßmann, and J. Tarhouni, Multi-objective optimization tool for integrated groundwater management, Water Resources Management, 29(14), 5353-5375, doi:10.1007/s11269-015-1122-8, 2015.
    28. Wang, G., S. Mang, H. Cai, S. Liu, Z. Zhang, L. Wang, and J. L. Innes, Integrated watershed management: evolution, development and emerging trends, Journal of Forestry Research, 27(5), 967–994, doi:10.1007/s11676-016-0293-3, 2016.
    29. #Tzortzakis, G., E. Katsiri, G. Karavokiros, C. Makropoulos, and A. Delis, Tethys: sensor-based aquatic quality monitoring in waterways, Proceedings of 17th IEEE International Conference on Mobile Data Management (MDM), 329-332, doi:10.1109/MDM.2016.56, 2016.
    30. Heidari, A., Application of multidisciplinary water resources planning tools for two of the largest rivers of Iran, Journal of Applied Water Engineering and Research, doi:10.1080/23249676.2016.1215271, 2016.
    31. Kochilakis, G., D. Poursanidis, N. Chrysoulakis, V. Varella, V. Kotroni, G. Eftychidis, K. Lagouvardos, C. Papathanasioud, G. Karavokyros, M. Aivazoglou, C. Makropoulosd, and M. Mimikou, A web based DSS for the management of floods and wildfires (FLIRE) in urban and periurban areas, Environmental Modelling and Software, 86, 111-115, doi:10.1016/j.envsoft.2016.09.016, 2016.
    32. Bouziotas, D., and M. Ertsen, Socio-hydrology from the bottom up: A template for agent-based modeling in irrigation systems, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2017-107, 2017.

  1. D. Koutsoyiannis, A. Efstratiadis, and G. Karavokiros, A decision support tool for the management of multi-reservoir systems, Journal of the American Water Resources Association, 38 (4), 945–958, doi:10.1111/j.1752-1688.2002.tb05536.x, 2002.

    A decision support tool is developed for the management of water resources, focusing on multipurpose reservoir systems. This software tool has been designed in such a way that it can be suitable to hydrosystems with multiple water uses and operating goals, calculating complex multi-reservoir systems as a whole. The mathematical framework is based on the parameterization-simulation-optimization scheme. The main idea consists of a parametric formulation of the operating rules for reservoirs and other projects (i.e. hydropower plants). This methodology enables the radical decrease of the number of decision variables, making feasible the location of the optimal management policy, which maximizes the system yield and the overall operational benefit and minimizes the risk for the management decisions. The program was developed using advanced software engineering techniques. It is adaptable in a wide range of water resources systems and its purpose is to support water and power supply companies and related authorities. It was already applied to two of the most complicated hydrosystems of Greece, the first time as a planning tool and the second time as a management tool.

    Additional material:

    See also: http://dx.doi.org/10.1111/j.1752-1688.2002.tb05536.x

    Works that cite this document: View on Google Scholar or ResearchGate

    Other works that reference this work (this list might be obsolete):

    1. Liu, C.W., Decision support system for managing ground water resources in the Choushui River alluvial in Taiwan, Journal of the American Water Resources Association, 40 (2), 431-442, 2004.
    2. #Chen, Y., and J. Hu, A decision support system for multireservoir system operation of Upper Yellow River, Proceedings of the 6th International Conference on Hydroinformatics (eds. Liong, S.-Y., K.-K. Phoon, and V. Babovic), IWA, 2004
    3. #Bravo, J. M., W. Collischonn and J. V. Pilar, Otimização da operação de reservatórios: Estado da Arte, Anais do XVI Simpósio Brasileiro de Recursos Hídricos, João Pessoa, 2005.
    4. #Bravo, J. M., W. Collischonn, J. V. Pilar & C. Depettris, Técnica de parametrización, simulación y optimización para definición de reglas de operación en repressa, Comunicaciones Científicas y Tecnológicas 2006, Universidad Nacional Del Nordeste, 2006.
    5. Srinivas, V.V., and K. Srinivasan, Hybrid matched-block bootstrap for stochastic simulation of multiseason streamflows, Journal of Hydrology, 329(1-2), 2006.
    6. #McCartney, M.P. and S. Awulachew, Improving dam planning and operation in the Nile Basin through the use of decision support systems, Proceedings of the Nile Basin Development Forum, 2006.
    7. #McCartney, M.P., Decision Support Systems for Large Dam Planning and Operation in Africa, IWMI Working Paper 119, 47 pp. International Water Management Institute, Colombo, Sri Lanka, 2006.
    8. #Bravo, J.M., W. Collischonn, J.V. Pilar, and C.E.M. Tucci, Otimização de regras de operação de reservatórios utilizando um algoritmo evolutivo, Anais do I Simpósio de Recursos Hídricos do Sul-Sudeste, ABRH, 2006.
    9. #Bravo, J. M., W. Collischonn, and J. V. Pilar, Optimización de la operación de una represa con múltiples usos utilizando un algoritmo evolutivo, Anales del IV Congreso argentino de presas y aprovechamientos hidroeléctricos, CADP, 2006.
    10. #Bravo, J. M., W. Collischonn, C. E. M. Tucci, and B. C. da Silva, Avaliação dos benefícios da previsão meteorológica na operação de reservatórios com usos múltiplos, Concurso I Prêmio INMET de Estudos sobre os Benefícios da Meteorologia para o Brasil, 2006.
    11. #Bravo, J. M., W. Collischonn, J. V. Pilar, B. C. da Silva, and C. E. M. Tucci, Evaluación de los beneficios de la previsión de caudal en la Operación de una represa, Anales del XXI congreso Nacional del Agua, 2007.
    12. #Bravo, J. M., W. Collischonn, J. V. Pilar, and C. E. M. Tucci, Influência da capacidade de regularização de reservatórios nos benefícios da previsão de vazão de longo prazo, Anais do XVII Simpósio Brasileiro de Recursos Hídricos, ABRH, 2007.
    13. Bravo, J. M., W. Collischonn, J. V. Pilar, and C. E. M. Tucci, Otimização de regras de operação de reservatórios com incorporação da previsão de vazão, Revista Brasileira de Recursos Hídricos, 13(1), 181-196, 2008.
    14. Celeste, A. B, and Billib, M., Evaluation of stochastic reservoir operation optimization models, Advances in Water Resources, 32(9), 1429-1443, 2009.
    15. Alemu, E. T., R. N. Palmer, A. Polebitski, and B. Meaker, Decision support system for optimizing reservoir operations using ensemble streamflow predictions, Journal of Water Recourses Planning and Management, 137(1), 72-82, 2011.
    16. Obolewskia, K., E. SkorbiŁowiczb, M. SkorbiŁowiczb, K. Glińska-Lewczukc, A. M. Asteld, and A. Strzelczake, The effect of metals accumulated in reed (Phragmites australis) on the structure of periphyton, Ecotoxicology and Environmental Safety, 74(4), 558-568, 2011.
    17. Kinyanjui, B. K., A. N. Gitau, and M. K. Mang’oli, Power development planning models in East Africa, Strategic Planning for Energy and the Environment, 31(1), 43-55, 2011.
    18. #McCartney, M., and G. Lacombe, Review of water resource and reservoir planning models for use in the Mekong, Mekong MK1 project on optimizing reservoir management for livelihoods, 24 pp., CGIAR Challenge Program on Water and Food, 2011.
    19. Ortega-Gaucin, D., Reglas de operación para el sistema de presas del Distrito de Riego 005 Delicias, Chihuahua, México, Ingeniería Agrícola y Biosistemas, 4(1), 31-39, 2012.
    20. Bianucci, P., A. Sordo-Ward, J. I. Pérez, J. García-Palacios, L. Mediero and L. Garrote, Risk-based methodology for parameter calibration of a reservoir flood control model, Natural Hazards and Earth System Sciences, 13, 965-981, 2013.
    21. Cavallo, A., A. Di Nardo, G. De Maria and M. Di Natale, Automated fuzzy decision and control system for reservoir management, Journal of Water Supply: Research and Technology – AQUA, 62(4), 189-204, 2013.
    22. Donia, N., Aswan High Dam reservoir management system, Journal of Hydroinformatics, 15(4), 1491-1510, 2013.
    23. Arunkumar, R., and V. Jothiprakash, Evaluation of a multi-reservoir hydropower system using a simulation model, ISH Journal of Hydraulic Engineering, 20 (2), 177-187, 2014.
    24. Latorre, J., S. Cerisola, A. Ramos, A. Perea, and R. Bellido, Coordinated hydropower plant simulation for multireservoir systems, Journal of Water Resources Planning and Management, 140(2), 216–227, 2014.
    25. Asadzadeh, M., S. Razavi, B. A. Tolson, and D. Fay, Pre-emption strategies for efficient multi-objective optimization: Application to the development of Lake Superior regulation plan, Environmental Modelling and Software, 54, 128-141, 2014.
    26. #Meseguer, J., G. Cembrano, J. M. Mirats, and E. Bonada, Optimizing operating rules of multiple source water supply systems in terms of system reliability and resulting operating costs: survey of simulation-optimization modeling approaches based on general purpose tools, 11th International Conference on Hydroinformatics, New York City, USA, 2014.
    27. Da Hora, M. A. G. M., and L. F. L. Legey, Water resource conflict in the Amazon Region: The case of hydropower generation and multiple water uses in the Tocantins and Araguaia river basins, The Global Journal of Researches in Engineering, 15(2), 2015.
    28. Oliveira, I. A., and A. B. Celeste, Operação de reservatório sergipano via curvas-guia parametrizadas por modelo de simulação-otimização, Scientia cum Industria, 4(3), doi:10.18226/23185279.v4iss3p154, 2016.
    29. Müller, R., and N. Schütze, Multi-objective optimization of multi-purpose multi-reservoir systems under high reliability constraints, Environmental Earth Sciences, 75:1278, doi:10.1007/s12665-016-6076-5, 2016.
    30. Celeste, A. B., and L. A. Ventura, Simple simulation–optimisation vs SDP for reservoir operation, Proceedings of the Institution of Civil Engineers – Water Management, 170(3), 128–138, doi:10.1680/jwama.15.00018, 2017.

Book chapters and fully evaluated conference publications

  1. G. Papaioannou, L. Vasiliades, A. Loukas, A. Efstratiadis, S.M. Papalexiou, Y. Markonis, and A. Koukouvinos, A methodological approach for flood risk management in urban areas: The Volos city paradigm, 10th World Congress on Water Resources and Environment, Athens, European Water Resources Association, 2017.

    A methodological approach based on the implementation of the EU Floods Directive in Greece is developed and presented for flood risk management of urban areas. The flood risk assessment procedure is demonstrated for Volos city of Thessaly, Greece, where frequent flood episodes are observed due to intense storms. A unified deterministic extreme event-based methodology is applied for hydrologic and hydraulic modelling of floods. The hydrologic part is based on semi-distributed application of the HEC-HMS rainfall-runoff model with spatially-distributed design hyetographs. The SCS-CN method is used to estimate effective rainfall and the SCS synthetic unit hydrograph to produce extreme flood hydrographs at subwatershed scale. The hydraulic modelling is based on the propagation of flood hydrographs across the river network and the mapping of inundated areas using the HEC-RAS 2D model with flexible mesh size. Representation of the resistance caused by buildings have been simulated with the local elevation rise method using transformation of the Digital Terrain Model to a Digital Elevation Model. For the adopted design hyetographs upper and lower estimates on water depths, flow velocities and flood inundation areas are estimated taking into account structural and parameter uncertainty of the hydrologic and hydraulic models by varying antecedent soil moisture conditions and roughness coefficient values. The results indicate the uncertainty introduced on flood risk management in urban areas using typical engineering practices.

  1. N. Malamos, I. L. Tsirogiannis, A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, Spatial interpolation of potential evapotranspiration for precision irrigation purposes, 10th World Congress on Water Resources and Environment, Athens, European Water Resources Association, 2017.

    Precision irrigation constitutes a breakthrough for agricultural water management since it provides means to optimal water use. In recent years several applications of precision irrigation are implemented based on spatial data from different origins, i.e. meteorological stations networks, remote sensing data and in situ measurements. One of the factors affecting optimal irrigation system design and management is the daily potential evapotranspiration (PET). A commonly used approach is to estimate the daily PET for the representative day of each month during the irrigation period. In the present study, the implementation of the recently introduced non-parametric bilinear surface smoothing (BSS) methodology for spatial interpolation of daily PET is presented. The study area was the plain of Arta which is located at the Region of Epirus at the North West Greece. Daily PET was estimated according to the FAO Penman-Monteith methodology with data collected from a network of six agrometeorological stations, installed in early 2015 in selected locations throughout the study area. For exploration purposes, we produced PET maps for the Julian dates: 105, 135, 162, 199, 229 and 259, thus covering the entire irrigation period of 2015. Also, comparison and cross validation against the calculated FAO Penman-Monteith PET for each station, were performed between BSS and a commonly used interpolation method, i.e. inverse distance weighted (IDW). During the leave-one-out cross validation procedure, BSS yielded very good results, outperforming IDW. Given the simplicity of the BSS, its overall performance is satisfactory, providing maps that represent the spatial and temporal variation of daily PET.

  1. K. Risva, D. Nikolopoulos, A. Efstratiadis, and I. Nalbantis, A simple model for low flow forecasting in Mediterranean streams, 10th World Congress on Water Resources and Environment, Athens, European Water Resources Association, 2017.

    Low flows commonly occur in rivers during dry seasons within each year. They often concur with increased water demand which creates numerous water resources management problems. This paper seeks for simple yet efficient tools for low-flow forecasting, which are easy to implement, based on the adoption of an exponential decay model for the flow recession curve. A statistical attribute of flows preceding the start of the dry period is used as the starting flow, as for example the minimum flow of early April. On the other hand, the decay rate (recession parameter) is assumed as a linear function of the starting flow. The two parameters of that function are time-invariant, and they are optimised over a reference time series representing the low flow component of the observed hydrographs. The methodology is tested in the basins of Achelous, Greece, Xeros and Peristerona, Cyprus, and Salso, Italy. Raw data are filtered by simple signal processing techniques which remove the effect of flood events occurring in dry periods, thus allowing the preservation of the decaying form of the flow recession curve. Results indicate that satisfactory low flow forecasts are possible for Mediterranean basins of different hydrological behaviour.

  1. T. Vergou, A. Efstratiadis, and D. Dermatas, Water balance model for evaluation of landfill malfunction due to leakage, Proceedings of ISWA 2016 World Congress, Novi Sad, Ιnternational Solid Waste Association, 2016.

    We present a conceptual model that aims to represent the main hydrological processes in a landfill, taking into account its dynamic evolution. The model is employed in a real-world case study, involving the operation of the landfill of Mavrorachi, Northern Greece, for a one-year period. The landfill exhibits several environmental problems due to significant leakage production, which often exceeds the capacity of treatment works, as well as lateral outflows. By simulating the entire water cycle over the landfill basin, we attempt to recognize the major sources of failure and propose management measures to mitigate the current environmental impacts.

  1. S. Mihas, A. Efstratiadis, K. Nikolaou, and N. Mamassis, Drought and water scarcity management plan for the Peloponnese river basin districts, 12th International Conference “Protection & Restoration of the Environment”, Skiathos, Dept. of Civil Engineering and Dept. of Planning & Regional Development, Univ. Thessaly, Stevens Instute of Technology, 2014.

    The drought and water scarcity management plan was drafted for the Peloponnese River Basin Districts as outlined by the implementation of the Water Framework Directive 2000/60/EC in Greece by the Special Secretariat of Water (Ministry of Environment Energy & Climate Change). The evaluation of hydrological droughts was mainly based on precipitation data, which was used to evaluate the SPI index at several time scales (from 3-month to 5-year). Moreover, the drought hazard was evaluated, taking into consideration the demands and the water resources availability, at various spatial scales. For this aim, we developed an innovative methodology, based on the estimation of a temporally varying water exploitation index, as generalization of the typical WEI. The possibilities of predicting drought events, by using simple statistical models and evaluating the probabilities of transition from the current carrying water condition to the next are also examined. Additionally, an operational plan for drought prediction is elaborated, on the basis of representative hydrologic data that is retrieved twice a year i.e. at the end of the first trimester and semester of the hydrological year. Finally, we provide guidance for the operational implementation of the above methodology by the competent authorities and its link to specific management measures depending on the classification of each drought event, at the alert scale.

    Full text: http://www.itia.ntua.gr/en/getfile/1458/1/documents/A216_paper_hSRt2DZ.pdf (1188 KB)

    Additional material:

  1. C. Ioannou, G. Tsekouras, A. Efstratiadis, and D. Koutsoyiannis, Stochastic analysis and simulation of hydrometeorological processes for optimizing hybrid renewable energy systems, Proceedings of the 2nd Hellenic Concerence on Dams and Reservoirs, Athens, Zappeion, doi:10.13140/RG.2.1.3787.0327, Hellenic Commission on Large Dams, 2013.

    The drawbacks of conventional energy sources including their negative environmental impacts emphasize the need to integrate renewable energy sources into the energy balance. However, the renewable sources strongly depend on time varying and uncertain hydrometeorological processes, including wind speed, sunshine duration and solar radiation. To study the design and management of hybrid energy systems we investigate the stochastic properties of these natural processes, including possible long-term persistence. We use wind speed and sunshine duration time series retrieved from a European database of daily records and we estimate representative values of the Hurst coefficient for both variables. We conduct simultaneous generation of synthetic time series of wind speed and sunshine duration, on yearly, monthly and daily scale. To this we use the Castalia software system which performs multivariate stochastic simulation. Using these time series as input, we perform stochastic simulation of an autonomous hypothetical hybrid renewable energy system and optimize its performance using genetic algorithms. For the system design we optimize the sizing of the system in order to satisfy the energy demand with high reliability also minimizing the cost. While the simulation scale is the daily, a simple method allows utilizing the sub-daily distribution of the produced wind power. Various scenarios are assumed in order to examine the influence of input parameters, such as the Hurst coefficient, and design parameters such as the photovoltaic panel angle.

    Full text: http://www.itia.ntua.gr/en/getfile/1408/1/documents/2013Fragmata_Hybrid.pdf (549 KB)

    Additional material:

    See also: http://dx.doi.org/10.13140/RG.2.1.3787.0327

  1. A. Efstratiadis, D. Bouziotas, and D. Koutsoyiannis, A decision support system for the management of hydropower systems – Application to the Acheloos-Thessaly hydrosystem, Proceedings of the 2nd Hellenic Concerence on Dams and Reservoirs, Athens, Zappeion, doi:10.13140/RG.2.1.1952.0244, Hellenic Commission on Large Dams, 2013.

    We describe a holistic approach for the management of complex hydrosystems whose primary aim is hydropower production. This is based on the parameterisation-simulation-optimization methodological framework, which is implemented within the Decision Support System “Hydronomeas”. After the analysis of the developed methodology and simulation and optimization tools, a number of applications in the Acheloos-Thessaly hydrosystem are shown. The results include the assessment of the hydropower potential of the system as well as its corresponding benefit, thus being of particular interest to long-term energy planning.

    Full text: http://www.itia.ntua.gr/en/getfile/1407/2/documents/2013Fragmata_Acheloos.pdf (1801 KB)

    Additional material:

    See also: http://dx.doi.org/10.13140/RG.2.1.1952.0244

  1. A. Efstratiadis, A. D. Koussis, S. Lykoudis, A. Koukouvinos, A. Christofides, G. Karavokiros, N. Kappos, N. Mamassis, and D. Koutsoyiannis, Hydrometeorological network for flood monitoring and modeling, Proceedings of First International Conference on Remote Sensing and Geoinformation of Environment, Paphos, Cyprus, 8795, 10-1–10-10, doi:10.1117/12.2028621, Society of Photo-Optical Instrumentation Engineers (SPIE), 2013.

    Due to its highly fragmented geomorphology, Greece comprises hundreds of small- to medium-size hydrological basins, in which often the terrain is fairly steep and the streamflow regime ephemeral. These are typically affected by flash floods, occasionally causing severe damages. Yet, the vast majority of them lack flow-gauging infrastructure providing systematic hydrometric data at fine time scales. This has obvious impacts on the quality and reliability of flood studies, which typically use simplistic approaches for ungauged basins that do not consider local peculiarities in sufficient detail. In order to provide a consistent framework for flood design and to ensure realistic predictions of the flood risk –a key issue of the 2007/60/EC Directive– it is essential to improve the monitoring infrastructures by taking advantage of modern technologies for remote control and data management. In this context and in the research project DEUCALION, we have recently installed and are operating, in four pilot river basins, a telemetry-based hydro-meteorological network that comprises automatic stations and is linked to and supported by relevant software. The hydrometric stations measure stage, using 50-kHz ultrasonic pulses or piezometric sensors, or both stage (piezometric) and velocity via acoustic Doppler radar; all measurements are being temperature-corrected. The meteorological stations record air temperature, pressure, relative humidity, wind speed and direction, and precipitation. Data transfer is made via GPRS or mobile telephony modems. The monitoring network is supported by a web-based application for storage, visualization and management of geographical and hydro-meteorological data (ENHYDRIS), a software tool for data analysis and processing (HYDROGNOMON), as well as an advanced model for flood simulation (HYDROGEIOS). The recorded hydro-meteorological observations are accessible over the Internet through the www-application. The system is operational and its functionality has been implemented as open-source software for use in a wide range of applications in the field of water resources monitoring and management, such as the demonstration case study outlined in this work.

    Additional material:

    See also: http://dx.doi.org/10.1117/12.2028621

  1. A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, A parametric model for potential evapotranspiration estimation based on a simplified formulation of the Penman-Monteith equation, Evapotranspiration - An Overview, edited by S. Alexandris, 143–165, doi:10.5772/52927, InTech, 2013.

    Full text: http://www.itia.ntua.gr/en/getfile/1284/1/documents/2013InTech_ParametricModelPET.pdf (819 KB)

    See also: http://dx.doi.org/10.5772/52927

    Other works that reference this work (this list might be obsolete):

    1. Samaras, D. A., A. Reif and K. Theodoropoulos, Evaluation of radiation-based reference evapotranspiration models under different Mediterranean climates in Central Greece, Water Resources Management, 28 (1), 207-225, 2014.
    2. Tabari, H., P. H. Talaee, P. Willems, and C. Martinez, Validation and calibration of solar radiation equations for estimating daily reference evapotranspiration at cool semi-arid and arid locations, Hydrological Sciences Journal, 61(3), 610-619, doi:10.1080/02626667.2014.947293, 2016.
    3. Jaber, H. S., S. Mansor, B. Pradhan, and N. Ahmad, Evaluation of SEBAL model for evapotranspiration mapping in Iraq using remote sensing and GIS, International Journal of Applied Engineering Research, 11(6), 3950-3955, 2016.
    4. Kumar, D., J. Adamowski, R. Suresh, and B. Ozga-Zielinski, Estimating evapotranspiration using an extreme learning machine model: case study in North Bihar, India, Journal of Irrigation and Drainage Engineering, 04016032, doi:10.1061/(ASCE)IR.1943-4774.0001044, 2016.
    5. Djaman, K., D. Rudnick, V. C. Mel, and D. Mutiibwa, Evaluation of Valiantzas’ simplified forms of the FAO-56 Penman-Monteith reference evapotranspiration model in a humid climate, Journal of Irrigation and Drainage Engineering, doi:10.1061/(ASCE)IR.1943-4774.0001191, 2017.

  1. D. Koutsoyiannis, N. Mamassis, A. Efstratiadis, N. Zarkadoulas, and Y. Markonis, Floods in Greece, Changes of Flood Risk in Europe, edited by Z. W. Kundzewicz, Chapter 12, 238–256, IAHS Press, Wallingford – International Association of Hydrological Sciences, 2012.

    The flood regime in Greece is investigated, from the early past to modern years. Large-scale floods, mainly due to deglaciation processes (also known as palaeofloods), together with earthquakes and volcanoes, are the major mechanisms that formed the current diverse Greek terrain. The influence of these impressive phenomena is reflected in some ancient myths, also reflecting earlier efforts of flood control and management. The struggle of humans against the destructive power of floods is further testified by several structures revealed by archaeological research. In modern times, the dramatic change of the demographic and socio-economic conditions made imperative the construction of large-scale water projects, which in turn resulted in large-scale environmental changes. The consequences of these practices, both positive and negative, are discussed, with regard to the problem of floods in Greece.

    Additional material:

    See also: http://www.routledge.com/books/details/9780203098097/

    Other works that reference this work (this list might be obsolete):

    1. #Kundzewicz, Z. W., Introduction, Changes of Flood Risk in Europe, IAHS-AISH Publication, (SPEC. ISS. 10), (ed. Z. W. Kundzewicz), 1-7, 2012.
    2. Mentzafou, A. and Dimitriou, E.: Flood risk assessment for a heavily modified urban stream, Proc. IAHS, 366, 147-148, 10.5194/piahs-366-147-2015, 2015.
    3. Karagiorgos, K., M. Heiser, T. Thaler, J. Hübl, and S. Fuchs, Micro-sized enterprises: vulnerability to flash floods, Natural Hazards, doi:10.1007/s11069-016-2476-9, 2016.

  1. C. Makropoulos, E. Safiolea, A. Efstratiadis, E. Oikonomidou, V. Kaffes, C. Papathanasiou, and M. Mimikou, Multi-reservoir management with Open-MI, Proceedings of the 11th International Conference on Environmental Science and Technology, Chania, A, 788–795, Department of Environmental Studies, University of the Aegean, 2009.

    The paper applies advanced integrated modeling techniques supported by the Open Modeling Interface (OpenMI) standard to optimize water resources allocation for a rapidly growing rural area in Greece. Water uses in a rural basin are significantly affected by urban growth, changes in agricultural practices and industrial needs. This results in a complex water system, whose optimal configuration requires the combination of structural and non-structural approaches. Furthermore, the reliable operation of the water system may be placed under significant stress due to increasing trends of extreme events associated with potential climatic changes which affect freshwater availability. To evaluate and improve the system’s operation, a series of specialized models need to be linked and exchange data at runtime. The approach presented in this paper, used OpenMI (an open source, royalty free standard) to facilitate the direct, timestep-by-timestep, communication of models from different providers, written in different coding languages, with different spatial and temporal resolutions. The models were “migrated” to OpenMI and were run simultaneously, linked (exchanging data) at nodes specified by the modeler. The resulting integrated modeling system is tested in the Thessaly Water District, Greece, where growing water demand has often become an issue of conflict between stakeholders. As an example of the type of problems typically faced in the region, a system of two reservoirs receiving flows from different subbassins is designed to satisfy the water demand of the study area. The principal reservoir, the Smokovo reservoir, is a real reservoir, currently in operation, situated on the confluence of two streams, tributaries of the Pinios river. Downstream of Smokovo reservoir, the river flow has to satisfy a series of needs such as ecological flows, increasing irrigation needs, increasing potable water demand of the local municipalities, and production of electricity. The second reservoir introduced in this study is the potential rehabilitation of the Lake Xyniada, as a means to improve the overall resilience of the water system to extreme events and possibly decrease the costs (ecological-economic) of water consumption in the area. The integrated modeling system comprises of three OpenMI-compliant model components: a reservoir model (RMM), a hydraulic model with supporting rainfall-runoff modules (MIKE-11) and a multi-reservoir operational rule component. The models were set-up, calibrated, and linked to exchange data at runtime using data provided by the Public Power Corporation and the Ministry of Environment. The modeling system was run under different operating rules to assess the reliability of the combined reservoir system and compare it with the one-reservoir existing solution against different stakeholder objectives. The paper suggests indicative solutions from the preliminary analysis and concludes with the identification of key future challenges and ideas for further development.

    Full text: http://www.itia.ntua.gr/en/getfile/932/1/documents/openMI_chania.pdf (451 KB)

    Other works that reference this work (this list might be obsolete):

    1. Fotopoulos, F., C. Makropoulos C., and M.A Mimikou, Flood forecasting in transboundary catchments using the Open Modeling Interface, Environmental Modelling and Software, 25(12), 1640-1649, 2010.
    2. #Moe, S. J., L. J. Barkved, M. Blind, C.. Makropoulos, M. Vurro, S. Ekstrand, J. Rocha, M. Mimikou, and M. J. Ulstein, How can climate change be incorporated in river basin management plans under the WFD? Report from the EurAqua Conference 2008, 27 p., Norwegian Institute for Water Research, 2010.

  1. A. Efstratiadis, and D. Koutsoyiannis, Fitting hydrological models on multiple responses using the multiobjective evolutionary annealing simplex approach, Practical hydroinformatics: Computational intelligence and technological developments in water applications, edited by R.J. Abrahart, L. M. See, and D. P. Solomatine, 259–273, doi:10.1007/978-3-540-79881-1_19, Springer, 2008.

    Most complex hydrological modelling schemes, when calibrated on a single observed response (e.g. river flow at a point), provide poor predictive capability, due to the fact that the rest of variables of basin response remain practically uncontrolled. Current advances in modelling point out that it is essential to take into account multiple fitting criteria, which correspond to different observed responses or to different aspects of the same response. This can be achieved through multiobjective calibration tools, thus providing a set of solutions rather than a single global optimum. Besides, actual multiobjective optimization methods are rather inefficient, when real-world problems with many criteria and many control variables are involved. In hydrological applications there are some additional issues, due to uncertainties related to the representation of complex processes and the observation errors. The multiobjective evolutionary annealing-simplex (MEAS) method implements an innovative scheme, particularly developed for the optimization of such problems. Its features and capabilities are illustrated by solving a challenging parameter estimation problem, dealing with hydrological modelling and water resources management in a karstic basin in Greece.

    See also: http://dx.doi.org/10.1007/978-3-540-79881-1_19

    Other works that reference this work (this list might be obsolete):

    1. #Solomatine, D. L.M. See and R.J. Abrahart, Data-driven modelling: concepts, approaches and experiences, Practical hydroinformatics , ed. by R.J. Abrahart, L. M. See, and D. P. Solomatine, 33-47, Springer, doi:10.1007/978-3-540-79881-1_2, 2008.
    2. Pollacco, J. A. P., and B. P. Mohanty, Uncertainties of water fluxes in SVAT models: inverting surface soil moisture and evapotranspiration retrieved from remote sensing, Vadose Zone Journal, 11(3), vzj2011.0167, 2012.
    3. Dumedah, G., Formulation of the evolutionary-based data assimilation and its implementation in hydrological forecasting, Water Resources Management, 26(13), 3853-3870, 2012.
    4. Dumedah, G., and P. Coulibaly, Evaluating forecasting performance for data assimilation methods: the Ensemble Kalman Filter, the Particle Filter, and the Evolutionary-based assimilation, Advances in Water Resources, 60, 47-63, 2013.
    5. Gharari, S., M. Hrachowitz, F. Fenicia, H. Gao, and H. H. G. Savenije, Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration, Hydrology and Earth System Sciences, 18, 4839-4859, doi:10.5194/hess-18-4839-2014, 2014.
    6. Ho, V.H., I. Kougias, and J.H. Kim, Reservoir operation using hybrid optimization algorithms, Global Nest Journal, 17 (1), 103-117, 2015.
    7. Tigkas, D., V. Christelis, and G. Tsakiris, Comparative study of evolutionary algorithms for the automatic calibration of the Medbasin-D conceptual hydrological model, Environmental Processes, doi:10.1007/s40710-016-0147-1, 2016.

  1. K. Hadjibiros, A. Katsiri, A. Andreadakis, D. Koutsoyiannis, A. Stamou, A. Christofides, A. Efstratiadis, and G.-F. Sargentis, Multi-criteria reservoir water management, Proceedings of the 9th International Conference on Environmental Science and Technology (9CEST), Rhodes, A, 535–543, Department of Environmental Studies, University of the Aegean, 2005.

    The Plastiras dam was constructed in the late 1950s mainly for electric power production, but it has also partially covered irrigation needs and water supply of the plain of Thessaly. Later, the site has been designated as an environment conservation zone because of ecological and landscape values, while tourist activities have been developed around the reservoir. Irrigation of agricultural land, hydroelectric production, drinkable water supply, tourism, lake water quality and scenery conservation have evidently been conflicting targets for many years. Good management would require a multi-criteria decision making. Historical data show that the irregular water release has resulted in a great annual fluctuation of the reservoir water level. This situation could be improved by a rational management of abstractions. Apparently, higher release leads simultaneously to more power production and to irrigation of a larger agricultural land. Moreover, demands for electricity and for irrigation are partially competing to each other, due to different optimal time schedules of releases. On the other hand, higher water release leads to lower water level in the reservoir and, therefore, it decreases the beauty of the scenery and deteriorates the trophic state of the lake. Such degradation affects the tourist potential as well as the quality of drinking water supplied by the reservoir. A multi-criteria approach uses different scenarios for the minimum permissible water level of the reservoir, if a constant annual release is applied. The minimum level concept is a simple and functional tool, because it is easily understood by people, certified and incorporated into regulations. The quantity of water that would be yearly available is a function of the minimum level allowed. The water quality depends upon the trophic state of the lake, mainly the concentration of chlorophyll-a, which determines the state of eutrophication and is estimated by water quality simulation models, taking into account pollutant loads such as nitrogen and phosphorus. The value of the landscape is much depending on the water level of the lake, because for lower levels a dead-zone appears between the surface of the water and the surrounding vegetation. When this dead zone is large, it seems lifeless and the lake appears partially empty. Quantification of this visual effect is not easy, but it is possible to establish a correspondence between the aesthetic assessment of the scenery and the minimum allowed reservoir level. Using results from hydrological analysis, water quality models and landscape evaluation, it seems possible to construct a multi-criterion table with different criteria described against alternatives and with a plot of three relative indices against the minimum level allowed. However, decision making has to take into account the fact that comparison or merging of indices corresponding to different criteria analysis encompasses a degree of arbitrariness. More objective decisions would be possible if different benefits and costs were measured in a common unit. Moreover, management will be sensitive to different social pressures.

    Related works:

    • [21] Posterior more complete version.

    Full text: http://www.itia.ntua.gr/en/getfile/682/1/documents/2005CestRhodesPlastiras.pdf (141 KB)

    Other works that reference this work (this list might be obsolete):

    1. Stamou, A.I., K. Hadjibiros, A. Andreadakis and A. Katsiri, Establishing minimum water level for Plastiras reservoir (Greece) combining water quality modelling with landscape aesthetics, Environmental Modeling and Assessment, 12(3), 157-170, 2007.
    2. #Sargentis G. F., V. Symeonidis, and N. Symeonidis, Rules and methods for the development of a prototype landscape (Almyro) in north Evia by the creation of a thematic park, Proceedings of the 12th International Conference on Environmental Science and Technology (CEST2011), Rhodes, Greece, 2011.

  1. D. Koutsoyiannis, and A. Efstratiadis, Experience from the development of decision support systems for the management of large-scale hydrosystems of Greece, Proceedings of the Workshop "Water Resources Studies in Cyprus", edited by E. Sidiropoulos and I. Iakovidis, Nikosia, 159–180, Water Development Department of Cyprus, Aristotle University of Thessaloniki, Thessaloniki, 2003.

    Decision support systems (DSS), in combination with human judgment and experience, may guide to rational decisions in a variety of ill-structured technological problems. Optimal management of water recourse systems constitutes a typical field for application of DSS. The complexity of the water resource management raises the need for a holistic approach, based on systems theory and making use of advanced mathematical techniques. The paper presents the experience gained in developing of DSS for the management of large-scale hydrosystems in Greece. Specifically, it describes the route to an integrated methodological framework, comprising innovative models for stochastic analysis, simulation and optimisation. This framework, which is progressively improved and evolved, has been recently implemented operationally for the support of the supervision and management of the exceptionally complex water supply system of Athens. In the near future, the generalisation and enhancement of the mathematical models and computer tools is scheduled, in order to make a comprehensive tool for the sustainable management of hydrosystems of a wide range of scales.

    Full text:

  1. I. Nalbantis, E. Rozos, G. M. T. Tentes, A. Efstratiadis, and D. Koutsoyiannis, Integrating groundwater models within a decision support system, Proceedings of the 5th International Conference of European Water Resources Association: "Water Resources Management in the Era of Transition", edited by G. Tsakiris, Athens, 279–286, European Water Resources Association, 2002.

    An attempt is made to integrate groundwater models within a decision support system (DSS) called Hydronomeas, which is designed to assist large multi-reservoir system (MRS) management. This will help managing conjunctive use schemes. The DSS is currently used for the water supply of Athens, Greece. The simulated system is the Boeoticos Kephisos River Basin and its underlying karst. The karst supplies irrigation water locally as well as drinking water to Athens. Furthermore, the basin's surface outflows account for most of the inflow into Lake Yliki, one of the three main reservoirs of the Athens MRS. Three models of different levels of complexity are tested. The first model is a multi-cell model that simulates surface flows within the basin coupled to subsurface flows. The second model is a conceptually-based lumped model while the third model is a pre-existing distributed groundwater model based on the MODFLOW package. Tests with various management scenarios allow drawing conclusions regarding model efficiency and suitability for use within a DSS.

    Remarks:

    Full text:

    Other works that reference this work (this list might be obsolete):

    1. #Dentinho, T.P., R. Minciardi, M. Robba, R. Sacile & V. Silva, Impacts of agriculture and dairy farming on groundwater quality: an optimization problem. In: Voinov, A. et al. (eds.), Proceedings of the iEMSs 3rd Biennial Meeting, Burlington, USA, 2006.
    2. #Giupponi, C., Sustainable Management of Water Resources: An Integrated Approach, 361 pages, Edward Elgar Publishing (ISBN 1845427459), 2006.
    3. #Barlebo, H.C. (ed.), State-of-the-art report with users’ requirements for new IWRM tools, NeWater, www.newater.info, 2006.
    4. #Dentinho, T. et al, The architecture of a decision support system (DSS) for groundwater quality preservation in Terceira Island (Azores), Integrated Water Management: Practical Experiences and Case Studies, P. Meire et al. (eds.), Springer, 2007.
    5. #Lowry, T. S., S. A. Pierce, V. C. Tidwell, and W. O. Cain, Merging spatially variant physical process models under an optimized systems dynamics framework, Technical Report, Sandia National Laboratories, 67 p., 2007.
    6. Bandani, E. and M. A. Moghadam, Application of groundwater mathematical model for assessing the effects of Galoogah dam on the Shooro aquifer, Iran, European Journal of Scientific Research, 54 (4), 499-511, 2011.
    7. Golchin, I., M. A. Moghaddam and N. Asadi, Numerical study of groundwater flow in Iranshahr plain aquifer, Iran, Middle-East Journal of Scientific Research, 8 (5), 975-983, 2011.
    8. #Minciardi, R., M. Robba, and R. Sacile, Environmental Decision Support Systems for soil pollution control and prevention, Soil Remediation, L. Aachen and P. Eichmann (eds.), Chapter 2, 45-85, Nova Science Publishers, 2011.
    9. #Pierce, S. a., J. M. Sharp Jr, and D. J. Eaton, Decision support systems and processes for groundwater, Integrated Groundwater Management: Concepts, Approaches and Challenges, A. J. Jakeman, O. Barreteau, R. J. Hunt, J.-D. Rinaudo, A. Ross (editors), 639-665, Springer, doi:10.1007/978-3-319-23576-9_25, 2016.

  1. K. Hadjibiros, D. Koutsoyiannis, A. Katsiri, A. Stamou, A. Andreadakis, G.-F. Sargentis, A. Christofides, A. Efstratiadis, and A. Valassopoulos, Management of water quality of the Plastiras reservoir, 4th International Conference on Reservoir Limnology and Water Quality, Ceske Budejovice, Czech Republic, doi:10.13140/RG.2.1.4872.4723, 2002.

    The problems associated with establishing a "safe" minimum level for a reservoir serving multiple and conflicting purposes (hydroelectric power generation, water supply, irrigation and recreation) are discussed. A comprehensive approach of the problem considers three different criteria. The first criterion is water quantity. Available long-term reservoir inflow data are analyzed to establish 'sustainable" water inputs in relation to demands that have to be satisfied. The second criterion is ecology and landscape and considers how fluctuations of the reservoir level affect the lake banks vegetation. It discusses the implications to aesthetic, touristic and beneficial uses. The third criterion is water quality and considers how the fluctuations in lake volume affect the chemical and biological status of the lake. For this purpose a one-dimensional eutrophication model was used. The minimum water level is established from the synthesis of the above, using a multi-criteria analysis.

    Remarks:

    Full text: http://www.itia.ntua.gr/en/getfile/546/1/documents/2002TsehiaPlastiras.pdf (241 KB)

    See also: http://dx.doi.org/10.13140/RG.2.1.4872.4723

    Other works that reference this work (this list might be obsolete):

    1. #Spanoudaki, K., and A. Stamou, The prospects of developing integrated ecological models for the needs of the WFD 2000/60, Proceedings of the International Conference for the Restoration and Protection of the Environment V, Mykonos, 2004.
    2. #Stamou, A. I., K. Nanou-Giannarou, and K. Spanoudaki, Best modeling practices in the application of the Directive 2000/60 in Greece, Proc. 3rd IASME/WSEAS Int. Conf. on Energy, Environment, Ecosystems and Sustainable Development, 388-397, 2007.
    3. Stamou, A.I., K. Hadjibiros, A. Andreadakis, and A. Katsiri, Establishing minimum water level for Plastiras reservoir (Greece) combining water quality modelling with landscape aesthetics, Environmental Modeling and Assessment, 12(3), 157-170, 2007.

  1. A. Efstratiadis, and D. Koutsoyiannis, An evolutionary annealing-simplex algorithm for global optimisation of water resource systems, Proceedings of the Fifth International Conference on Hydroinformatics, Cardiff, UK, 1423–1428, doi:10.13140/RG.2.1.1038.6162, International Water Association, 2002.

    The evolutionary annealing-simplex algorithm is a probabilistic heuristic global optimisation technique that joins ideas from different methodological approaches, enhancing them with some original elements. The main concept is based on a controlled random search scheme, where a generalised downhill simplex methodology is coupled with a simulated annealing procedure. The algorithm combines the robustness of simulated annealing in rugged problems, with the efficiency of hill-climbing methods in simple search spaces. The following-up procedure is based on a simplex-searching scheme. The simplex is reformulated at each generation going either downhill or uphill, according to a probabilistic criterion. In the first case, it moves towards the direction of a candidate local minimum via a generalised Nelder-Mead strategy. In the second case, it expands itself along the uphill direction, in order to escape from the current local minimum. In all possible movements, a combination of deterministic as well as stochastic transition rules is applied. The evolutionary annealing-simplex algorithm was first examined in a variety of typical benchmark functions and then it was applied in two global optimisation problems taken from water resources engineering, the calibration of a hydrological model and the optimisation of a multiple reservoir systems' operation. The algorithm has been proved very reliable in locating the global optimum, requiring reasonable computational effort.

    Remarks:

    Web page of optimization algorithms: http://itia.ntua.gr/en/softinfo/29/

    Related works:

    • [157] Development of the method within the master thesis of the first author.
    • [156] Improved version for single- and multiobjective optimization problems within the PhD thesis of the first author.

    Full text:

    Additional material:

    See also: http://dx.doi.org/10.13140/RG.2.1.1038.6162

    Works that cite this document: View on Google Scholar or ResearchGate

    Other works that reference this work (this list might be obsolete):

    1. #El Mouatasim, A., and R. Ellaia, RPRGM approach for optimize the cost of electric energy of drinking water complex, JANO8 2005: 8emes Journees d’Analyse Numerique et Optimisation, 327-331, Rabat-Morocco, 2005.
    2. Machado, E. S., M., da Conceição Cunha, and M. Porto, Otimização de sistemas regionais de sistemas de tratamento de efluentes e seu impacto na qualidade da água: uma revisão, Revista de Gestao de Agua da America Latina, 3(1), 57-71, 2006.
    3. #Burton, A., H. Fowler, C. Kilsby, and M. Marani, Investigation of intensity and spatial representations of rainfall within stochastic rainfall model, AquaTerra: Integrated modelling of the river-sediment-soil-groundwater system; advanced tools for the management of catchment areas and river basins in the context of global change, Deliverable H1.8, 57 pp., 2007.
    4. Bruen, M., Systems analysis – a new paradigm and decision support tools for the water framework directive, Hydrology and Earth System Sciences, 12(3), 739-749, 2008.
    5. #Martins, J. C., and L. A. Sousa, Bioelectronic Vision: Retina Models, Evaluation Metrics and System Design, Series on Bioengineering and Biomedical Engineering, Vol. 3, 272 p., Singapore, 2009.
    6. Kourakos, G., and A. Mantoglou, Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models, Advances in Water Resources, 32(4), 507-521, 2009.
    7. Martins, J., P. Tomás, and L. Sousa, Neural code metrics: Analysis and application to the assessment of neural models, Neurocomputing, 72(10-12), 2337-2350, 2009.
    8. #Dakhlaoui, H., Z. Bargaoui and A. Bàrdossy, Comparison of three methods using the κ-nearest neighbours approach to improve the SCE-UA algorithm for calibration of the HBV rainfall-runoff model, IAHS Publication 331, 139-153, 2009.
    9. Nicklow, J., P. Reed, D. Savic, T. Dessalegne, L. Harrell, A. Chan-Hilton, M. Karamouz, B. Minsker, A. Ostfeld, A. Singh, and E. Zechman, State of the art for genetic algorithms and beyond in water resources planning and management, Journal of Water Resources Planning and Management, 136(4), 412-432, 2010.
    10. Tudorache, T., and V. Bostan, Wind generators test bench. Optimal design of PI controller, Advances in Electrical and Computer Engineering, 11(3), 65-70, 2011.
    11. #SIRRIMED (Sustainable use of irrigation water in the Mediterranean Region), D4.2 and D5.2 Report on Models to be Implemented in the District Information Systems (DIS) and Watershed Information Systems (WIS), 95 pp., Universidad Politécnica de Cartagena, 2011.
    12. Dong, Y., S. Mihalas, A. Russell, R. Etienne-Cummings, and E. Niebur, Estimating parameters of generalized integrate-and-fire neurons from the maximum likelihood of spike trains, Neural Computation, 23(11), 2833-2867, 2011.
    13. Dakhlaoui, H., Z. Bargaoui, and A. Bàrdossy, Toward a more efficient calibration schema for HBV rainfall-runoff model, Journal of Hydrology, 444-445, 161-179, 2012.
    14. Musharavati, F., A neural network approach for integrated water resource management, International Journal of Biological, Ecological and Environmental Sciences, 1(3), 64–71, 2012.
    15. Dong, Y., S. Mihalas, S. S. Kim, T. Yoshioka, S. J. Bensmaia and E. Niebur, A simple model of mechanotransduction in primate glabrous skin, Journal of Neurophysiology, 109 (5), 1350-1359, 2013.
    16. Kourakos, G., and A. Mantoglou, Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management, Journal of Hydrology, 479, 13-23, 2013.
    17. #Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers using radial basis function metamodels, Proceedings of 9th World Congress EWRA “Water Resources Management in a Changing World: Challenges and Opportunities”, Istanbul, 2015.
    18. Villani, V., D. Di Serafino, G., Rianna, and P. Mercogliano, Stochastic models for the disaggregation of precipitation time series on sub-daily scale: identification of parameters by global optimization, CMCC Research Paper, RP0256, 2015.
    19. Christelis, V., and A. Mantoglou, Coastal aquifer management based on the joint use of density-dependent and sharp interface models, Water Resources Management, 30(2), 861-876, doi:10.1007/s11269-015-1195-4, 2016.
    20. Tigkas, D., V. Christelis, and G. Tsakiris, Comparative study of evolutionary algorithms for the automatic calibration of the Medbasin-D conceptual hydrological model, Environmental Processes, doi:10.1007/s40710-016-0147-1, 2016.
    21. Dounia, M., D. Yassine, and H. Yahia, Calibrating conceptual rainfall runoff models using artificial intelligence, Journal of Environmental Science and Technology, 9, 257-267, doi:10.3923/jest.2016.257.267, 2016.
    22. Charizopoulos, N., and A. Psilovikos, Hydrologic processes simulation using the conceptual model Zygos: the example of Xynias drained Lake catchment (central Greece), Environmental Earth Sciences, 75:777, doi:10.1007/s12665-016-5565-x, 2016.
    23. Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers assisted by adaptive metamodelling methods and radial basis functions, Water Resources Management, 30(15), 5845–5859, doi:10.1007/s11269-016-1337-3, 2016.
    24. #Christelis, V., V. Bellos, and G. Tsakiris, Employing surrogate modelling for the calibration of a 2D flood simulation model, Sustainable Hydraulics in the Era of Global Change: Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016), A. S. Erpicum, M. Pirotton, B. Dewals, P. Archambeau (editors), CRC Press, 2016.
    25. Ciervo, F., G. Rianna, P. Mercogliano, and M. N. Papa, Effects of climate change on shallow landslides in a small coastal catchment in southern Italy, Landslides, doi:10.1007/s10346-016-0743-1, 2016.

  1. G. Karavokiros, A. Efstratiadis, and D. Koutsoyiannis, Determining management scenarios for the water resource system of Athens, Proceedings, Hydrorama 2002, 3rd International Forum on Integrated Water Management, 175–181, doi:10.13140/RG.2.1.3135.7684, Water Supply and Sewerage Company of Athens, Athens, 2002.

    The development process of scenarios used within a decision support system for water resources management is discussed, based on the case of the Athens water resource system. In particular, the schematisation process of the real world hydrosystem into a model representation is analysed, as well as further information consisting a scenario, including hydrological and water demand conditions, operational constraints, targets and their priorities, management objectives, and methodological assumptions used in decision making, is discussed

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.1.3135.7684

  1. D. Koutsoyiannis, A. Efstratiadis, and G. Karavokiros, A decision support tool for the management of multi-reservoir systems, Proceedings of the Integrated Decision-Making for Watershed Management Symposium, Chevy Chase, Maryland, doi:10.13140/RG.2.1.3528.9848, US Environmental Protection Agency, Duke Power, Virginia Tech, 2001.

    A decision support tool is developed for the management of water resources, focusing on multipurpose reservoir systems. This software tool has been designed in such a way that it can be suitable to hydrosystems with multiple and very often contradictory water uses and operating goals, calculating complex multi-reservoir systems as a whole. The mathematical framework is based on the original scheme parameterization-simulation-optimization. The main idea consists of a parametric formulation of the operating rules for reservoirs and other projects (i.e. hydropower plants). This methodology enables the decrease of the decision variables, making feasible the location of the optimal management policy, which maximizes the system yield and the overall operational benefit and minimizes the risk for the management decisions. The program was developed using advanced software engineering techniques. As proved two detailed case studies, it is flexible enough and thus suitable for use to a wide range of applications, so it can be helpful to water and power supply companies and related authorities.

    Related works:

    • [26] Posterior more complete version.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.1.3528.9848

    Other works that reference this work (this list might be obsolete):

    1. #Xenos, D., C. Karopoulos and E. Parlis, Modern confrontation of the management of Athens' water supply system, Proc. 7th Conference on Environmental Science and Technology, Syros, Greece, 952-958, 2001.
    2. #Zeitoun, D. G., and A. J. Mellout, Decision support systems based on automatic water balance computation for groundwater management planning – The case of Israel’s coastal aquifer, Geoinformatics for Natural Resource Management, Joshi, P. K., P. Pani, S. N. Mohapartra, and T. P. Singh (eds.), Ch. 7, 634 pp., Nova Science Publishers Inc., New York, 2009.

  1. A. Efstratiadis, N. Zervos, G. Karavokiros, and D. Koutsoyiannis, The Hydronomeas computational system and its application to the simulation of reservoir systems, Water resources management in sensitive regions of Greece, Proceedings of the 4th Conference, edited by G. Tsakiris, A. Stamou, and J. Mylopoulos, Volos, 36–43, doi:10.13140/RG.2.1.4053.2724, Greek Committee for the Water Resources Management, 1999.

    Optimisation of a multiple-reservoir system becomes increasingly complex when conflicting water uses exist, such as water supply, irrigation, hydroelectric power generation etc. Hydronomeas is a software tool, suitable for simulating and conducting a search for the optimum water resources management policy of a multi-purpose hydrosystem. The mathematical model is based on recent introduction and theoretical development of parametric rules for operation of multiple-reservoir systems. Software implementation was such performed that the model can be easily applied to a wide range of hydrosystems and that representation will be as realistic as possible, incorporating all natural, operational, environmental and other restrictions. Hydronomeas consists of several subsystems, including operational simulation, optimisation and visualisation. The first two cope with goals concerning both consumptive and energy-oriented water uses. Hydronomeas has been applied on the hydrosystem comprising all existing and under construction projects of the Acheloos river, its planned diversion and the related projects in Thessalia.

    Related works:

    • [45] Μεταγενέστερη και πληρέστερη εργασία που αναφέρεται στην έκδοση 2 του λογισμικού, η οποία βασίζεται σε πιο προχωρημένη μεθοδολογία βελτιστοποίησης.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.1.4053.2724

Conference publications and presentations with evaluation of abstract

  1. V. Daniil, G. Pouliasis, E. Zacharopoulou, E. Demetriou, G. Manou, M. Chalakatevaki, I. Parara, C. Georganta, P. Stamou, S. Karali, E. Hadjimitsis, G. Koudouris, E. Moschos, D. Roussis, K. Papoulakos, A. Koskinas, G. Pollakis, N. Gournari, K. Sakellari, Y. Moustakis, N. Mamassis, A. Efstratiadis, H. Tyralis, P. Dimitriadis, T. Iliopoulou, G. Karakatsanis, K. Tzouka, E. Deligiannis, V. Tsoukala, P. Papanicolaou, and D. Koutsoyiannis, The uncertainty of atmospheric processes in planning a hybrid renewable energy system for a non-connected island, European Geosciences Union General Assembly 2017, Geophysical Research Abstracts, Vol. 19, Vienna, EGU2017-16781-4, doi:10.13140/RG.2.2.29610.62406, European Geosciences Union, 2017.

    Non-connected islands to the electric gird are often depending on oil-fueled power plants with high unit cost. A hybrid energy system with renewable resources such as wind and solar plants could reduce this cost and also offer more environmental friendly solutions. However, atmospheric processes are characterized by high uncertainty that does not permit harvesting and utilizing full of their potential. Therefore, a more sophisticated framework that somehow incorporates this uncertainty could improve the performance of the system. In this context, we describe several stochastic and financial aspects of this framework. Particularly, we investigate the cross-correlation between several atmospheric processes and the energy demand, the possibility of mixing renewable resources with the conventional ones and in what degree of reliability, and critical financial subsystems such as weather derivatives. A pilot application of the above framework is also presented for a remote island in the Aegean Sea.

    Full text: http://www.itia.ntua.gr/en/getfile/1689/1/documents/EGU2017oral_16781_final.pdf (3038 KB)

    Additional material:

  1. K. Papoulakos, G. Pollakis, Y. Moustakis, A. Markopoulos, T. Iliopoulou, P. Dimitriadis, D. Koutsoyiannis, and A. Efstratiadis, Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability, European Geosciences Union General Assembly 2017, Geophysical Research Abstracts, Vol. 19, Vienna, 19, EGU2017-10334-4, European Geosciences Union, 2017.

    Small islands are regarded as promising areas for developing hybrid water-energy systems that combine multiple sources of renewable energy with pumped-storage facilities. Essential element of such systems is the water storage component (reservoir), which implements both flow and energy regulations. Apparently, the representation of the overall water-energy management problem requires the simulation of the operation of the reservoir system, which in turn requires a faithful estimation of water inflows and demands of water and energy. Yet, in small-scale reservoir systems, this task in far from straightforward, since both the availability and accuracy of associated information is generally very poor. For, in contrast to large-scale reservoir systems, for which it is quite easy to find systematic and reliable hydrological data, in the case of small systems such data may be minor or even totally missing. The stochastic approach is the unique means to account for input data uncertainties within the combined water-energy management problem. Using as example the Livadi reservoir, which is the pumped storage component of the small Aegean island of Astypalaia, Greece, we provide a simulation framework, comprising: (a) a stochastic model for generating synthetic rainfall and temperature time series; (b) a stochastic rainfall-runoff model, whose parameters cannot be inferred through calibration and, thus, they are represented as correlated random variables; (c) a stochastic model for estimating water supply and irrigation demands, based on simulated temperature and soil moisture, and (d) a daily operation model of the reservoir system, providing stochastic forecasts of water and energy outflows.

    Full text: http://www.itia.ntua.gr/en/getfile/1682/2/documents/2017_EGU_RRproject_final.pdf (2019 KB)

    Additional material:

  1. E. Michaelidi, S. Antoniadi, A. Koukouvinos, B. Bacchi, and A. Efstratiadis, Adaptation of the concept of varying time of concentration within flood modelling: Theoretical and empirical investigations across the Mediterranean, European Geosciences Union General Assembly 2017, Geophysical Research Abstracts, Vol. 19, Vienna, 19, EGU2017-10663-1, European Geosciences Union, 2017.

    The time of concentration, tc, is a key hydrological concept and often is an essential parameter of rainfall-runoff modelling, which has been traditionally tackled as a characteristic property of the river basin. However, both theoretical proof and empirical evidence imply that tc is a hydraulic quantity that depends on flow, and thus it should be considered as variable and not as constant parameter. Using a kinematic method approach, easily implemented in GIS environment, we first illustrate that the relationship between tc and the effective rainfall produced over the catchment is well-approximated by a power-type law, the exponent of which is associated with the slope of the longest flow path of the river basin. Next, we take advantage of this relationship to adapt the concept of varying time of concentration within flood modelling, and particularly the well-known SCS-CN approach. In this context, the initial abstraction ratio is also considered varying, while the propagation of the effective rainfall is employed through a parametric unit hydrograph, the shape of which is dynamically adjusted according to the runoff produced during the flood event. The above framework is tested in a number of Mediterranean river basins in Greece, Italy and Cyprus, ensuring faithful representation of most of the observed flood events. Based on the outcomes of this extended analysis, we provide guidance for employing this methodology for flood design studies in ungauged basins.

    Full text: http://www.itia.ntua.gr/en/getfile/1681/2/documents/2017_EGU_TcPosterA0_1_1.pdf (899 KB)

    Additional material:

  1. Y. Moustakis, P. Kossieris, I. Tsoukalas, and A. Efstratiadis, Quasi-continuous stochastic simulation framework for flood modelling, European Geosciences Union General Assembly 2017, Geophysical Research Abstracts, Vol. 19, Vienna, 19, EGU2017-534, European Geosciences Union, 2017.

    Typically, flood modelling in the context of everyday engineering practices is addressed through event-based deterministic tools, e.g., the well-known SCS-CN method. A major shortcoming of such approaches is the ignorance of uncertainty, which is associated with the variability of soil moisture conditions and the variability of rainfall during the storm event. In event-based modeling, the sole expression of uncertainty is the return period of the design storm, which is assumed to represent the acceptable risk of all output quantities (flood volume, peak discharge, etc.). On the other hand, the varying antecedent soil moisture conditions across the basin are represented by means of scenarios (e.g., the three AMC types by SCS), while the temporal distribution of rainfall is represented through standard deterministic patterns (e.g., the alternative blocks method). In order to address these major inconsistencies,simultaneously preserving the simplicity and parsimony of the SCS-CN method, we have developed a quasi-continuous stochastic simulation approach, comprising the following steps: (1) generation of synthetic daily rainfall time series; (2) update of potential maximum soil moisture retention, on the basis of accumulated five-day rainfall; (3) estimation of daily runoff through the SCS-CN formula, using as inputs the daily rainfall and the updated value of soil moisture retention;(4) selection of extreme events and application of the standard SCS-CN procedure for each specific event, on the basis of synthetic rainfall. This scheme requires the use of two stochastic modelling components, namely the CastaliaR model, for the generation of synthetic daily data, and the HyetosMinute model, for the disaggregation of daily rainfall to finer temporal scales. Outcomes of this approach are a large number of synthetic flood events, allowing for expressing the design variables in statistical terms and thus properly evaluating the flood risk.

    Full text: http://www.itia.ntua.gr/en/getfile/1680/2/documents/FINAL_Moustakis_EGU2017.pdf (1492 KB)

    Additional material:

  1. T. Vergou, A. Efstratiadis, and D. Dermatas, Water balance model for evaluation of landfill malfunction due to leakage, 13th International Conference on Protection and Restoration of the Environment, Mykonos, 2016.

    We present a conceptual model that aims to represent the main hydrological processes in a landfill, taking into account its dynamic evolution. The model is employed in a real-world case study, involving the operation of the landfill of Mavrorachi, Northern Greece, for a two-year period. The landfill exhibits several environmental problems due to significant leakage production, which often exceeds the capacity of treatment works, as well as lateral outflows. By simulating the entire water cycle over the landfill basin, we attempt to recognize the major sources of failure and propose management measures to mitigate the current environmental impacts.

    Full text: http://www.itia.ntua.gr/en/getfile/1646/1/documents/Presentation_Mykonos_v3.pdf (2214 KB)

    Additional material:

    See also: http://pre13.civil.auth.gr/ocs/index.php/PRE/pre13/paper/view/439

  1. M. Giglioni, A. Efstratiadis, F. Lombardo, F. Napolitano, and F. Russo, Comparative assessment of different drought indices across the Mediterranean, European Geosciences Union General Assembly 2016, Geophysical Research Abstracts, Vol. 18, Vienna, EGU2016-18537, European Geosciences Union, 2016.

    Droughts have become one of the most challenging issues in hydrological sciences due to their major socioeconomic impacts all over the world. In the context of the everyday water resources management practice, the identification and evaluation of droughts are mainly based on simplified indices, which are estimated through easily accessible information. In this work, we employ several meteorological indices, i.e. Standardized Precipitation Index (SPI), Standardized Precipitation and Evapotranspiration Index (SPEI), Reconnaissance Drought Index (RDI), Palmer Drought Z Index, and Palmer Drought Severity Index (PDSI), in order to evaluate the severity and duration of the observed drought events. The main purpose of this study is to underline the difference in the onset time of drought, the distance between events, and the discrepancies in the magnitude assessment for the same event. Various temporal aggregation scales, from one month to one year, have been considered in order to investigate the impacts of the adopted time scale on the drought characteristics. Our analysis focuses to the Mediterranean region, using data from Southern Italy and Greece.

    Full text: http://www.itia.ntua.gr/en/getfile/1610/1/documents/EGU2016-18537.pdf (31 KB)

  1. Ο. Daskalou, M. Karanastasi, Y. Markonis, P. Dimitriadis, A. Koukouvinos, A. Efstratiadis, and D. Koutsoyiannis, GIS-based approach for optimal siting and sizing of renewables considering techno-environmental constraints and the stochastic nature of meteorological inputs, European Geosciences Union General Assembly 2016, Geophysical Research Abstracts, Vol. 18, Vienna, EGU2016-12044-1, doi:10.13140/RG.2.2.19535.48803, European Geosciences Union, 2016.

    Following the legislative EU targets and taking advantage of its high renewable energy potential, Greece can obtain significant benefits from developing its water, solar and wind energy resources. In this context we present a GIS-based methodology for the optimal sizing and siting of solar and wind energy systems at the regional scale, which is tested in the Prefecture of Thessaly. First, we assess the wind and solar potential, taking into account the stochastic nature of the associated meteorological processes (i.e. wind speed and solar radiation, respectively), which is essential component for both planning (i.e. type selection and sizing of photovoltaic panels and wind turbines) and management purposes (i.e. real-time operation of the system). For the optimal siting, we assess the efficiency and economic performance of the energy system, also accounting for a number of constraints, associated with topographic limitations (e.g., terrain slope, proximity to road and electricity grid network, etc.), the environmental legislation and other land use constraints. Based on this analysis, we investigate favorable alternatives using technical, environmental as well as financial criteria. The final outcome is GIS maps that depict the available energy potential and the optimal layout for photovoltaic panels and wind turbines over the study area. We also consider a hypothetical scenario of future development of the study area, in which we assume the combined operation of the above renewables with major hydroelectric dams and pumped-storage facilities, thus providing a unique hybrid renewable system, extended at the regional scale.

    Full text: http://www.itia.ntua.gr/en/getfile/1609/2/documents/2016EGU_RenewablesOptLocation.pdf (1719 KB)

    Additional material:

    See also: http://dx.doi.org/10.13140/RG.2.2.19535.48803

  1. A. Efstratiadis, S.M. Papalexiou, Y. Markonis, A. Koukouvinos, L. Vasiliades, G. Papaioannou, and A. Loukas, Flood risk assessment at the regional scale: Computational challenges and the monster of uncertainty, European Geosciences Union General Assembly 2016, Geophysical Research Abstracts, Vol. 18, Vienna, EGU2016-12218, European Geosciences Union, 2016.

    We present a methodological framework for flood risk assessment at the regional scale, developed within the implementation of the EU Directive 2007/60 in Greece. This comprises three phases: (a) statistical analysis of extreme rainfall data, resulting to spatially-distributed parameters of intensity-duration-frequency (IDF) relationships and their confidence intervals, (b) hydrological simulations, using event-based semi-distributed rainfall-runoff approaches, and (c) hydraulic simulations, employing the propagation of flood hydrographs across the river network and the mapping of inundated areas. The flood risk assessment procedure is employed over the River Basin District of Thessaly, Greece, which requires schematization and modelling of hundreds of sub-catchments, each one examined for several risk scenarios. This is a challenging task, involving multiple computational issues to handle, such as the organization, control and processing of huge amount of hydrometeorological and geographical data, the configuration of model inputs and outputs, and the co-operation of several software tools. In this context, we have developed supporting applications allowing massive data processing and effective model coupling, thus drastically reducing the need for manual interventions and, consequently, the time of the study. Within flood risk computations we also account for three major sources of uncertainty, in an attempt to provide upper and lower confidence bounds of flood maps, i.e. (a) statistical uncertainty of IDF curves, (b) structural uncertainty of hydrological models, due to varying anteceded soil moisture conditions, and (c) parameter uncertainty of hydraulic models, with emphasis to roughness coefficients. Our investigations indicate that the combined effect of the above uncertainties (which are certainly not the unique ones) result to extremely large bounds of potential inundation, thus rising many questions about the interpretation and usefulness of current flood risk assessment practices.

    Full text: http://www.itia.ntua.gr/en/getfile/1608/2/documents/2016_EGU_FloodPoster.pdf (3293 KB)

    Additional material:

  1. P. Kossieris, A. Efstratiadis, I. Tsoukalas, and D. Koutsoyiannis, Assessing the performance of Bartlett-Lewis model on the simulation of Athens rainfall, European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-8983, doi:10.13140/RG.2.2.14371.25120, European Geosciences Union, 2015.

    Many hydrological applications require the use of long rainfall data across a wide range of fine time scales. To meet this necessity, stochastic approaches are usually employed for the generation of large number of rainfall events, following a Monte Carlo approach. In this framework, Bartlett-Lewis model (BL) is a key representative from the family of Poisson-cluster stochastic processes. Here, we examine the performance of three different versions of BL model, with number of parameters varying from 5 up to 7, in representing the characteristics of convective and frontal rainfall of Athens (Greece). Apart from the typical statistical characteristics that are explicitly preserved by the stochastic model (mean, variance, lag-1 autocorrelation, probability dry), we also attempt to preserve the statistical distribution of annual rainfall maxima, as well as two important temporal properties of the observed storm events, i.e. the duration of storms and the time distance between subsequent events. This task is not straightforward, given that these characteristics are not described in the theoretical equations of the model, but they should be empirically evaluated on the basis of synthetic data. The analysis is conducted on monthly basis and for multiple time scales, i.e. from hourly to daily. Further to that, we focus on the formulation of the calibration problem, by assessing the performance of the BL model against issues such as choice of statistics to preserve, time scales, distance metrics, etc.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.14371.25120

  1. E. Rozos, D. Nikolopoulos, A. Efstratiadis, A. Koukouvinos, and C. Makropoulos, Flow based vs. demand based energy-water modelling, European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-6528, European Geosciences Union, 2015.

    The water flow in hydro-power generation systems is often used downstream to cover other type of demands like irrigation and water supply. However, the typical case is that the energy demand (operation of hydro-power plant) and the water demand do not coincide. Furthermore, the water inflow into a reservoir is a stochastic process. Things become more complicated if renewable resources (wind-turbines or photovoltaic panels) are included into the system. For this reason, the assessment and optimization of the operation of hydro-power systems are challenging tasks that require computer modelling. This modelling should not only simulate the water budget of the reservoirs and the energy production/ consumption (pumped-storage), but should also take into account the constraints imposed by the natural or artificial water network using a flow routing algorithm. HYDRONOMEAS, for example, uses an elegant mathematical approach (digraph) to calculate the flow in a water network based on: the demands (input timeseries), the water availability (simulated) and the capacity of the transmission components (properties of channels, rivers, pipes, etc.). The input timeseries of demand should be estimated by another model and linked to the corresponding network nodes. A model that could be used to estimate these timeseries is UWOT. UWOT is a bottom up urban water cycle model that simulates the generation, aggregation and routing of water demand signals. In this study, we explore the potentials of UWOT in simulating the operation of complex hydrosystems that include energy generation. The evident advantage of this approach is the use of a single model instead of one for estimation of demands and another for the system simulation. An application of UWOT in a large scale system is attempted in mainland Greece in an area extending over 130x170 km2. The challenges, the peculiarities and the advantages of this approach are examined and critically discussed.

    Full text: http://www.itia.ntua.gr/en/getfile/1525/2/documents/Poster_UWOT.pdf (307 KB)

    Additional material:

  1. A. Koukouvinos, D. Nikolopoulos, A. Efstratiadis, A. Tegos, E. Rozos, S.M. Papalexiou, P. Dimitriadis, Y. Markonis, P. Kossieris, H. Tyralis, G. Karakatsanis, K. Tzouka, A. Christofides, G. Karavokiros, A. Siskos, N. Mamassis, and D. Koutsoyiannis, Integrated water and renewable energy management: the Acheloos-Peneios region case study, European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-4912, doi:10.13140/RG.2.2.17726.69440, European Geosciences Union, 2015.

    Within the ongoing research project “Combined Renewable Systems for Sustainable Energy Development” (CRESSENDO), we have developed a novel stochastic simulation framework for optimal planning and management of large-scale hybrid renewable energy systems, in which hydropower plays the dominant role. The methodology and associated computer tools are tested in two major adjacent river basins in Greece (Acheloos, Peneios) extending over 15 500 km2 (12% of Greek territory). River Acheloos is characterized by very high runoff and holds ~40% of the installed hydropower capacity of Greece. On the other hand, the Thessaly plain drained by Peneios – a key agricultural region for the national economy – usually suffers from water scarcity and systematic environmental degradation. The two basins are interconnected through diversion projects, existing and planned, thus formulating a unique large-scale hydrosystem whose future has been the subject of a great controversy. The study area is viewed as a hypothetically closed, energy-autonomous, system, in order to evaluate the perspectives for sustainable development of its water and energy resources. In this context we seek an efficient configuration of the necessary hydraulic and renewable energy projects through integrated modelling of the water and energy balance. We investigate several scenarios of energy demand for domestic, industrial and agricultural use, assuming that part of the demand is fulfilled via wind and solar energy, while the excess or deficit of energy is regulated through large hydroelectric works that are equipped with pumping storage facilities. The overall goal is to examine under which conditions a fully renewable energy system can be technically and economically viable for such large spatial scale.

    Full text:

    Additional material:

    See also: http://dx.doi.org/10.13140/RG.2.2.17726.69440

  1. A. Efstratiadis, I. Tsoukalas, P. Kossieris, G. Karavokiros, A. Christofides, A. Siskos, N. Mamassis, and D. Koutsoyiannis, Computational issues in complex water-energy optimization problems: Time scales, parameterizations, objectives and algorithms, European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-5121, doi:10.13140/RG.2.2.11015.80802, European Geosciences Union, 2015.

    Modelling of large-scale hybrid renewable energy systems (HRES) is a challenging task, for which several open computational issues exist. HRES comprise typical components of hydrosystems (reservoirs, boreholes, conveyance networks, hydropower stations, pumps, water demand nodes, etc.), which are dynamically linked with renewables (e.g., wind turbines, solar parks) and energy demand nodes. In such systems, apart from the well-known shortcomings of water resources modelling (nonlinear dynamics, unknown future inflows, large number of variables and constraints, conflicting criteria, etc.), additional complexities and uncertainties arise due to the introduction of energy components and associated fluxes. A major difficulty is the need for coupling two different temporal scales, given that in hydrosystem modeling, monthly simulation steps are typically adopted, yet for a faithful representation of the energy balance (i.e. energy production vs. demand) a much finer resolution (e.g. hourly) is required. Another drawback is the increase of control variables, constraints and objectives, due to the simultaneous modelling of the two parallel fluxes (i.e. water and energy) and their interactions. Finally, since the driving hydrometeorological processes of the integrated system are inherently uncertain, it is often essential to use synthetically generated input time series of large length, in order to assess the system performance in terms of reliability and risk, with satisfactory accuracy. To address these issues, we propose an effective and efficient modeling framework, key objectives of which are: (a) the substantial reduction of control variables, through parsimonious yet consistent parameterizations; (b) the substantial decrease of computational burden of simulation, by linearizing the combined water and energy allocation problem of each individual time step, and solve each local sub-problem through very fast linear network programming algorithms, and (c) the substantial decrease of the required number of function evaluations for detecting the optimal management policy, using an innovative, surrogate-assisted global optimization approach.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.11015.80802

  1. A. Drosou, P. Dimitriadis, A. Lykou, P. Kossieris, I. Tsoukalas, A. Efstratiadis, and N. Mamassis, Assessing and optimising flood control options along the Arachthos river floodplain (Epirus, Greece), European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-9148, European Geosciences Union, 2015.

    We present a multi-criteria simulation-optimization framework for the optimal design and setting of flood protection structures along river banks. The methodology is tested in the lower course of the Arachthos River (Epirus, Greece), downstream of the hydroelectric dam of Pournari. The entire study area is very sensitive, particularly because the river crosses the urban area of Arta, which is located just after the dam. Moreover, extended agricultural areas that are crucial for the local economy are prone to floods. In the proposed methodology we investigate two conflicting criteria, i.e. the minimization of flood hazards (due to damages to urban infrastructures, crops, etc.) and the minimization of construction costs of the essential hydraulic structures (e.g. dikes). For the hydraulic simulation we examine two flood routing models, named 1D HEC-RAS and quasi-2D LISFLOOD, whereas the optimization is carried out through the Surrogate-Enhanced Evolutionary Annealing-Simplex (SE-EAS) algorithm that couples the strengths of surrogate modeling with the effectiveness and efficiency of the EAS method.

    Full text:

  1. A. Zarkadoulas, K. Mantesi, A. Efstratiadis, A. D. Koussis, K. Mazi, D. Katsanos, A. Koukouvinos, and D. Koutsoyiannis, A hydrometeorological forecasting approach for basins with complex flow regime, European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-3904, doi:10.13140/RG.2.2.21920.99842, European Geosciences Union, 2015.

    The combined use of weather forecasting models and hydrological models in flood risk estimations is an established technique, with several successful applications worldwide. However, most known hydrometeorological forecasting systems have been established in large rivers with perpetual flow. Experience from small- and medium-scale basins, which are often affected by flash floods, is very limited. In this work we investigate the perspectives of hydrometeorological forecasting, by emphasizing two issues: (a) which modelling approach can credibly represent the complex dynamics of basins with highly variable runoff (intermittent or ephemeral); and (b) which transformation of point-precipitation forecasts provides the most reliable estimations of spatially aggregated data, to be used as inputs to semi-distributed hydrological models. Using as case studies the Sarantapotamos river basin, in Eastern Greece (145 km2), and the Nedontas river basin, in SW Peloponnese (120 km2), we demonstrate the advantages of continuous simulation through the HYDROGEIOS model. This employs conjunctive modelling of surface and groundwater flows and their interactions (percolation, infiltration, underground losses), which are key processes in river basins characterized by significantly variability of runoff. The model was calibrated against hourly flow data at two and three hydrometric stations, respectively, for a 3-year period (2011-2014). Next we attempted to reproduce the most intense flood events of that period, by substituting observed rainfall by forecast scenarios. In this respect, we used consecutive point forecasts of a 6-hour lead time, provided by the numerical weather prediction model WRF (Advanced Research version), dynamically downscaled from the ~1o forecast of GSF–NCEP/NOAA successively first to ~18 km, then to ~6 km and ultimately at the horizontal grid resolution of 2x2 km2. We examined alternative spatial integration approaches, using as reference the rainfall stations over the two basins. By combining consecutive rainfall forecasts at the sub-basin scale (a kind of ensemble prediction), we run the model in forecast mode to generate trajectories of flow predictions and associated uncertainty bounds.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.21920.99842

  1. I. Tsoukalas, P. Kossieris, A. Efstratiadis, and C. Makropoulos, Handling time-expensive global optimization problems through the surrogate-enhanced evolutionary annealing-simplex algorithm, European Geosciences Union General Assembly 2015, Geophysical Research Abstracts, Vol. 17, Vienna, EGU2015-5923, European Geosciences Union, 2015.

    In water resources optimization problems, the calculation of the objective function usually presumes to first run a simulation model and then evaluate its outputs. In several cases, however, long simulation times may pose significant barriers to the optimization procedure. Often, to obtain a solution within a reasonable time, the user has to substantially restrict the allowable number of function evaluations, thus terminating the search much earlier than required by the problem’s complexity. A promising novel strategy to address these shortcomings is the use of surrogate modelling techniques within global optimization algorithms. Here we introduce the Surrogate-Enhanced Evolutionary Annealing-Simplex (SE-EAS) algorithm that couples the strengths of surrogate modelling with the effectiveness and efficiency of the EAS method. The algorithm combines three different optimization approaches (evolutionary search, simulated annealing and the downhill simplex search scheme), in which key decisions are partially guided by numerical approximations of the objective function. The performance of the proposed algorithm is benchmarked against other surrogate-assisted algorithms, in both theoretical and practical applications (i.e. test functions and hydrological calibration problems, respectively), within a limited budget of trials (from 100 to 1000). Results reveal the significant potential of using SE-EAS in challenging optimization problems, involving time-consuming simulations.

    Full text:

  1. A. Tegos, A. Efstratiadis, N. Malamos, N. Mamassis, and D. Koutsoyiannis, Evaluation of a parametric approach for estimating potential evapotranspiration across different climates, IRLA2014 – The Effects of Irrigation and Drainage on Rural and Urban Landscapes, Patras, doi:10.13140/RG.2.2.14004.24966, 2014.

    Potential evapotranspiration (PET) is key input in water resources, agricultural and environmental modelling. For many decades, numerous approaches have been proposed for the consistent estimation of PET at several time scales of interest. The most recognized is the Penman-Monteith formula, which is yet difficult to apply in data-scarce areas, since it requires simultaneous observations of four meteorological variables (temperature, sunshine duration, humidity, wind velocity). For this reason, parsimonious models with minimum input data requirements are strongly preferred. Typically, these have been developed and tested for specific hydroclimatic conditions, but when they are applied in different regimes they provide much less reliable (and in some cases misleading) estimates. Therefore, it is essential to develop generic methods that remain parsimonious, in terms of input data and parameterization, yet they also allow for some kind of local adjustment of their parameters, through calibration. In this study we present a recent parametric formula, based on a simplified formulation of the original Penman-Monteith expression, which only requires mean daily or monthly temperature data. The method is evaluated using meteorological records from different areas worldwide, at both the daily and monthly time scales. The outcomes of this extended analysis are very encouraging, as indicated by the substantially high validation scores of the proposed approach across all examined data sets. In general, the parametric model outperforms well-established methods of the everyday practice, since it ensures optimal approximation of PET.

    Full text: http://www.itia.ntua.gr/en/getfile/1512/1/documents/2014_IRLA_Parametric.pdf (740 KB)

    See also: http://dx.doi.org/10.13140/RG.2.2.14004.24966

  1. G. Karakatsanis, N. Mamassis, D. Koutsoyiannis, and A. Efstratiadis, Entropy, pricing and macroeconomics of pumped-storage systems, European Geosciences Union General Assembly 2014, Geophysical Research Abstracts, Vol. 16, Vienna, EGU2014-15858-6, European Geosciences Union, 2014.

    We propose a pricing scheme for the enhancement of macroeconomic performance of pumped-storage systems, based on the statistical properties of both geophysical and economic variables. The main argument consists in the need of a context of economic values concerning the hub energy resource; defined as the resource that comprises the reference energy currency for all involved renewable energy sources (RES) and discounts all related uncertainty. In the case of pumped-storage systems the hub resource is the reservoir’s water, as a benchmark for all connected intermittent RES. The uncertainty of all involved natural and economic processes is statistically quantifiable by entropy. It is the relation between the entropies of all involved RES that shapes the macroeconomic state of the integrated pumped-storage system. Consequently, there must be consideration on the entropy of wind, solar and precipitation patterns, as well as on the entropy of economic processes –such as demand preferences on either current energy use or storage for future availability. For pumped-storage macroeconomics, a price on the reservoir’s capacity scarcity should also be imposed in order to shape a pricing field with upper and lower limits for the long-term stability of the pricing range and positive net energy benefits, which is the primary issue of the generalized deployment of pumped-storage technology.

    Additional material:

  1. P. Dimas, D. Bouziotas, A. Efstratiadis, and D. Koutsoyiannis, A holistic approach towards optimal planning of hybrid renewable energy systems: Combining hydroelectric and wind energy, European Geosciences Union General Assembly 2014, Geophysical Research Abstracts, Vol. 16, Vienna, EGU2014-5851, doi:10.13140/RG.2.2.28854.70723, European Geosciences Union, 2014.

    Hydropower with pumped storage is a proven technology with very high efficiency that offers a unique large-scale energy buffer. Energy storage is employed by pumping water upstream to take advantage of the excess of produced energy (e.g. during night) and next retrieving this water to generate hydro-power during demand peaks. Excess energy occurs due to other renewables (wind, solar) whose power fluctuates in an uncontrollable manner. By integrating these with hydroelectric plants with pumped storage facilities we can form autonomous hybrid renewable energy systems. The optimal planning and management thereof requires a holistic approach, where uncertainty is properly represented. In this context, a novel framework is proposed, based on stochastic simulation and optimization. This is tested in an existing hydrosystem of Greece, considering its combined operation with a hypothetical wind power system, for which we seek the optimal design to ensure the most beneficial performance of the overall scheme.

    Full text: http://www.itia.ntua.gr/en/getfile/1442/2/documents/2014_egu_hybrid.pdf (1659 KB)

    Additional material:

    See also: http://dx.doi.org/10.13140/RG.2.2.28854.70723

  1. Y. Markonis, A. Efstratiadis, A. Koukouvinos, N. Mamassis, and D. Koutsoyiannis, Investigation of drought characteristics in different temporal and spatial scales: A case study in the Mediterranean region , Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.

    In 1988-1995 Greece experienced a drought, one of the most extended (both in space and time) and intense since the beginning of hydro-meteorological instrumental measurements. The aim of this study is to describe the phenomenon in different temporal and spatial scales in order to (a) identify possible links with Mediterranean/global climatic regime and (b) to demonstrate the role of the marginal distribution and the autocorrelation function in estimating the return period of the drought and its impact. Three spatial scales were examined: the local scale (regions of Peloponnese in the southern and Macedonia in the northern part of Greece; ~2x2° each), the national scale (~8x8°) and the Mediterranean scale (~15x45°). In the time domain the monthly, annual and inter-annual time steps were taken, while the time horizon is that of the instrumental record as well as a broader time window obtained by introducing qualitative evidence from paleoclimatic studies. Our findings show both strong temporal variability and spatial heterogeneity, which imply enhanced uncertainty.

  1. G. Karakatsanis, N. Mamassis, D. Koutsoyiannis, and A. Efstratiadis, Entropy and reliability of water use via a statistical approach of scarcity, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.24450.68809, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.

    The paper examines economic reliability of water resource availability within a stochastic framework. Hoekstra and Mekonnen (2012) provide water use data for agricultural and industrial production. The current work utilizes these findings by coupling hydrological processes with reliability for economic use via a statistical approach of scarcity. Water extracted from the hydrological cycle is never bounded permanently, but only creates temporary scarcity via the competitive use of its limited economically useful attributes (such as its quality). The replenishment rate of freshwater reservoirs is limited and the return of water to its natural path requires energy inputs and time. Hence, what the economy is actually deprived of via the intensification of water use, the diversion of a water resource from its natural hydrological path and the eventual degradation after its use is its immediate availability, which is equivalent to increased uncertainty as the economy reaches closer to its natural water supply reliability limit. Georgescu-Roegen (1986) postulated a connection between increased dispersion and supply uncertainty of a resource to entropy, which in the case of water might be interpreted as increase of the probability of temporal unavailability.

    Full text: http://www.itia.ntua.gr/en/getfile/1389/1/documents/Kos_Karakatsanis.pdf (736 KB)

    See also: http://dx.doi.org/10.13140/RG.2.2.24450.68809

  1. P. Kossieris, A. Efstratiadis, and D. Koutsoyiannis, Coupling the strengths of optimization and simulation for calibrating Poisson cluster models, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.15223.21929, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.

    Many hydrological applications require use of rainfall data across a wide range of time scales. To simulate rainfall at fine time scales, stochastic approaches are usually enrolled. A leading representative is the Bartlett-Lewis model, which belongs to the family of Poisson-cluster processes that represent rainfall events. The usual approach of model calibration comprises the incorporation of the theoretical model equations in an objective function and the optimization of that function. However, it is obvious that this procedure is limited to the case that analytical equations exist for the modelled stochastic properties of the process. Yet such analytical equations cannot be derived for key characteristics such as skewness and parameters determining the distribution of extreme values. Here we present an innovative approach that remedies those weaknesses through the combined use of simulation and optimization. During model calibration, the model statistics are derived by Monte Carlo simulation, instead of theoretical equations. Various calibration criteria as well as statistical parameters are introduced aiming at more faithful representation of the rainfall process at different time scales. The efficiency of the proposed method is demonstrated using a long data series from a rain gauge in Athens.

    Full text: http://www.itia.ntua.gr/en/getfile/1388/1/documents/Kos_BartlettLewis_poster.pdf (1605 KB)

    See also: http://dx.doi.org/10.13140/RG.2.2.15223.21929

  1. P. Kossieris, A. Efstratiadis, and D. Koutsoyiannis, The use of stochastic objective functions in water resource optimization problems, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.18578.66249, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.

    The hydrological and water resource problems are characterized by the presence of multiple sources of uncertainty. The implementation of Monte Carlo simulation techniques within powerful optimization methods are required, in order to handle such uncertainties. Here we examine the combined performance of those two powerful tools to a wide range of global optimization applications, which extend from mathematical problems to hydrological calibration problems. In all cases, uncertainty is explicitly considered in terms of stochastic objective functions. In particular, we test a number of benchmark functions to assess the effectiveness and efficiency of alternative optimization techniques. Moreover, we examine two real-world calibration problems, involving a lumped rainfall-runoff models and a stochastic disaggregation model. We investigate them with different calibration criteria and under different sources of uncertainty, in order to assess not only the robustness of the derived parameters but also the predictive capacity of the models.

    Full text: http://www.itia.ntua.gr/en/getfile/1387/1/documents/Kos_StochObjFunctions_poster.pdf (641 KB)

    See also: http://dx.doi.org/10.13140/RG.2.2.18578.66249

  1. P. Dimas, D. Bouziotas, A. Efstratiadis, and D. Koutsoyiannis, A stochastic simulation framework for planning and management of combined hydropower and wind energy systems , Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.27491.55841, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.

    Pumped storage within hydroelectric reservoir systems is a proven technology with very high efficiency, as well as the unique large-scale energy buffer. The storage of energy is implemented by pumping water upstream, for taking advantage of the excess of energy (e.g. during night hours), and next retrieving this water to generate hydropower during demand peaks. Interestingly, this excess can be offered by other renewable energy sources, particularly wind turbines, which can be integrated within hydroelectric systems with pumped storage facilities, to formulate autonomous hybrid renewable energy schemes. The optimal planning and management of such systems is a challenging task, which requires a holistic viewpoint and a consistent representation of the multiple sources of uncertainty. In this respect, a novel framework is proposed, which is tested in an existing hydrosystem of Greece (i.e. the reservoir system of Aliakmon, which also serves other water uses), considering a combined operation with a hypothetical wind power system. The two components, which are linked through a single pumping storage plant, are modelled in different time resolutions. In particular, for the representation of the water resource system we adopt, as typically, a monthly time step, while for the wind power system we use hourly steps. For both systems, the input variables (i.e. hydrological inflows and wind velocity, respectively) are generated via appropriate stochastic simulation models, by means of synthetic time series of 1000 years length. In order to ensure the most beneficial performance of the integrated system, we investigate different design parameters of the wind turbines, for which we optimize the operation policy of the hydroelectric reservoirs.

    Full text: http://www.itia.ntua.gr/en/getfile/1386/1/documents/KosHybrid_poster.pdf (691 KB)

    See also: http://dx.doi.org/10.13140/RG.2.2.27491.55841

  1. E. Michaelidi, T. Mastrotheodoros, A. Efstratiadis, A. Koukouvinos, and D. Koutsoyiannis, Flood modelling in river basins with highly variable runoff, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.30847.00167, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.

    In the Mediterranean area numerous small to medium-scale river basins are characterized by highly-variable runoff, intermittent or ephemeral. This is due to both the climatic regime and the geomorphological and physiographic peculiarities of the hydrological system itself. Typically, these basins are affected by flash floods, for which effective modelling can be more difficult than in the case of large basins with permanent runoff. In this study we compare different modelling approaches in two representative catchments (one in Greece and one in Cyprus), on the basis of a number of observed flood events. Initially, we employ the well-known SCS-CN method, combined with a synthetic unit hydrograph (SUH) approach, whose parameters (namely, the curve number, the initial abstraction ratio and the time-to-peak of the SUH) are calibrated against each individual flood event. Yet, even with calibrated parameters, the above method, which is widespread among flood engineers, generally fails to reproduce the observed hydrographs. Next, we test different modelling structures, all of which use elementary hydraulic analogues (by means of interconnected tanks) to represent the storage processes, which are dominant in such types of basins. For each event we run different settings of the calibration problem, thus obtaining a large set of alternative optimal parameter values. The significant variability of the parameter values reflects the complexity of the involved hydrological processes. In addition, it reveals the crucial role of flood measurements, in order to build realistic models and provide consistent estimations of the related uncertainties.

    Full text: http://www.itia.ntua.gr/en/getfile/1385/1/documents/Kos_Basins_poster.pdf (1881 KB)

    See also: http://dx.doi.org/10.13140/RG.2.2.30847.00167

    Other works that reference this work (this list might be obsolete):

    1. Taguas, E., Y. Yuan, F. Licciardello, and J. Gómez, Curve Numbers for olive orchard catchments: case study in Southern Spain, Journal of Irrigation and Drainage Engineering, doi:10.1061/(ASCE)IR.1943-4774.0000892, 05015003, 2015.

  1. A. Efstratiadis, A. Koukouvinos, P. Dimitriadis, A. Tegos, N. Mamassis, and D. Koutsoyiannis, A stochastic simulation framework for flood engineering, Facets of Uncertainty: 5th EGU Leonardo Conference – Hydrofractals 2013 – STAHY 2013, Kos Island, Greece, doi:10.13140/RG.2.2.16848.51201, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics, 2013.

    Flood engineering is typically tackled as a sequential application of formulas and models, with specific assumptions and parameter values, thus providing fully deterministic outputs. In this procedure, the unique probabilistic concept is the return period of rainfall, which is set a priori, to represent the acceptable risk of all design variables of interest (peak flows, flood hydrographs, flow depths and velocities, inundated areas, etc.). Yet, a more consistent approach would require estimating the risks by integrating the uncertainties of all individual variables. This option can be offered by stochastic simulation, which is the most effective and powerful technique for analysing systems of high complexity and uncertainty. This presupposes to recognize which of the modelling components represent time-varying processes and which ones represent unknown, thus uncertain, parameters. In the proposed framework both should be handled as random variables. The following computational steps are envisaged: (a) generation of synthetic time series of areal rainfall, through multivariate stochastic disaggregation models; (b) generation of random sets of initial soil moisture conditions; (c) run of hydrological and hydraulic simulation models with random sets of parameter values, picked from suitable distributions; (d) statistical analysis of the model outputs and determination of empirical pdfs; and (e) selection of the design value, which corresponds to the acceptable risk. This approach allows for estimating the full probability distribution of the output variables, instead of a unique value, as resulted by the deterministic procedure. In this context, stochastic simulation also offers the means to introduce the missing culture of uncertainty appreciation in flood engineering.

    Full text: http://www.itia.ntua.gr/en/getfile/1384/1/documents/KosFloodStochSim.pdf (1860 KB)

    See also: http://dx.doi.org/10.13140/RG.2.2.16848.51201

  1. A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Hydrological modelling in presence of non-stationarity induced by urbanisation: an assessment of the value of information, “Knowledge for the future”, IAHS - IAPSO – IASPEI Joint Assembly 2013, Gothenburg, doi:10.13140/RG.2.2.13178.49607, International Association of Hydrological Sciences, 2013.

    The proposed protocol of the workshop is followed, which regards the investigation of the effect of non-stationarity due to urbanisation on the performance of a hydrological model. In particular, the rainfall-runoff component of HYDROGEIOS modelling framework (Efstratiadis et al., 2008) is used. This is a parsimonious model of the conceptual type, based on the idea of Hydrological Response Unit (HRU). It is parameterised per HRU with seven parameters in each. Both a lumped and a semi-distributed version are employed. In the latter, two HRUs are assumed, representing the urban and rural areas of the basin. The Evolutionary Annealing Simplex method is used to obtain the best parameter set along with a large number of other retained parameter sets. Levels 1 and 2 of the proposed protocol provide the necessary information for analysis of Level 3, where a stochastic framework is considered inspired by the ideas proposed by Montanari & Koutsoyiannis (2012). This takes into account external information on urbanised fraction of the studied basin. A relationship is established between data on fraction of urbanised area and one of more parameters of the lumped model, while the semi-distributed one takes into account the fraction of urbanised area explicitly. Comparison of prediction intervals with and without exploiting such relationship allows the assessment of the value of information regarding the factor that induces nonstationarity. The methodology as a whole is applied to one of the two drainage basins that show growing urbanisation (Ferson Creek at St. Charles, USA).

    Full text: http://www.itia.ntua.gr/en/getfile/1377/1/documents/2013_IAHS_poster.pdf (602 KB)

    See also: http://dx.doi.org/10.13140/RG.2.2.13178.49607

  1. G. Tsekouras, C. Ioannou, A. Efstratiadis, and D. Koutsoyiannis, Stochastic analysis and simulation of hydrometeorological processes for optimizing hybrid renewable energy systems, European Geosciences Union General Assembly 2013, Geophysical Research Abstracts, Vol. 15, Vienna, EGU2013-11660, doi:10.13140/RG.2.2.30250.62404, European Geosciences Union, 2013.

    The drawbacks of conventional energy sources including their negative environmental impacts emphasize the need to integrate renewable energy sources into energy balance. However, the renewable sources strongly depend on time varying and uncertain hydrometeorological processes, including wind speed, sunshine duration and solar radiation. To study the design and management of hybrid energy systems we investigate the stochastic properties of these natural processes, including possible long-term persistence. We use wind speed and sunshine duration time series retrieved from a European database of daily records and we estimate representative values of the Hurst coefficient for both variables. We conduct simultaneous generation of synthetic time series of wind speed and sunshine duration, on yearly, monthly and daily scale. To this we use the Castalia software system which performs multivariate stochastic simulation. Using these time series as input, we perform stochastic simulation of an autonomous hypothetical hybrid renewable energy system and optimize its performance using genetic algorithms. For the system design we optimize the sizing of the system in order to satisfy the energy demand with high reliability also minimizing the cost. While the simulation scale is the daily, a simple method allows utilizing the subdaily distribution of the produced wind power. Various scenarios are assumed in order to examine the influence of input parameters, such as the Hurst coefficient, and design parameters such as the photovoltaic panel angle.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.30250.62404

  1. A. Venediki, S. Giannoulis, C. Ioannou, L. Malatesta, G. Theodoropoulos, G. Tsekouras, Y. Dialynas, S.M. Papalexiou, A. Efstratiadis, and D. Koutsoyiannis, The Castalia stochastic generator and its applications to multivariate disaggregation of hydro-meteorological processes, European Geosciences Union General Assembly 2013, Geophysical Research Abstracts, Vol. 15, Vienna, EGU2013-11542, doi:10.13140/RG.2.2.15675.41764, European Geosciences Union, 2013.

    Castalia is a software system that performs multivariate stochastic simulation preserving essential marginal statistics, specifically mean value, standard deviation and skewness, as well as joint second order statistics, namely auto- and cross-correlation. Furthermore, Castalia reproduces long-term persistence. It follows a disaggregation approach, starting from the annual time scale and proceeding to finer scales such as monthly and daily. To assess the performance of the Castalia system we test it for several hydrometeorological processes such as rainfall, sunshine duration, temperature and wind speed. To this aim we retrieve time series of these processes from a large database of daily records and we estimate their statistical properties, including long-term persistence. We generate synthetic time series using the Castalia software and we examine its efficiency in reproducing the important statistical properties of the observed data.

    Full text:

    Additional material:

    See also: http://dx.doi.org/10.13140/RG.2.2.15675.41764

  1. D. Koutsoyiannis, and A. Efstratiadis, The necessity for large-scale hybrid renewable energy systems, Hydrology and Society, EGU Leonardo Topical Conference Series on the hydrological cycle 2012, Torino, doi:10.13140/RG.2.2.30355.48161, European Geosciences Union, 2012.

    Since global economy is dominated by the energy sector, the planning and management of energy systems is a prerequisite for a sustainable future. It is widely recognized that the existing paradigm, based on the intense use of fossil fuels, if far from sustainable and thus a substantial shift is needed, in the direction of energy saving and developing renewable sources. Yet, current energy planning in Europe, while it strongly promotes the penetration of such systems, has failed to account for the significant differences thereof with conventional energy sources. Small scale energy production units are encouraged and even subsidized. In addition, their piecewise view and the lack of an integrated development plan at country scale, results in increased costs and puts significant restrictions on energy management. It is well-known that renewable energy is highly varying and unpredictable, as it strongly depends on the hydro-meteorological conditions. The inherent uncertainty of the related natural processes is directly reflected in energy production, which cannot follow the temporal distribution of the corresponding demand. An additional drawback is the lack of regulating capacity, which makes impossible to store the excess of production. In this context, the concept of a future scene in which renewable sources dominate will be feasible only if renewable energy resources are combined with technologies for energy storage. The proven technique of pumped storage (i.e. pumping of water to an upstream location consuming available energy, to be retrieved later as hydropower) represents the best available technology since it does not emit any by-products to the environment, and is cost efficient, with loss ratios less than 10% (in large scale projects). In addition, hydroelectric energy production does not consume water (only converts its potential energy) while it can also be combined with other water uses (domestic, agricultural, industrial). Hybrid systems, combining multiple sources of renewable energy with pumped-storage facilities, are generally viewed as proven technology to increase renewable energy source penetration levels in power systems. However, such systems have, in general, limited capacity and are mostly implemented in relatively small areas, e.g. to serve autonomous island grids. On the other hand, the dominant ideological views especially in the European Union disfavours the building of new dams and large hydro-projects. However, the issue of scale, which refers to both the size of energy units and their spatial extent, is of major importance, since efficiency (in terms of produced energy to installed capacity) increases with scale, as does reliability (in terms of covering energy demand). For this reason, it is impossible to envisage a future energy landscape without large-scale hydroelectric reservoirs, equipped with pumped storage. To this extent, a holistic planning for large-scale hybrid renewable energy systems, in which water, wind and solar radiation are the sources of energy, with water in an additional integrative and regulating role, becomes plausible and desirable.

    Full text: http://www.itia.ntua.gr/en/getfile/1295/1/documents/LeonardoHybrid.pdf (1022 KB)

    See also: http://dx.doi.org/10.13140/RG.2.2.30355.48161

  1. A. Efstratiadis, D. Bouziotas, and D. Koutsoyiannis, The parameterization-simulation-optimization framework for the management of hydroelectric reservoir systems, Hydrology and Society, EGU Leonardo Topical Conference Series on the hydrological cycle 2012, Torino, doi:10.13140/RG.2.2.36437.22243, European Geosciences Union, 2012.

    The optimal control and management of large-scale hydroelectric reservoirs remains a challenging issue in water resources modelling and its importance increases, as the growing penetration of renewable sources in the actual energy scene creates additional requirements for energy regulation and storage. In this respect, it is essential to review both the current management policies and the related methodologies for supporting decision-making in reservoir management problems, which are rather insufficient. Older approaches, based on systems analysis (i.e. linear, nonlinear, dynamic or stochastic dynamic programming), as well as more advanced concepts and tools, such as fuzzy logic and neural networks, fail to provide the essential holistic approach, with regard to the various complexities of the problem. Such drawbacks arise due to the large number of variables, the nonlinearities of system dynamics, the inherent uncertainty of future conditions (inflows, demands), as well as the multiple and often conflicting water uses and constraints that are involved in the management of such systems. On the other hand, the parameterization-simulation-optimization (PSO) framework provides a feasible and general methodology applicable to any type of hydrosystem, including complex hydropower schemes. This uses stochastic simulation to generate synthetic system inputs and represents the operation of the entire system through a simulation model as faithful as possible, without demanding a specific mathematical form that would possibly imply oversimplifications. Such representation fully respects the physical constraints, while at the same time evaluates the system operation constraints and objectives in probabilistic terms, through Monte Carlo simulation. Finally, to optimize the system performance and evaluate its control variables, a stochastic optimization procedure is employed (in particular, the evolutionary annealing-simplex method). The latter is substantially facilitated if the entire representation is parsimonious, i.e. if the number of control variables is kept as small as possible. This is ensured through a suitable system parameterization, in terms of parametric expressions of operation rules for the major system controls (e.g. reservoirs, power plants). The PSO framework is implemented within the “Hydronomeas” decision support system (DSS), which has been successfully applied for the operational management of water resource systems of various levels of complexity, including the water supply system of Athens. Recently, both the modelling background and the functionalities of the DSS were upgraded to also handle hydropower generation components, as well as pumping-storage facilities. This new version is tested in a challenging case study, involving the simulation of the Acheloos-Thessaly hydrosystem. Acheloos is characterized by very high runoff and hosts 1/3 of the installed hydropower capacity of Greece. Apart from the existing scheme of projects, future configurations are also investigated, involving the diversion of part of the upstream water resources to the adjacent plain of Thessaly. For each configuration, the optimal management policy is located, on the basis of multiple performance criteria that account for both economy and reliability. Various formulations of the objective function are examined, combining different types of benefits from water and energy production (distinguishing for firm and secondary energy) and costs (due to pumping). Finally the sensitivity of solutions against the assumptions of the stochastic simulation model is examined. Emphasis is given on the effect of long- vs. short-term persistence of the simulated inflows.

    Full text: http://www.itia.ntua.gr/en/getfile/1294/1/documents/PosterLeonardo.pdf (339 KB)

    See also: http://dx.doi.org/10.13140/RG.2.2.36437.22243

  1. A. Efstratiadis, A. D. Koussis, D. Koutsoyiannis, N. Mamassis, and S. Lykoudis, Flood design recipes vs. reality: Can predictions for ungauged basins be trusted? – A perspective from Greece, Advanced methods for flood estimation in a variable and changing environment, Volos, doi:10.13140/RG.2.2.19660.00644, University of Thessaly, 2012.

    As a result of its highly fragmented geomorphology, Greece comprises hundreds of small- and medium-scale steep hydrological basins of usually ephemeral regime. Typically, their drainage area does not exceed few hundreds of km2, while the vast majority of them lacks of measuring infrastructures. For this reason, and despite the great scientific and technological advances in flood hydrology, the everyday engineering practices still follow simplistic rules-of-thumb and semi-empirical approaches, which are feasible and easy to implement in ungauged areas. In general, these “recipes” have been developed many decades ago, based on field data from few experimental catchments abroad. However, none of them has ever been validated against the peculiarities of the hydroclimatic regime and the geomorphological conditions of Greece. This has an obvious impact on the quality and reliability of hydrological studies, and, consequently, the safety and cost of the related flood-protection works. In order to provide a consistent design framework and ensure realistic predictions of the flood risk in ungauged basins (which is key issue of the 2007/60/EU Directive), it is imperative to revise the rather outdated engineering practices, by incorporating methodologies that are adapted to local peculiarities. In particular, the collection of reliable hydrological data is essential for evaluating and verifying the existing “recipes” and updating the design criteria. In this context, we are elaborating a research program titled “Deukalion”, in which we already have developed a fully-equipped monitoring network, extending over four pilot river basins. Preliminary outcomes, based on historical flood data from Cyprus and Greece, indicate that a substantial revision is required within multiple aspects of the flood modeling procedure.

    Full text: http://www.itia.ntua.gr/en/getfile/1291/1/documents/FloodRecipesVolosConf2012.pdf (1465 KB)

    See also: http://dx.doi.org/10.13140/RG.2.2.19660.00644

  1. M. Mathioudaki, A. Efstratiadis, and N. Mamassis, Investigation of hydrological design practices based on historical flood events in an experimental basin of Greece (Lykorema, Penteli), Advanced methods for flood estimation in a variable and changing environment, Volos, University of Thessaly, 2012.

    Typically, the hydrological design procedure in ungauged basins comprises three computational steps: (a) the formulation of the design storm; (b) the estimation of the “effective” rainfall (direct runoff); and (c) the derivation of the flood hydrograph at the basin outlet. In particular, the most widespread approaches with regard to (b) and (c) are the Soil Conservation Service Curve Number (SCS-CN) method and the unit hydrograph (UH), respectively. The SCS-CN method extracts the effective from the total rainfall through an elementary model that uses two parameters, i.e. the curve number (CN), which determines the potential maximum soil moisture retention of the basin, and the initial abstraction, which is in general assumed as 20% of the later. Next, the effective rainfall is propagated through the UH, which is a linear response function employing the spatiotemporal transformation of the direct runoff across the basin. In the absence of flow data, synthetic UHs are employed, for which various empirical formulas exist, derived from hydrological investigations in experimental basins worldwide. Yet, the suitability of such regionalization approaches is questionable, when aiming to apply them in areas with substantially different hydroclimatic and geomorphological characteristics. This issue certainly involves small-scale Greek basins of ephemeral runoff, which are affected by relatively short yet intense storm events causing flash floods. The objective of our study is the evaluation of the aforementioned methods, on the basis of historical flood data from the experimental basin of Lykorema. The basin is located in Penteli Mountain and covers an area of 15.2 km2. It is equipped with three meteorological stations and two flow gauges, from which we selected 35 rainfall and flood events to analyze. In all events was shown that the use of the SCS-CN method, with typical parameter values, in conjunction with two well-known synthetic UHs (Snyder and British Hydrological Institute) provided unrealistic predictions. The key reasons were the significant overestimation of both the CN value and the initial abstraction rate, as well as the improper representation of the shape of the UHs (particularly their rising branch). In this respect, we attempted to adjust the SCS-CN method, given that the CN is not a constant but a variable that actually depends on the soil moisture conditions, while the initial abstraction ratio is rather minor. In addition, we developed a synthetic parametric UH, described by a linear rising branch and a logarithmic falling branch. This uses as inputs the time of concentration, estimated by the Giandotti formula, and another duration parameter, estimated via calibration. Following a multi-criteria optimization approach, we represented with high accuracy all the important aspects of the flood hydrographs, in terms of runoff volume, magnitude and location of the peak. Although the implementation of the proposed framework in the specific basin was quite satisfactory, there is much more work to be done for establishing consistent design practices and guidelines of general use. An ultimately important step is the development of pilot basins and the collection of reliable flood data, which will allow providing much more accurate models and formulas.

    Full text: http://www.itia.ntua.gr/en/getfile/1290/1/documents/MathioudakiVolosConf2012.pdf (1750 KB)

  1. S. Kozanis, A. Christofides, A. Efstratiadis, A. Koukouvinos, G. Karavokiros, N. Mamassis, D. Koutsoyiannis, and D. Nikolopoulos, Using open source software for the supervision and management of the water resources system of Athens, European Geosciences Union General Assembly 2012, Geophysical Research Abstracts, Vol. 14, Vienna, 7158, doi:10.13140/RG.2.2.28468.04482, European Geosciences Union, 2012.

    The water supply of Athens, Greece, is implemented through a complex water resource system, extending over an area of around 4 000 km2 and including surface water and groundwater resources. It incorporates four reservoirs, 350 km of main aqueducts, 15 pumping stations, more than 100 boreholes and 5 small hydropower plants. The system is run by the Athens Water Supply and Sewerage Company (EYDAP). Over more than 10 years we have developed, information technology tools such as GIS, database and decision support systems, to assist the management of the system. Among the software components, “Enhydris”, a web application for the visualization and management of geographical and hydrometeorological data, and “Hydrognomon”, a data analysis and processing tool, are now free software. Enhydris is entirely based on free software technologies such as Python, Django, PostgreSQL, and JQuery. We also created http://openmeteo.org/, a web site hosting our free software products as well as a free database system devoted to the dissemination of free data. In particular, “Enhydris” is used for the management of the hydrometeorological stations and the major hydraulic structures (aqueducts, reservoirs, boreholes, etc.), as well as for the retrieval of time series, online graphs etc. For the specific needs of EYDAP, additional GIS functionality was introduced for the display and monitoring of the water supply network. This functionality is also implemented as free software and can be reused in similar projects. Except for “Hydrognomon” and “Enhydris”, we have developed a number of advanced modeling applications, which are also generic-purpose tools that have been used for a long time to provide decision support for the water resource system of Athens. These are “Hydronomeas”, which optimizes the operation of complex water resource systems, based on a stochastic simulation framework, “Castalia”, which implements the generation of synthetic time series, and “Hydrogeios”, which employs conjunctive hydrological and hydrogeological simulation, with emphasis to human-modified river basins. These tools are currently available as executable files that are free for download though the ITIA web site (http://itia.ntua.gr/). Currently, we are working towards releasing their source code as well, through making them free software, after some licensing issues are resolved.

    Full text:

    Additional material:

    See also: http://dx.doi.org/10.13140/RG.2.2.28468.04482

  1. P. Kossieris, D. Koutsoyiannis, C. Onof, H. Tyralis, and A. Efstratiadis, HyetosR: An R package for temporal stochastic simulation of rainfall at fine time scales, European Geosciences Union General Assembly 2012, Geophysical Research Abstracts, Vol. 14, Vienna, 11718, European Geosciences Union, 2012.

    A complete software package for the temporal stochastic simulation of rainfall process at fine time scales is developed in the R programming environment. This includes several functions for sequential simulation or disaggregation. Specifically, it uses the Bartlett-Lewis rectangular pulses rainfall model for rainfall generation and proven disaggregation techniques which adjust the finer scale (hourly) values in order to obtain the required coarser scale (daily) value, without affecting the stochastic structure implied by the model. Additionally, a repetition scheme is incorporated in order to improve the Bartlett-Lewis model performance without significant increase of computational time. Finally, the package includes an enhanced version of the evolutionary annealing-simplex optimization method for the estimation of Bartlett-Lewis parameters. Multiple calibration criteria are introduced, in order to reproduce the statistical characteristics of rainfall at various time scales. This upgraded version of the original HYETOS program (Koutsoyiannis, D., and Onof C., A computer program for temporal stochastic disaggregation using adjusting procedures, European Geophysical Society, 2000) operates on several modes and combinations thereof (depending on data availability), with many options and graphical capabilities. The package, under the name HyetosR, is available free in the CRAN package repository.

    Remarks:

    Software page: http://itia.ntua.gr/en/softinfo/3/

    Full text:

    Other works that reference this work (this list might be obsolete):

    1. #Montesarchio, V., F. Napolitano, E. Ridolfi and L. Ubertini, A comparison of two rainfall disaggregation models, In Numerical Analysis and Applied Mathematics ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, Vol. 1479, 1796-1799, 2012.
    2. #Villani, V., L. Cattaneo, A. L. Zollo, and P. Mercogliano, Climate data processing with GIS support: Description of bias correction and temporal downscaling tools implemented in Clime software, Euro-Mediterranean Center on Climate Change (RMCC) Research Papers, RP0262, 2015.
    3. Förster, K., F. Hanzer, B. Winter, T. Marke, and U. Strasser, An open-source MEteoroLOgical observation time series DISaggregation Tool (MELODIST v0.1.1), Geoscientific Model Development, 9, 2315-2333, doi:10.5194/gmd-9-2315-2016, 2016.

  1. D. Tsaknias, D. Bouziotas, A. Christofides, A. Efstratiadis, and D. Koutsoyiannis, Statistical comparison of observed temperature and rainfall extremes with climate model outputs, European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, EGU2011-3454, doi:10.13140/RG.2.2.15321.52322, European Geosciences Union, 2011.

    Climate model outputs have widely been used to support decision making for social and financial policies, with special focus on extreme events. Moreover, it is a general perception that extreme events will be more frequent in the future. To evaluate whether climate models provide a credible basis for predictions of extremes, we study their ability to reproduce annual extreme values of daily temperature and precipitation. The results from climate models are compared to observed data from stations in the Mediterranean. Furthermore, we fit probability distributions which describe the extreme events in both cases and compare the results.

    Remarks:

    Related blog posts and discussions: De staat van het klimaat, Climate Science: Roger Pielke Sr..

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.15321.52322

  1. A. Christofides, S. Kozanis, G. Karavokiros, Y. Markonis, and A. Efstratiadis, Enhydris: A free database system for the storage and management of hydrological and meteorological data, European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, 8760, European Geosciences Union, 2011.

    Enhydris is a database system for the storage and management of hydrological and meteorological data. It allows the storage and retrieval of raw data, processed time series, model parameters, curves and meta-information such as measurement stations overseers, instruments, events etc. The database is accessible through a web interface, which includes several data representation features such as tables, graphs and mapping capabilities. Data access is configurable to allow or to restrict user groups and/or privileged users to contribute or to download data. With these capabilities, Enhydris can be used either as a public repository of free data or as a fully secured – restricted system for data storage. Time series can be downloaded in plain text format that can be directly loaded to Hydrognomon (http://hydrognomon.org/), a free tool for analysis and processing of meteorological time series. Enhydris can optionally work in a distributed way. Many organisations can install one instance each, but an additional instance, common to all organisations, can be setup as a common portal. This additional instance can be configured to replicate data from the other databases, but without the space consuming time series, which it retrieves from the other databases on demand. A user can transparently use this portal to access the data of all participating organisations collectively. Enhydris is free software, available under the terms of the GNU General Public License version 3. It is developed with Python, Django, and C. Its modular design allows adding new features through the development of small applications. Enhydris is hosted by the Openmeteo project (http://openmeteo.org/), which aims to provide free tools and data.

    Full text:

    Other works that reference this work (this list might be obsolete):

    1. #Papathanasiou C., C. Makropoulos, E. Baltas, and M. Mimikou, The Hydrological Observatory of Athens: A state-of-the-art network for the assessment of the hydrometeorological regime of Attica, Proceedings of the 13th International Conference on Environmental Science and Technology, Athens, 2013.
    2. #Makropoulos, C., P. Kossieris, S. Kozanis, E. Katsiri, and L. Vamvakeridou-Lyroudia, From smart meters to smart decisions: Web-based support for the water efficient household, Proceedings of 11th International Conference on Hydroinformatics (HIC 2014), New York City, 2014.
    3. #Makropoulos, C., Thinking platforms for smarter urban water systems: Fusing technical and socio-economic models and tools. In: Riddick, A.T., Kessler, H., and Giles, J. R. A. (eds.), Integrated Environmental Modelling to Solve Real World Problems: Methods, Vision and Challenges, Geological Society, London, Special Publications, 408, 2014.

  1. M. Rianna, E. Rozos, A. Efstratiadis, and F. Napolitano, Assessing different levels of model complexity for the Liri-Garigliano catchment simulation, European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, 4067, European Geosciences Union, 2011.

    Liri is one of the principal rivers of central Italy, flowing into the Tyrrhenian Sea, under the name Garigliano. The Liri-Garigliano basin is about 4900 square kilometres and the length of the main course is 160 kilometres. The hydrological system exhibits significant heterogeneity. The mountains located in the NE area and the Apennines are dominated by carbonate platform deposits that are intensively karstified. This part of the basin is characterised by high effective infiltration, poor development of the hydrographic network and low overland flow; most of runoff derives from karst springs of relatively stable flow regime. On the other hand, there are areas lying on geological formations of low permeability, the hydrological regime of which is characterized by significant overland flow from autumn to winter. For the simulation of daily flows along the river network, we use HYDROGEIOS modelling framework. The whole basin is discretized into a number of sub-basins, so that all flow gauges are represented as outlet nodes, which allows evaluating the model performance on the basis of the corresponding multi-response data. For the representation of the hydrological processes, four parameterization approaches are tested. The simpler configuration only utilizes the rainfall-runoff component of HYDROGEIOS and follows a semi-lumped parameterization, thus assigning the same parameter values to all sub-basins. The next approach follows a distributed parameterization to account for the surface system heterogeneity, on the basis of the hydrological response unit (HRU) concept, thus taking advantage of the spatial information about the geomorphologic characteristics of the basin. In particular, four HRUs are defined, by combining two classes of soil permeability and two classes of land cover. In the third approach, a conceptual groundwater cell is introduced under each sub-basin, which receives the aggregated percolation from the overlaying soil partitions (i.e. combination of sub-basins and HRUs). This is a standard technique used by typical hydrological packages (e.g. RIBASIM), to represent the baseflow as a lumped process at the sub-catchment scale. In this hydrologic approach (the term hydrologic is used in contrast to the term hydraulic, where models of dense discretization are used, e.g. MODFLOW within MIKE SHE) the groundwater cells are isolated, thus prohibiting any exchange of flow among them. This restriction is lifted in the last approach, which enables to selectively allow hydraulic connectivity among the groundwater cells; in addition, it introduces few peripheral cells to simulate underground leakages to adjacent aquifers and the sea. Therefore, a coarse network of interconnected tanks is formulated to simulate the actual groundwater cycle and the karst system responses. This last approach provides satisfactory compromise between model complexity, data availability and computational effort, and also reveals the flexibility of HYDROGEIOS against different spatial scale requirements.

    Full text:

    Other works that reference this work (this list might be obsolete):

    1. Bernini , R., C. Pelosi , I. Carastro, R. Venanzi, A. Di Filippo, G. Piovesan, B. Ronchi, and P. P. Danieli, Dendrochemical investigation on hexachlorocyclohexane isomers (HCHs) in poplars by an integrated study of micro-Fourier transform infrared spectroscopy and gas chromatography, Trees, doi:10.1007/s00468-015-1343-8, 2016.

  1. E. Galiouna, A. Efstratiadis, N. Mamassis, and K. Aristeidou, Investigation of extreme flows in Cyprus: empirical formulas and regionalization approaches for peak flow estimation, European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, 2077, European Geosciences Union, 2011.

    The island of Cyprus has a typical Mediterranean, semi-arid climate, characterized, among others, by relatively short yet intense storm events causing flash floods. Current practices for the design of flood-protection works as well as flood risk assessment are based on regional approaches, which require a number of parameters that derive from the river basin characteristics. The main target of this work is to evaluate the existing empirical formulas for estimating those watershed parameters, emphasizing on the runoff coefficient and the time of concentration, which are typical inputs for most of the aforementioned tools, such as the rational and the unit hydrograph methods. For this purpose, we analyzed a large amount of hydrological and geographical data, provided by the Water Development Department and the Meteorological Service of Cyprus. This includes annual discharge maxima at 130 flow gauges and the corresponding rainfall data, intensity-duration-frequency (ombrian) curves for different regions of the island, and geographical information for 70 river basins (DEM, hydrographic network, land uses, geology and permeability). A preliminary statistical analysis of annual maxima data indicated that the empirical distribution functions of the flood discharges are much sharper than those of the corresponding rainfall depths, which denotes strongly nonlinearity of the rainfall-runoff mechanisms. In addition, we found that the existing peak runoff estimation methods fail to reproduce this kind of nonlinearity, thus leading to severe underestimation of flood risk. To handle this inconsistency it was necessary to revise the erroneous hypothesis that both the runoff coefficient and the time of concentration are constant properties of the basin. In reality, they depend not only to the constant geomorphological characteristics of the basin but also to the rainfall-runoff event itself. However, an analytical estimation of their actual values is impossible, since they are related to complex hydrological and hydraulic processes. For this reason, we examine the simple yet realistic assumption that the two variables are functions not to the event magnitude but to its return period. Using appropriate historical data, we attempt to establish improved empirical relationships for Cyprus, by fitting the simulated peak flow values to the observed ones.

    Full text:

  1. A. Efstratiadis, New insights on model evaluation inspired by the stochastic simulation paradigm, European Geosciences Union General Assembly 2011, Geophysical Research Abstracts, Vol. 13, Vienna, 1852, European Geosciences Union, 2011.

    The working paradigm for evaluating the performance of practically any kind of mathematical model is based on metrics that assess an “average” departure between modelled outputs and observations (i.e. residuals). Yet, the outputs of hydrological, hydrogeological and climatic models are not deterministic responses against known or predictable inputs; they are stochastic variables, the interpretation of which should, consequently, be implemented in statistical terms. In addition, these processes exhibit multiple peculiarities (seasonality, long-term persistence, intermittency, skewness, spatial variability), which are rather impossible to be accounted for within a single measure (typically efficiency or other least square error expression). In this context, a comprehensive statistical framework is discussed for the evaluation of such models, seeking for the reproduction of a number of statistical characteristics of the observed data, instead of focusing to optimize an “overall” distance measure. This is inspired by the requirements of advanced stochastic simulation schemes, which are by definition built to preserve the essential statistics of the parent (i.e. historical) time series (marginal and joint statistics). This is a key concept, ensuring the generation of synthetic data that are statistically equivalent to the historical ones. The proposed framework emphasises the following issues: (a) the statistical comparison of computed and observed data at multiple time scales, to account for the variability of the modelled processes in both the short and the long term; (b) the preservation of the observed cross-correlations in multi-response calibration, to represent the interrelationship of the physical processes under study, and (c) the investigation of the model response under different stress conditions, preferably using synthetic data of appropriate length; this allows recognising structural deficiencies and irregular behaviours, which are hard to identify within the, typically short, period of observations. The above issues are analysed using examples from a number of modelling works, where initial calibration approaches, following typical hydrological practices, may result in misleading conclusions.

    Full text:

  1. K. Hadjibiros, and A. Efstratiadis, Balancing between nature, economy and society conflicting priorities: the Plastiras lake landscape, International Conference in Landscape Ecology, Brno, 2013, Czech Association for Landscape Ecology (CZ-IALE), 2010.

    Plastiras Lake, a mountain reservoir in Central Greece, was constructed in the late 1950’s for hydroelectric use; it has partially covered irrigation needs of the Thessaly plain too. Following changes in the social, economic and physical context, a significant tourist activity has been developed because the scenery of the lake is considered attractive by visitors. The landscape is dominated by the presence of water that attracts the observer as a magnetic focus point. This artificial lake is a typical surrounded landscape, with high mountains at a small distance from the water, as a result of the steep riparian contours; the ecological condition is good and the scenery is considered to be superior to the one of natural lakes. The site has also been designated as an ecological habitat conservation zone. However, irrigation of agricultural land, electricity production, drinking water supply, tourism, biodiversity and landscape quality are partially conflicting targets of water use. Because of irregular water release and climate variability, the surface level of the lake varies significantly in the range between the lowest and the overflow level, resulting in the development of a dead-zone around the lake shore. Local inhabitants and visitors believe that the scenery is less valuable when the water level is low. The lake’s water quality, tourism activity and related local income are favoured by conservative management and protection measures. On the other hand, more water for irrigation is a high social priority in the plain, despite the decreasing economic interest; it is also opposed to optimum power production. The supply of high quality drinking water to the towns of the plain has recently become a high priority for urban communities and strongly depends on the lake’s water quality; therefore a partial convergence between ecological, social and economic needs seems to emerge.

  1. A. Varveris, P. Panagopoulos, K. Triantafillou, A. Tegos, A. Efstratiadis, N. Mamassis, and D. Koutsoyiannis, Assessment of environmental flows of Acheloos Delta, European Geosciences Union General Assembly 2010, Geophysical Research Abstracts, Vol. 12, Vienna, 12046, doi:10.13140/RG.2.2.14849.66404, European Geosciences Union, 2010.

    Acheloos, the river with the highest discharge among rivers of Greece, hosts three hydroelectric dams, while two more dams are under construction. In addition, there are plans for partial diversion of the river to a nearby water district, for irrigation and hydroelectric development. The Acheloos Delta is considered to be one of the most significant Mediterranean wetland habitats for its ecological importance, including fish fauna. In this case study we aim to redefine the ecological flow and propose an outflow management policy from the most downstream reservoir (Stratos), in order to preserve the ecosystem at the Acheloos Delta. A hydrological analysis is employed to reconstruct the natural discharge records along the river on a daily basis, accompanied by a detailed evaluation of alternative methodologies for the estimation of the ecological flow. Based on the results of the analyses, the corresponding water management policy is determined, taking into account the characteristics of the hydropower plan and the related hydraulic works.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.14849.66404

    Other works that reference this work (this list might be obsolete):

    1. #Fourniotis, N. T., M. Stavropoulou-Gatsi and I. K. Kalavrouziotis, Acheloos River: The timeless, and since ancient period, contribution to the development and environmental upgrading of Western Greece, Proceedings 3rd IWA Specialized Conference on Water & Wastewater Technologies in Ancient Civilizations, Istanbul-Turkey, 420-428, 2012.
    2. Fourniotis, N. T., A proposal for impact evaluation of the diversion of the Acheloos River on the Acheloos estuary in Western Greece, International Journal of Engineering Science and Technology, 4(4), 1792-1802, 2012.

  1. S. Kozanis, A. Christofides, N. Mamassis, A. Efstratiadis, and D. Koutsoyiannis, Hydrognomon – open source software for the analysis of hydrological data, European Geosciences Union General Assembly 2010, Geophysical Research Abstracts, Vol. 12, Vienna, 12419, doi:10.13140/RG.2.2.21350.83527, European Geosciences Union, 2010.

    Hydrognomon is a software tool for the processing of hydrological data. It is an open source application running on standard Microsoft Windows platforms, and it is part of the openmeteo.org framework. Data are imported through standard text files, spreadsheets or by typing. Standard hydrological data processing techniques include time step aggregation and regularization, interpolation, regression analysis and infilling of missing values, consistency tests, data filtering, graphical and tabular visualisation of time series, etc. It supports several time steps, from the finest minute scales up to decades; specific cases of irregular time steps and offsets are also supported. The program also includes common hydrological applications, such as evapotranspiration modelling, stage-discharge analysis, homogeneity tests, areal integration of point data series, processing of hydrometric data, as well as lumped hydrological modelling with automatic calibration facilities. Here the emphasis is given on the statistical module of Hydrognomon, which provides tools for data exploration, fitting of distribution functions, statistical prediction, Monte-Carlo simulation, determination of confidence limits, analysis of extremes, and construction of ombrian (intensity-duration-frequency) curves. Hydrognomon is available for download from http://hydrognomon.org/.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.21350.83527

    Other works that reference this work (this list might be obsolete):

    1. #Sebastianelli, S., M. Giglioni, C. Mineo, and S. Magnald, On the hydrologic-hydraulic revaluation of large dams, International Conference of Numerical Analysis and Applied Mathematics 2015 (ICNAAM 2015), 1738, 430003-1–430003-4, doi:10.1063/1.4952216, 2016.
    2. #Mineo, C., S. Sebastianelli, L. Marinucci, and F. Russo, Assessment of the watershed DEM mesh size influence on a large dam design hydrograph, Proceedings of International Numerical and Applied Mathematics (INCANAAM) Conference, 2016.
    3. #Tsitroulis, I., K. Voudouris, A. Vasileiou, C. Mattas, M. Sapountzis, and F. Maris, Flood hazard assessment and delimitation of the likely flood hazard zones of the upper part in Gallikos river basin, Bulletin of the Geological Society of Greece, Vol. L, 995-1005, Proceedings of the 14th International Congress, Thessaloniki, May 2016.

  1. A. Efstratiadis, and S.M. Papalexiou, The quest for consistent representation of rainfall and realistic simulation of process interactions in flood risk assessment, European Geosciences Union General Assembly 2010, Geophysical Research Abstracts, Vol. 12, Vienna, 11101, European Geosciences Union, 2010.

    We present a methodological framework for the estimation of flood risk in the Boeoticos Kephisos river basin, in Greece, draining an area of 1850 km2. This is a challenging task since the basin has many peculiarities. Due to the dominance of highly-permeable geologic formations, significant portion of runoff derives from karst springs, which rapidly contribute to the streamflow, in contrast to the unusually low contribution of direct (flood) runoff. In addition, due to the combined abstractions from surface and groundwater recourses and the existence of an artificial drainage network in the lower part of the basin (where slopes are noticeably low), the system is heavily modified. To evaluate the probability of extreme floods, especially in such complex basins, it is essential to provide both a statistically consistent description of forcing (precipitation) and a realistic simulation of the runoff mechanisms. Typically, flood modelling is addressed through event-based tools that use deterministic design storms and empirical formulas for the estimation of the “effective” rainfall and its transformation to runoff. Yet, there are several shortcomings in such approaches, especially when employed to large-scale systems. First, the widely-used methodologies for constructing design storms fail to properly represent the variability of rainfall, since they do not account for the temporal and spatial correlations of the historical records. For instance, it is assumed that the input storms to all sub-basins correspond to the same return period. On the other hand, “event-based” models do not allow for interpreting flood risk as joint probabilities of all hydrological variables that interrelate in runoff generation (rainfall, stream-aquifer interactions, soil moisture accounting). Finally, for the estimation of model parameters, the typical approach is to calibrate them against normally few historical flood events, which is at least questionable – the information embedded within calibration is far from being representative of the catchment mechanisms. With the purpose of assessing flood risk in the aforementioned basin we employed a two-step procedure. First, we used an original multivariate stochastic rainfall model to simulate the daily rainfall in 13 stations, for which 40-year historical data exist. Particularly, the model reproduces sufficiently all the essential features of the observed rainfall, i.e. (a) the seasonal variation, (b) the probability dry, (c) the mean and the standard deviation of the marginal distribution, as well as the power-type asymptotic tail of it, which is strongly related to frequent occurrences of extreme events, (d) the lag-1 autocorrelations, and (e) the lag-0 and lag-1 cross-correlations among the stations. Next, the synthetic rainfall series of 1000-year length were imported to the recently adapted daily version of the conjunctive hydrological model HYDROGEIOS. The model has been calibrated against multisite discharge data for a six-year period, and then run in stochastic simulation mode to estimate the daily flows across the river network. The analysis of model results provided valuable conclusions, not only regarding the frequencies of extreme events, but also the key role of the karst aquifer in the amplification of the long-term persistence of the system responses.

    Full text:

  1. A. Efstratiadis, I. Nalbantis, E. Rozos, and D. Koutsoyiannis, Accounting for water management issues within hydrological simulation: Alternative modelling options and a network optimization approach, European Geosciences Union General Assembly 2010, Geophysical Research Abstracts, Vol. 12, Vienna, 10085, doi:10.13140/RG.2.2.22189.69603, European Geosciences Union, 2010.

    In mixed natural and artificialized river basins, many complexities arise due to anthropogenic interventions in the hydrological cycle, including abstractions from surface water bodies, groundwater pumping or recharge and water returns through drainage systems. Typical engineering approaches adopt a multi-stage modelling procedure, with the aim to handle the complexity of process interactions and the lack of measured abstractions. In such context, the entire hydrosystem is separated into natural and artificial sub-systems or components; the natural ones are modelled individually, and their predictions (i.e. hydrological fluxes) are transferred to the artificial components as inputs to a water management scheme. To account for the interactions between the various components, an iterative procedure is essential, whereby the outputs of the artificial sub-systems (i.e. abstractions) become inputs to the natural ones. However, this strategy suffers from multiple shortcomings, since it presupposes that pure natural sub-systems can be located and that sufficient information is available for each sub-system modelled, including suitable, i.e. “unmodified”, data for calibrating the hydrological component. In addition, implementing such strategy is ineffective when the entire scheme runs in stochastic simulation mode. To cope with the above drawbacks, we developed a generalized modelling framework, following a network optimization approach. This originates from the graph theory, which has been successfully implemented within some advanced computer packages for water resource systems analysis. The user formulates a unified system which is comprised of the hydrographical network and the typical components of a water management network (aqueducts, pumps, junctions, demand nodes etc.). Input data for the later include hydraulic properties, constraints, targets, priorities and operation costs. The real-world system is described through a conceptual graph, whose dummy properties are the conveyance capacity and the unit cost of each link. Unit costs are either real or artificial, and positive or negative. Positive costs are set to prohibit undesirable fluxes and negative ones to force fulfilling water demands for various uses. The assignment of costs is based on a recursive algorithm that implements the physical constraints and the user-specified hierarchy for the water uses. Referring to the desired management policy, an optimal allocation is achieved regarding the unknown fluxes within the hydrosystem (flows, abstractions, water losses) by minimizing the total transportation cost through the graph. The mathematical structure of the problem enables use of accurate and exceptionally fast solvers. The proposed methodology is effective, efficient and easy to implement, in order to link on-line multiple modelling components, thus ensuring a comprehensive overview of the process interactions in complex and heavily modified hydrosystems. It is applicable to hydrological simulators of the semi-distributed type, in which it allows integrating groundwater models and flood routing schemes within decision support modules. The methodology is implemented within the HYGROGEIOS computer package, which is illustrated by example applications in modified river basins in Greece.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.22189.69603

  1. A. Efstratiadis, K. Mazi, A. D. Koussis, and D. Koutsoyiannis, Flood modelling in complex hydrologic systems with sparsely resolved data, European Geosciences Union General Assembly 2009, Geophysical Research Abstracts, Vol. 11, Vienna, 4157, doi:10.13140/RG.2.2.13801.08807, European Geosciences Union, 2009.

    The European Directive on Assessment and Management of Flood Risks places significant emphasis on establishing tools suitable for simulating the relevant hydrologic processes in areas of high flood risk. Because flood modelling requires relatively detailed spatial and temporal resolutions, the model selection is controlled by the available distributed hydrologic information. The value of data (mainly stage/discharge records) is indisputable, since the quality of calibration and, consequently, the model predictive capacity, depends on the availability of reliable observations at multiple sites. On the other hand, data scarcity is a global problem in hydrologic engineering that is getting increasingly severe as the monitoring infrastructure is shrinking and degraded. It is therefore crucial to build reliable models that are parsimonious. In this vein, we have adapted the HYDROGEIOS model (Efstratiadis et al., 2008), initially developed as a conjunctive surface-groundwater simulation and water management tool at the monthly time scale, to run in daily time steps. In typical flood simulation packages inputs are time series of precipitation, which are resolved in hourly or finer increment, and detailed hydro-morphologic properties of the stream network. In contrast, the enhanced version of HYDROGEIOS only uses daily rainfall depths and a limited number of parameters that are estimated or calibrated on the basis of once-a-day discharge data. The character of HYDROGEIOS as a conjunctive model enables to represent simultaneously the interactions among the surface and sub-surface processes and the human interventions, and to route the runoff across the stream network. Lacking finely resolved precipitation data and for the purpose of flood routing, we have applied a disaggregation technique to analyse the simulated daily hydrographs in finer time steps. Flood routing is implemented via either a kinematic-wave or a Muskingum diffusive-wave scheme, introducing only one or two parameters per stream reach, respectively. The new version of HYDROGEIOS is being tested on the Boeotikos Kephisos River Basin for flood forecasting in real-time, using as input precipitation forecasts from numerical weather prediction simulations (European project FLASH). The basin is heavily modified, with strong physical heterogeneities, involving multiple peculiarities such as significant karst springs, which rapidly contribute to the streamflow, thus reflecting a strong interaction between surface and ground water processes, and a drainage canal and network in the lower basin with extremely small slopes.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.13801.08807

  1. A. Efstratiadis, and D. Koutsoyiannis, On the practical use of multiobjective optimisation in hydrological model calibration, European Geosciences Union General Assembly 2009, Geophysical Research Abstracts, Vol. 11, Vienna, 2326, doi:10.13140/RG.2.2.10445.64480, European Geosciences Union, 2009.

    In the last decade, the application of multiobjective optimisation algorithms in calibrating hydrological models has become increasingly popular. This approach enables for generating a number of Pareto-optimal parameter sets on the basis of multiple criteria, usually expressed by means of statistical fitting functions on observed data. Since the focus was given to the algorithmic handling of the problem, less attention was paid on some critical practical issues, regarding the selection of criteria and the identification of acceptable compromises among the vast number of non-dominated solutions. These are revealed by means of real-world examples, involving models of different levels of complexity. We provide some practical guidelines to take advantage of the hydrological experience, in order to enhance the information contained in calibration, thus ensuring consistent and reliable models. In this context, we emphasise on the incorporation of the so-called "soft" data within calibration, which characterise the qualitative rather than the quantitative knowledge about the behaviour of the hydrological system. This allows for evaluating the model performance against a number of responses and internal variables that are not controlled by measurements. Moreover, we attempt to treat the concepts of equifinality and Pareto optimality, as two complementary approaches to the parameter estimation problem. Finally, having determined a representative set of non-dominated solutions, we examine strategies for selecting the best-suited one and recognising ill-performed calibrations, which are due to either structural or data errors.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.10445.64480

    Other works that reference this work (this list might be obsolete):

    1. #Malleson, N., L. See, A. Evans and A. Heppenstall, Optimising an agent-based model to explore the behaviour of simulated burglars, Theories and Simulations of Complex Social Systems (Intelligent Systems Reference Library) 52, 179-204, 2014.

  1. G. G. Anagnostopoulos, D. Koutsoyiannis, A. Efstratiadis, A. Christofides, and N. Mamassis, Credibility of climate predictions revisited, European Geosciences Union General Assembly 2009, Geophysical Research Abstracts, Vol. 11, Vienna, 611, doi:10.13140/RG.2.2.15898.24009, European Geosciences Union, 2009.

    In a recent study (Koutsoyiannis et al., On the credibility of climate predictions, Hydrological Sciences Journal, 53 (4), 671–684, 2008), the credibility of climate predictions was assessed based on comparisons with long series of observations. Extending this research, which compared the outputs of various climatic models to temperature and precipitation observations from 8 stations around the globe, we test the performance of climate models at over 50 additional stations. Furthermore, we make comparisons at a large sub-continental spatial scale after integrating modelled and observed series.

    Remarks:

    Please visit/cite the peer-reviewed version of this article:

    Anagnostopoulos, G. G., D. Koutsoyiannis, A. Christofides, A. Efstratiadis, and N. Mamassis, A comparison of local and aggregated climate model outputs with observed data, Hydrological Sciences Journal, 55 (7), 1094–1110, 2010.

    Related works:

    • [94] Prior related presentation
    • [18] Prior related publication
    • [15] A comparison of local and aggregated climate model outputs with observed data

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.15898.24009

    Other works that reference this work (this list might be obsolete):

    1. Stockwell, D. R. B., Critique of Drought Models in the Australian Drought Exceptional Circumstances Report (DECR), Energy & Environment, 21 (5), 425-436, 2010.

  1. D. Koutsoyiannis, N. Mamassis, A. Christofides, A. Efstratiadis, and S.M. Papalexiou, Assessment of the reliability of climate predictions based on comparisons with historical time series, European Geosciences Union General Assembly 2008, Geophysical Research Abstracts, Vol. 10, Vienna, 09074, doi:10.13140/RG.2.2.16658.45768, European Geosciences Union, 2008.

    As falsifiability is an essential element of science (Karl Popper), many have disputed the scientific basis of climatic predictions on the grounds that they are not falsifiable or verifiable at present. This critique arises from the argument that we need to wait several decades before we may know how reliable the predictions will be. However, elements of falsifiability already exist, given that many of the climatic model outputs contain time series for past periods. In particular, the models of the IPCC Third Assessment Report have projected future climate starting from 1990; thus, there is an 18-year period for which comparison of model outputs and reality is possible. In practice, the climatic model outputs are downscaled to finer spatial scales, and conclusions are drawn for the evolution of regional climates and hydrological regimes; thus, it is essential to make such comparisons on regional scales and point basis rather than on global or hemispheric scales. In this study, we have retrieved temperature and precipitation records, at least 100-year long, from a number of stations worldwide. We have also retrieved a number of climatic model outputs, extracted the time series for the grid points closest to each examined station, and produced a time series for the station location based on best linear estimation. Finally, to assess the reliability of model predictions, we have compared the historical with the model time series using several statistical indicators including long-term variability, from monthly to overyear (climatic) time scales. Based on these analyses, we discuss the usefulness of climatic model future projections (with emphasis on precipitation) from a hydrological perspective, in relationship to a long-term uncertainty framework.

    Remarks:

    Please visit/cite the peer-reviewed version of this article:

    Koutsoyiannis, D., A. Efstratiadis, N. Mamassis, and A. Christofides, On the credibility of climate predictions, Hydrological Sciences Journal, 53 (4), 671-684, 2008.

    Blogs and forums that discussed this article during 2008:

    Blogs with comments about this article during 2008:

    Real Climate 1, Real Climate 2, Prometheus: The Science Policy Weblog 2, Environmental Niche Modeling, Rabett Run, Internet Infidels Discussion Board, Science Forums, BBC News Blogs, Jim Miller on Politics, James' Empty Blog, Green Car Congress, Channel 4 Forums, Deltoid, Washington Post Blogs, Herald Sun Blogs 1, Herald Sun Blogs 2, Herald Sun Blogs 3, AccuWeather, Skeptical Science, Debunkers, Yahoo groups: AlasBabylon, Sciforums, Lughnasa, Jennifer Marohasy 2, Jennifer Marohasy 3, Jennifer Marohasy 4, Bruin Skeptics, Changement Climatique, Klimatika, JFER Forum, The Sydney Morning Herald Blogs: Urban Jungle

    Errata: In slide 3 "regional projections" should read "geographically distributed projections" and the reference of figures to IPCC chapter 11 (Christensen et al., 2007) should change to Chapter 10 (Meehl et al., 2007; also in list of references in slide 20). In slide 11 "Albany, Florida" should read "Albany, Georgia" (thanks to QE in the Small Dead Animals blog who spotted them).

    Related works:

    • [93] Credibility of climate predictions revisited (follow up study)
    • [18] On the credibility of climate predictions

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.16658.45768

    Other works that reference this work (this list might be obsolete):

    1. #Ekmann, J., and R.C. Dolence, Energy project risk amidst climate change regulatory uncertainty, 25th Annual International Pittsburgh Coal Conference, PCC – Proceedings, 2008.
    2. #Taylor, P., Chill, a reassessment of global warming theory: does climate change mean the world is cooling, and if so what should we do about it?, Clairview Books, 404 pp., 2009.
    3. #Howell, B., The Kyoto Premise and the catastrophic failure of rational, logical, and scientific thinking by essentially all scientists, Lies, Damned Lies, and Scientists: the Kyoto Premise example, Chapter A.1, 2011.
    4. Bakker, A. M. R., and B. J. J. M. van den Hurk, Estimation of persistence and trends in geostrophic wind speed for the assessment of wind energy yields in Northwest Europe, Climate Dynamics, 39 (3-4), 767-782, 2012.

  1. D. Koutsoyiannis, A. Efstratiadis, and K. Georgakakos, A stochastic methodological framework for uncertainty assessment of hydroclimatic predictions, European Geosciences Union General Assembly 2007, Geophysical Research Abstracts, Vol. 9, Vienna, 06026, doi:10.13140/RG.2.2.16029.31202, European Geosciences Union, 2007.

    In statistical terms, the climatic uncertainty is the result of at least two factors, the climatic variability and the uncertainty of parameter estimation. Uncertainty is typically estimated using classical statistical methodologies that rely on a time independence hypothesis. However, climatic processes are not time independent but, as evidenced from accumulating observations from instrumental and paleoclimatic time series, exhibit long-range dependence, also known as the Hurst phenomenon or scaling behaviour. A methodology comprising analytical and Monte Carlo techniques is developed to determine uncertainty limits for the nontrivial scaling case. It is shown that, under the scaling hypothesis, the uncertainty limits are much wider than in classical statistics. Also, due to time dependence, the uncertainty limits of future are influenced by the available observations of the past. The methodology is tested and verified using a long instrumental meteorological record, the mean annual temperature at Berlin. It is demonstrated that the developed methodology provides reasonable uncertainty estimates whereas classical statistical uncertainty bands are too narrow. Furthermore, the framework is applied with temperature, rainfall and runoff data from a catchment in Greece, for which data exist for about a century. The uncertainty limits are then compared to deterministic projections up to 2050, obtained for several scenarios from several climatic models combined with a hydrological model. It is obtained that climatic model outputs for rainfall and the resulting runoff do not display significant future changes as the projected time series lie well within uncertainty limits assuming stable climatic conditions along with a scaling behaviour.

    Related works:

    • [20] Detailed article.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.16029.31202

  1. I. Nalbantis, A. Efstratiadis, and D. Koutsoyiannis, On the use and misuse of semi-distributed rainfall-runoff models, XXIV General Assembly of the International Union of Geodesy and Geophysics, Perugia, doi:10.13140/RG.2.2.14351.59044, International Union of Geodesy and Geophysics, International Association of Hydrological Sciences, 2007.

    Recent advances in hydrological modelling have led to a variety of complex, distributed or semi-distributed schemes, aiming to describe the heterogeneity of physical processes across a river basin. These are useful for operational purposes, such as design of large hydraulic structures, sustainable management of water resources and flood forecasting. However, due to the large number of parameters involved and the need for extended measurements, a robust calibration, which ensures a satisfactory predictive capacity as well as a physical interpretation of parameters, is a very difficult task. Hence, the applicability of such models in real-world studies, employed by practitioners with moderate hydrological knowledge, is at least questionable. The paper aims to reveal some critical issues, regarding the entire procedure of selecting, configuring and fitting a hydrological model. These are discussed on the basis of four classification criteria: the expertise level of the user, the representation of processes, the parameterization concept and the calibration strategy. An inexperienced user focuses on just finding a good fitting between model outputs and observations, usually by activating more parameters than are supported by the data. In contrast, an expert hydrologist wishes to explain the entire spectrum of model results, giving emphasis on the reasonable representation of the processes and the consistency of the all output variables, even those not controlled by the calibration (e.g. real evapotranspiration, soil moisture and groundwater storage fluctuation, etc.). In terms of the processes representation, modelling approaches that are devised for uniform, undisturbed basins are misused if applied on complex systems, with multiple human interventions. The next criterion refers to the parameterization procedure. Some approaches assign parameter values on the basis of the schemati zation, i.e. the spatial discretization of the system under study (e.g. the sub-basins), thus leading to schemes with too many degrees of freedom, suffering from the well-known "curse of dimensionality". On the other hand, more intelligent models assume different levels of parameterization and schematization, employing the concept of a hydrological response unit. Thus, they significantly reduce the number of control parameters, also ensuring consistency with the physical characteristics of the system under study. Finally, one may classify the calibration strategies from manual, one-criterion fitting to sophisticated automatic optimization methods, using evolutionary algorithms and multiple fitting criteria, both statistical (based on measurements) and empirical (based on the hydrological experience). The above spectrum of modelling options is explored by selecting representative cases which reveal problems of everyday hydrological practice. The test area is the Boeoticos Kephisos basin, Greece, where a conjunctive simulation model is employed to describe the surface and groundwater hydrological processes as well as the water management practices.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.14351.59044

  1. K. Georgakakos, D. Koutsoyiannis, and A. Efstratiadis, Uncertainty assessment of future hydroclimatic predictions: Methodological framework and a case study in Greece, European Geosciences Union General Assembly 2006, Geophysical Research Abstracts, Vol. 8, Vienna, 08065, doi:10.13140/RG.2.2.29975.37284, European Geosciences Union, 2006.

    A stochastic framework for climatic variability and uncertainty is presented, based on the following lines: (1) a climatic variable is not a parameter constant in time but rather a variable representing the long-term (e.g. 30-year) time average of a certain natural process, defined on a fine scale; (2) the evolution of climate is represented as a stochastic process; (3) the distributional parameters of the process, marginal and dependence, are estimated from an available sample by statistical methods; (4) the climatic uncertainty is the result of at least two factors, the climatic variability and the uncertainty of parameter estimation; (5) a climatic process exhibits a scaling behaviour, also known as long-range dependence or the Hurst phenomenon; (6) due to this dependence, the uncertainty limits of future are influenced by the available observations of the past. The last two lines differ from classical statistical considerations and produce uncertainty limits that eventually are much wider than those of classical statistics. A combination of analytical and Monte Carlo methods is developed to determine uncertainty limits for the nontrivial scaling case. The framework developed is applied with temperature, rainfall and runoff data from a catchment in Greece, for which data exist for about a century. The uncertainty limits are then compared to deterministic projections up to 2050, obtained for several scenarios from several climatic models combined with a hydrologic model.

    Related works:

    • [20] Posterior, more complete article.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.29975.37284

  1. A. Efstratiadis, D. Koutsoyiannis, and G. Karavokiros, Linking hydroinformatics tools towards integrated water resource systems analysis, European Geosciences Union General Assembly 2006, Geophysical Research Abstracts, Vol. 8, Vienna, 02096, doi:10.13140/RG.2.2.26619.92966, European Geosciences Union, 2006.

    The management of complex water resource systems requires system-wide decision-making and control, to fulfil multiple and often contradictory water uses and constraints, maximize benefits and simultaneously minimize risks or negative impacts. The rapidly developing area of hydroinformatics provides a variety of methodologies and tools that are suitable to solve specific computational problems and demands an integrated framework of model co-operation and linking. A holistic water resource systems analysis framework is presented, comprising conceptual and stochastic hydrological models, hydrosystem simulation models, and algorithms for both linear and non-linear optimization. The key concepts are the formulation of parsimonious structures that are consistent with the available data, the conjunctive representation of physical and man-made processes, the quantification of uncertainties and risks, the faithful description of system dynamics, and the use of optimization to provide rational results within multiple modelling scales. The hydrosystem schematization is based on a network-type representation of real-world components, including both physical (basins, rivers, aquifers, etc.) and artificial ones (reservoirs, aqueducts, boreholes, demand points, etc.). Hydrological inflows are synthetically generated, through a multivariate stochastic simulation scheme that preserves all essential statistical properties as well as the time- and space-correlations across different time scales. Hydrosystem operation is represented through a low-dimensional approach, based on generalized parametric rules, which are assigned to the main hydraulic controls. All water resource management aspects, including technical, economical and environmental data are effectively handled through a generalized graph optimization approach, which simultaneously preserves a detailed description of the related processes and computational efficiency. A global optimization approach, also implemented on a multiobjective basis, is used to provide suitable management policies and support decisions. Besides, the stochastic representation of all hydrosystem fluxes enables the assessment of results on a reliability basis.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.26619.92966

  1. A. Efstratiadis, A. Koukouvinos, E. Rozos, I. Nalbantis, and D. Koutsoyiannis, Control of uncertainty in complex hydrological models via appropriate schematization, parameterization and calibration, European Geosciences Union General Assembly 2006, Geophysical Research Abstracts, Vol. 8, Vienna, 02181, doi:10.13140/RG.2.2.28297.65124, European Geosciences Union, 2006.

    The recent expansion of complex, distributed modelling schemes results in significant increase of computational effort, thus making the traditional parameter estimation problem extremely difficult to handle. Recent advances provide a variety of mathematical techniques to quantify the uncertainty of model predictions. Despite their different theoretical background, such approaches aim to discover "promising" trajectories of the model outputs that correspond to multiple, "behavioural" parameter sets, rather than a single "global optimal" one. Yet, their application indicates that it is not unusual the case where model predictive uncertainty is comparable to the typical statistical uncertainty of the measured outputs, thus making the model validity at least questionable. Uncertainty is due to multiple sources that are interacted in a chaotic manner. Some of them are "inherent" and therefore unavoidable, as they are related to the complexity of physical processes, necessarily represented through simplified hypotheses about the watershed behaviour. Other sources are though controllable via appropriate schematization, parameterization and calibration. This involves adaptation of the principle of parsimony, appropriate distributed models and incorporation of hydrological experience within the parameter estimation procedure. The above issues are discussed on the basis of a conjunctive modelling scheme, fitted to two complex hydrosystems of Greece. A parsimonious structure is made possible by spatial analysis that is consistent with the available data and the operational requirements regarding water management, and the correspondence of model parameters to the "broad" physical characteristics of each system. Within the calibration strategy, the key concept is to exploit any type of knowledge, including systematic measurements as well as additional information about non-measured model outputs, in a multi-response optimization framework. The entire approach contributes to a significant reduction of uncertainties, as indicated by successful validation results.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.28297.65124

  1. A. Efstratiadis, G. Karavokiros, S. Kozanis, A. Christofides, A. Koukouvinos, E. Rozos, N. Mamassis, I. Nalbantis, K. Noutsopoulos, E. Romas, L. Kaliakatsos, A. Andreadakis, and D. Koutsoyiannis, The ODYSSEUS project: Developing an advanced software system for the analysis and management of water resource systems, European Geosciences Union General Assembly 2006, Geophysical Research Abstracts, Vol. 8, Vienna, 03910, doi:10.13140/RG.2.2.24942.20805, European Geosciences Union, 2006.

    The ODYSSEUS project (from the Greek acronym of its full title "Integrated Management of Hydrosystems in Conjunction with an Advanced Information System") aims at providing support to decision-makers towards integrated water resource management. The end-product comprises a system of co-operating software applications, suitable to handle a wide spectrum of water resources problems. The key methodological concepts are the holistic modelling approach, through the conjunctive representation of processes regarding water quantity and quality, man-made interventions, the parsimony of both input data requirements and system parameterization, the assessment of uncertainties and risks, and the extended use of optimization both for modelling (within various scales) and derivation of management policies. The core of the system is a relational database, named HYDRIA, for storing hydrosystem information; this includes geographical data, raw and processed time series, characteristics of measuring stations and facilities, and a variety of economic, environmental and water quality issues. The software architecture comprises various modules. HYDROGNOMON supports data retrieval, processing and visualization, and performs a variety of time series analysis tasks. HYDROGEIOS integrates a conjunctive hydrological model within a systems-oriented water management scheme, which estimates the available water resources at characteristic sites of the river basin and at the underlying aquifer. HYDRONOMEAS is the hydrosystem control module and locates optimal operation policies that minimize the risk and cost of decision-making. Additional modules are employed to prepare input data. DIPSOS estimates water needs for various uses (water supply, irrigation, industry, etc.), whereas RYPOS estimates pollutant loads from point and non-point sources, at a river basin scale. A last category comprises post-processing modules, for evaluating the proposed management policies by means of economical efficiency and water quality requirements. The latter include sophisticated models that estimate the space and time variation of specific pollutants within rivers (HERIDANOS) and lakes (LERNE), as well as simplified versions of them to be used within the hydrosystem simulation scheme. An interactive framework enables the exchange of data between the various modules, either off-line (through the database) or on-line, via appropriate design of common information structures. The whole system is in the final phase of its development and parts of it have been already tested in operational applications, by water authorities, organizations and consulting companies.

    Full text:

    Additional material:

    See also: http://dx.doi.org/10.13140/RG.2.2.24942.20805

  1. A. Efstratiadis, A. Tegos, I. Nalbantis, E. Rozos, A. Koukouvinos, N. Mamassis, S.M. Papalexiou, and D. Koutsoyiannis, Hydrogeios, an integrated model for simulating complex hydrographic networks - A case study to West Thessaly region, 7th Plinius Conference on Mediterranean Storms, Rethymnon, Crete, doi:10.13140/RG.2.2.25781.06881, European Geosciences Union, 2005.

    An integrated scheme, comprising a conjunctive hydrological model and a systems oriented management model, was developed, based on a semi-distributed approach. Geographical input data include the river network, the sub-basins upstream of each river node and the aquifer dicretization in the form of groundwater cells of arbitrary geometry. Additional layers of distributed geographical information, such as geology, land cover and terrain slope, are used to define the hydrological response units. Various modules are combined to represent the main processes at the water basin such as, soil moisture, groundwater, flood routing and water management models. Model outputs include river discharges, spring flows, groundwater levels and water abstractions. The model can be implemented in daily and monthly basis. A case study to the West Thessaly region performed. The discharges of five hydrometric stations and the water levels of eight boreholes were used simultaneously for model calibration. The implementation of the model to the certain region demonstrated satisfactory agreement between the observed and the simulated data.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.25781.06881

  1. S. Kozanis, A. Christofides, N. Mamassis, A. Efstratiadis, and D. Koutsoyiannis, Hydrognomon - A hydrological data management and processing software tool, European Geosciences Union General Assembly 2005, Geophysical Research Abstracts, Vol. 7, Vienna, 04644, doi:10.13140/RG.2.2.34222.10561, European Geosciences Union, 2005.

    Hydrognomon is a software tool for the management and analysis of hydrological data. It is built on a standard Windows platform based on client-server architecture; a database server is holding hydrological data whereas several workstations are executing Hydrognomon, sharing common data. Data retrieval, processing and visualisation are supported by a multilingual Graphical User Interface. Data management is based on geographical organisation to entities such as measuring stations, river basins, and reservoirs. Each entity may possess time series, physical properties, calculation parameters, multimedia content, etc. The main part of hydrological data analysis consists of time series processing applications, such as time step aggregation and regularisation, interpolation, regression analysis and filling in of missing values, consistency tests, data filtering, graphical and tabular visualisation of time series, etc. The program supports also specific hydrological applications, including evapotranspiration modelling, stage-discharge analysis, homogeneity tests, water balance methods, etc. The statistical module provides tools for sampling analysis, distribution functions, statistical forecast, Monte-Carlo simulation, analysis of extreme events and construction of intensity-duration-frequency curves. A final module is a lumped hydrological model, with alternative configurations, also supported by automatic calibration facilities. Hydrognomon is operationally used by the largest water organisation as well as technical corporations in Greece.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.34222.10561

    Other works that reference this work (this list might be obsolete):

    1. #Zarris, D., Analysis of the environmental flow requirement incorporating the effective discharge concept, Proceedings of the 6th International Symposium on Environmental Hydraulics, Athens, 1125–1130, International Association of Hydraulic Research, National Technical University of Athens, 2010.
    2. Puricelli, M., Update and analysis of intensity - duration - frequency curves for Balcarce, Buenos Aires province, Argentina, Revista de Geología Aplicada a la Ingeniería y al Ambiente, 32, 61-70, 2014.
    3. Radevski, I., S. Gorin, O. Dimitrovska, I. Milevski, B. Apostolovska-Toshevska, M. Taleska, and V. Zlatanoski, Estimation of maximum annual discharges by frequency analysis with four probability distributions in case of non-homogeneous time series (Kazani karst spring in Republic of Macedonia), Acta Carsologica, 45(3), 253-262, doi:10.3986/ac.v45i3.1544, 2016.

  1. A. Efstratiadis, G. Karavokiros, and D. Koutsoyiannis, Hydronomeas: A water resources planning and management software system, European Geosciences Union General Assembly 2005, Geophysical Research Abstracts, Vol. 7, Vienna, 04675, doi:10.13140/RG.2.2.29608.37128, European Geosciences Union, 2005.

    Hydronomeas is an operational software tool for the management of complex water resource systems. It is suitable to a wide range of hydrosystems, incorporating numerous physical, operational, administrative and environmental aspects of integrated river basin management. The mathematical framework follows the parameterisation-simulation-optimisation scheme; simulation is applied to faithfully represent the system operation, expressed in the form of parametric management rules, whereas optimisation is applied to derive the optimal management policy, which simultaneously minimises the risk and cost of decision-making. Hydrological inflows are synthetically generated, thus providing stochastic predictions for all system outputs (reservoir storages and withdrawals). Real economic criteria in addition to virtual costs are appropriately assigned to preserve the physical constraints and water use priorities, ensuring also the lowest-energy transportation path of water from the sources to the consumption. Hydronomeas is developed to operate within the framework of a decision support system, with a graphical user interface allowing users to create any configuration of hydrosystems consisting of reservoirs, groundwater facilities, pumping and hydropower stations, aqueduct networks, demand points, etc. Data structures are controlled by a database management module, whereas simulation is accompanied by a visualisation module. Results, including the optimal operating rule for each component of the system, the failure probability for each water use, the water and energy balance, as well as prediction curves for all hydrosystem fluxes, are presented in graphical plots. Saved scenarios can also be retrieved in the form of printable reports, which are automatically generated through the database management module. From year 2000, Hydronomeas is the central supporting tool of the Athens Water Supply and Sewage Company (EYDAP).

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.29608.37128

  1. A. Efstratiadis, and D. Koutsoyiannis, The multiobjective evolutionary annealing-simplex method and its application in calibrating hydrological models, European Geosciences Union General Assembly 2005, Geophysical Research Abstracts, Vol. 7, Vienna, 04593, doi:10.13140/RG.2.2.32963.81446, European Geosciences Union, 2005.

    Optimisation problems related to water resources are, by nature, multiobjective, even if traditionally handled as single-objective. Current advances in hydrological modelling employ multiobjective approaches to treat the well-known problem of "equifinality", thus assessing the uncertainties related to the parameter estimation procedure. However, computer tools generating Pareto-optimal solutions are still particularly time-consuming, especially in real-world applications, with many parameters and many fitting criteria. Moreover, the mathematical concept of Pareto optimality often leads to solutions that are far away from an acceptable compromise between the conflicting objectives. Most multiobjective optimisation tools are adaptations of evolutionary algorithms. In multiobjective evolutionary optimisation two are the major goals: (a) guiding the search towards the Pareto-optimal front, and (b) generating a well-distributed set of nondominated solutions. Both are achieved through the fitness evaluation and selection procedures; using the fundamental principle of dominance, scalar fitness values are assigned to individuals, then evolved by employing the typical genetic operators (crossover, mutation). The multiobjective evolutionary annealing-simplex (MEAS) method is an innovative scheme, also comprising an evaluation phase and an evolution phase. The evaluation aims to assign a performance measure to each member of the population, which requires the comparison of all individuals against each other and against all criteria. A fitness strategy inspired from the strength-Pareto approach of Zitlzer and Thiele (IEEE Trans. Evol. Comp., 3(4), 1999), in addition to an extension of the definition of dominance, provides a large variety of discrete performance values. The population is guided towards a promising sub-region of the Pareto front (not the entire front), that contains representative trade-offs, among which the best-compromise may easily detected. The generation of solutions with extreme performance, i.e. too good against some criteria, too bad for the rest ones, is prohibited, by means of penalty functions. In this manner, the discrete fitness space is transformed to a continuous space, which may be explored through global search techniques. The latter (i.e., the evolution phase) is implemented through a set of combined deterministic and stochastic transition rules, most of them based on a simplex-evolving pattern. During evolution, the degree of randomness is controlled through an adaptive annealing cooling schedule, which automatically regulates the "temperature" of the system. The MEAS method was tested on a variety of benchmark functions taken from the literature, as well as on some challenging hydrological applications, formerly handled through weighted objective functions. The analysis indicate that the proposed algorithm locates good trade-offs among the conflicting objectives simultaneously being much more efficient if compared to other, well-established multiobjective evolutionary schemes.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.32963.81446

    Other works that reference this work (this list might be obsolete):

    1. Rothfuss, Y., I. Braud, N. Le Moine, P. Biron, J.-L. Durand, M. Vauclin, and T. Bariac, Factors controlling the isotopic partitioning between soil evaporation and plant transpiration: assessment using a multi-objective calibration of SiSPAT-Isotope under controlled conditions, Journal of Hydrology, 442-443, 75-88, 2012.
    2. Coron, L., V. Andréassian, C. Perrin, M. Bourqui, and F. Hendrickx, On the lack of robustness of hydrologic models regarding water balance simulation – a diagnostic approach on 20 mountainous catchments using three models of increasing complexity, Hydrology and Earth System Sciences, 18, 727-746, 2014.
    3. Magand, C., A. Ducharne, N. Le Moine, and P. Brigode, Parameter transferability under changing climate: case study with a land surface model in the Durance watershed, France, Hydrological Sciences Journal, 2014.

  1. A. Efstratiadis, E. Rozos, A. Koukouvinos, I. Nalbantis, G. Karavokiros, and D. Koutsoyiannis, An integrated model for conjunctive simulation of hydrological processes and water resources management in river basins, European Geosciences Union General Assembly 2005, Geophysical Research Abstracts, Vol. 7, Vienna, 03560, doi:10.13140/RG.2.2.27930.64960, European Geosciences Union, 2005.

    In complex hydrosystems, where natural processes are significantly affected by human interventions, a holistic modelling concept is required, to ensure a more faithful representation of mechanisms and hence a rational water resource management. An integrated scheme, comprising a conjunctive (i.e., surface and groundwater) hydrological model and a systems-oriented management model, was developed, based on a semi-distributed approach. Geographical input data include the river network, the sub-basins upstream of each river node and the aquifer discretization in the form of groundwater cells of arbitrary geometry. Additional layers of distributed geographical information, such as geology, land cover and terrain slope, are used to define the hydrological response units (HRUs); the latter are spatial components that correspond to areas of homogenous hydrological characteristics. On the other hand, input data for artificial components include reservoirs, water abstraction facilities, aqueducts and demand points. Dynamic input data consist of precipitation and potential evapotranspiration series, given at a sub-basin scale, and target demand series. Targets refer not only to water needs but also to various water management constraints, such as the preservation of minimum flows across the river network. Various modules are combined to represent the key processes in the watershed, i.e. (a) a conceptual soil moisture accounting model, with different parameters assigned to each HRU; (b) a groundwater model, based on a modified finite-volume numerical method; (c) a routing model, that implements the water movement across the river network; and (d) a water management model, inspired from the graph theory, which estimates the optimal hydrosystem fluxes, satisfying both physical constraints and target priorities and simultaneously minimising costs. Model outputs include discharges through the river network, spring flows, groundwater levels and water abstractions. The calibration employs an automatic procedure, based on multiple error criteria and a robust global optimisation algorithm. The model was applied to a meso-scale (~2000 km2) watershed in Greece, characterised by a complex physical system (a karstified background, with extended losses to the sea) and conflicting water uses. 10-year monthly discharge series from seven gauging stations were used to evaluate the model performance. Extended analysis proved that the exploitation of spatially distributed input information, in addition to the usage of a reasonable number of control variables that are fitted to multiple observed responses, ensures more realistic model parameters, also reducing prediction uncertainty, in comparison to earlier (both fully conceptual and fully distributed) approaches. Moreover, the incorporation of the water resource management scheme within the hydrological simulator makes the model suitable for operational use.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.27930.64960

  1. D. Koutsoyiannis, and A. Efstratiadis, Climate change certainty versus climate uncertainty and inferences in hydrological studies and water resources management (solicited), European Geosciences Union General Assembly 2004, Geophysical Research Abstracts, Vol. 6, Nice, doi:10.13140/RG.2.2.12726.29764, European Geosciences Union, 2004.

    Anthropogenic changes in the composition of the atmosphere and land uses certainly affect climate and hydrological responses in a cause-and-effect relationship. However, an accurate deterministic prediction of future hydro-climatic regimes, incorporating anthropogenic effects, may be infeasible. Obvious sources of uncertainty are the weaknesses of climatic and hydrological models. Besides, uncertainty may be also a structural and inevitable characteristic of the related processes, as the atmosphere and hydrological basins are inherently too complex systems. Quantification of uncertainty in probabilistic terms can be regarded as a more feasible alternative in comparison to the elimination of uncertainty. However, the quantification of (the increase of) uncertainty under future conditions, including anthropogenic effects, is hardly achievable at present. A small feasible step is the quantification of uncertainty under present and past conditions. This has been seriously underestimated and underrated so far. Climatic models describe a portion of natural variability and result in interannual variability that is commonly too weak. Hydrological models tend to smooth out variability of hydrological processes. Even probabilistic approaches based on classical statistical analyses of real world data hide some sources of variability and uncertainty, especially the ones related to the omnipresent long-term persistence of natural processes. The latter approaches, however, can be adapted towards making their estimations closer to reality, thus resulting in more accurate yet impressively higher estimates of uncertainty. These ideas and questions are illustrated by means of a case study dealing with hydrological modelling and water resources management in a Greek catchment.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.12726.29764

    Other works that reference this work (this list might be obsolete):

    1. Kim, B.-S., H.-S. Kim, and H.-S. Min, Hurst’s memory for chaotic, tree ring, and SOI series, Applied Mathematics, 5, 175-195, 2014.
    2. Tatli, H., Detecting persistence of meteorological drought via the Hurst exponent, Meteorological Applications, doi:10.1002/met.1519, 2015.

  1. A. Efstratiadis, D. Koutsoyiannis, K. Hadjibiros, A. Andreadakis, A. Stamou, A. Katsiri, G.-F. Sargentis, and A. Christofides, A multicriteria approach for the sustainable management of the Plastiras reservoir, Greece, EGS-AGU-EUG Joint Assembly, Geophysical Research Abstracts, Vol. 5, Nice, doi:10.13140/RG.2.2.23631.48801, European Geophysical Society, 2003.

    The Plastiras reservoir, sited in Western Thessaly, Greece, is a multipurpose project used for irrigation, water supply, hydropower, and recreation; the importance of the latter is continuously increasing as the reservoir landscape becomes attractive to tourists. These uses are competitive and result in a particularly complex problem of water management. Recently, a multidisciplinary analysis was attempted, aiming at determining a rational and sustainable management policy for the Plastiras Lake. This consists of establishing a minimum allowable water level for abstractions, in addition to a proper release policy. Until now, the reservoir level has had a 16 m fluctuation range, affecting negatively both the landscape, due to the exposure of the dead (no-vegetation) zone and the water quality. Three types of analyses were employed, to determine the variation of the corresponding criteria as a function of the allowable minimum level. The first one was the annual safe yield for various reliability levels, derived through a stochastic simulation model for the reservoir operation. The second criterion was the average summer concentration of chlorophyll-a (as indicator of the eutrophic regime of the lake), estimated through a one-dimensional eutrophication model. The final criterion was the aesthetics of the landscape; the relative study was focused on the effects of level variation and determined five fluctuation zones to characterise the quality of the landscape. After multiobjective analysis, and in cooperation with the local authorities and the public, a specific value of the minimum allowable level and a release policy were selected, which are currently on the way to be formally legislated.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.23631.48801

    Other works that reference this work (this list might be obsolete):

    1. Gounaridis, D., and G. N. Zaimes, GIS-based multicriteria decision analysis applied for environmental issues: the Greek experience, International Journal of Applied Environmental Sciences, 7(3), 307–321, 2012.

  1. A. Efstratiadis, D. Koutsoyiannis, E. Rozos, and I. Nalbantis, Calibration of a conjunctive surface-groundwater simulation model using multiple responses, EGS-AGU-EUG Joint Assembly, Geophysical Research Abstracts, Vol. 5, Nice, doi:10.13140/RG.2.2.23002.34246, European Geophysical Society, 2003.

    A multi-cell semi-distributed model was developed to simulate the hydrological processes of the Boeoticos Kephisos river basin and its underlying karst. The whole system (surface and underground) provides water for local irrigation use as well as for the supply of Athens. Moreover, the basin outflow, a significant part of which comes from karstic springs, feeds Lake Yliki, one of the three main supply reservoirs of Athens. The model consists of a set of interconnected cells. Each cell is further divided into a surface and a ground water sub-cell. The former is modelled as a soil moisture reservoir, with precipitation and potential evapotranspiration as inputs, and surface runoff, actual evapotranspiration and deep percolation as outputs. The groundwater sub-cell operates according to Darcy's law; it accepts percolation and lateral flow as inputs, and yields lateral outflow to adjacent cells or the sea, spring runoff and water abstractions as outputs. A heuristic evolutionary optimisation algorithm, where a generalised downhill simplex scheme is coupled with a simulated annealing strategy, is applied to calibrate the model. The model calibration is based on a multi-objective approach, aiming at fitting the historical hydrographs, which are available at the basin outlet and the main spring sites, to the simulated ones. Extended analysis illustrated that the uncertainty of parameters is much larger for the groundwater subsystem, mainly due to the existence of non-measurable outflows to the sea. Hence, the selection of the best-compromise parameter set is based on empirical estimations of the location and magnitude of losses to the sea.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.23002.34246

  1. G. Karavokiros, A. Efstratiadis, and D. Koutsoyiannis, A decision support system for the management of the water resource system of Athens, 26th General Assembly of the European Geophysical Society, Geophysical Research Abstracts, Vol. 3, Nice, doi:10.13140/RG.2.2.28035.50724, European Geophysical Society, 2001.

    The water resource system of Greater Athens supplies water mainly for domestic and industrial use to the metropolitan area of Athens, Greece. The system consists of four reservoirs, groundwater resources, and a network of aqueducts and pumping stations. For the control of this system an integrated computational framework was developed named Hydronomeas, which implements the parameterisation-simulation-optimisation methodology. To allocate the water demand to the different system components, it uses a parametric operation rule thus keeping the number of control variables small. This parametric rule is embedded into a simulation-optimisation scheme. To perform each simulation step, the water resource system is transformed to a digraph, and the water conveyance problem is formulated as a typical transhipment problem, which can be solved by the network simplex algorithm. Global system objectives are incorporated in a performance measure, which is subsequently optimised using nonlinear optimisation methods. Users can specify multiple targets and constraints, give them priorities and set acceptable limits for the system reliability. Hydronomeas is currently used as the main decision support tool for the management of the water resource system of Athens.

    Related works:

    • [45] Αναλύει το λογισμικό πακέτο "ΥΔΡΟΝΟΜΕΑΣ" που χρησιμοποιήθηκε και για το σύστημα υδατικών πόρων της Αθήνας.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.28035.50724

    Other works that reference this work (this list might be obsolete):

    1. #Margane, A., Guideline for sustainable groundwater resources management, Management, Protection and Sustainable Use of Groundwater and Soil Resources (ACSAD), 242 pp., Damascus, 2003.
    2. #Al-Maqtari, S., H. Abdulrab, E. Babkin and I. Krysina, New approach for combination of multi-agent algorithms and constraints solvers for decision support systems, BIR 2009 - 8th International Conference on Perspectives in Business Informatics Research, 2014.
    3. #Stamou, A. T., P. Rutschmann, and C. Rumbaur, Energy and reservoir management for optimized use of water resources: A case study within the water-food-energy context of nexus in the Nile river basin, Proceedings of the 14th International Conference on Environmental Science and Technology, Rhodes, 2015.

  1. D. Koutsoyiannis, and A. Efstratiadis, A stochastic hydrology framework for the management of multiple reservoir systems, 26th General Assembly of the European Geophysical Society, Geophysical Research Abstracts, Vol. 3, Nice, doi:10.13140/RG.2.2.11258.29125, European Geophysical Society, 2001.

    Long-term planning and management of large hydrosystems, such as multiple reservoir systems, under hydrological uncertainty continues to be a very difficult task. Stochastic processes and stochastic simulation are the most reliable methodologies for the study of hydrosystems under a wide range of hydroclimatic inputs and for the risk assessment of different management policies. Climate change scenarios and, more specifically, drought scenarios can be incorporated into stochastic models by either modifying the historical statistical characteristics or better, assuming large timescale random fluctuations. Such fluctuations can be equivalently modelled as long-term persistence by means of a specified autocorrelation structure. Using these ideas, a comprehensive stochastic methodology is developed and implemented in an integrated software package named Castalia. The methodology is based on a two-level multivariate simulation-forecast scheme. In the higher level it enables preservation of important features on an annual timescale, such as hydrologic persistence. In the lower level it enables reproduction of features on a monthly or sub-monthly timescale, such as periodicity. The above methodology was applied for the study of the water supply system of Athens, which contains four reservoirs. Several scenarios were examined, which allowed a detailed investigation of uncertainty and risk associated with the system.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.11258.29125

  1. A. Efstratiadis, and D. Koutsoyiannis, Global optimisation techniques in water resources management, 26th General Assembly of the European Geophysical Society, Geophysical Research Abstracts, Vol. 3, Nice, doi:10.13140/RG.2.2.13774.87360, European Geophysical Society, 2001.

    Optimisation has become a valuable tool in most of hydroinformatics applications, such as calibration of hydrological models, optimal control of hydrosystems, water quantity and quality management, water supply and sewage networks design, etc. Given that these problems are intrinsically nonlinear and multimodal, they do not exist deterministic optimisation methods that can locate the globally optimal solution. During the last two decades, probabilistic schemes have been developed for solving global optimisation problems. These methods use a combination of random and deterministic steps, without generally requiring restrictive conditions on the nature of the objective function. The scope of this study is the investigation of the features of these techniques, focusing on three of them, which are presented and compared by means of both mathematical applications and real-world problems. The first two are the most popular in applications related with hydrology and water resources, i.e. genetic algorithms and the shuffled complex evolution algorithm. The third one is a new simplex-annealing scheme, which incorporates the principles of simulated annealing in the well-known downhill simplex method. This scheme is very simple to implement and extended analysis proved that it is very effective in locating the global optimum as well as very efficient, in terms of convergence speed.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.13774.87360

    Other works that reference this work (this list might be obsolete):

    1. Kolovoyiannis, V. N., and G. E. Tsirtsis, Downscaling the marine modelling effort: Development, application and assessment of a 3D ecosystem model implemented in a small coastal area, Estuarine, Coastal and Shelf Science, 126, 44-60, 2013.

Presentations and publications in workshops

  1. Ο. Daskalou, A. Koukouvinos, A. Efstratiadis, and D. Koutsoyiannis, Methodology for optimal allocation and sizing of renewable energy sources using ArcGIS 10.3: Case study of Thessaly Perfecture, 24th Hellenic Meeting of ArcGIS Users, Crowne Plaza, Athens, Marathon Data Systems, 2016.

    Additional material:

  1. A. Efstratiadis, A. Koukouvinos, N. Mamassis, and D. Koutsoyiannis, The quantitative dimension of WFD 2000/60, Water Framework Directive 2000/60 and Inland Water Protection: Research and Perspectives, Athens, Hellenic Centre for Marine Research, Specific Secreteriat of Water – Ministry of Environment, Energy and Climate Change, 2015.

    Full text: http://www.itia.ntua.gr/en/getfile/1541/1/documents/2015_WFDQuantity1.pdf (787 KB)

  1. A. D. Koussis, and A. Efstratiadis, Hydrological simulation and forecasting models, Workshop - Deucalion research project, Goulandris National Histroy Museum, 2014.

    Full text: http://www.itia.ntua.gr/en/getfile/1467/1/documents/hydrol_models.pdf (1426 KB)

  1. A. Efstratiadis, Adaptation of regional hydrological formulas to Greek basins, Workshop - Deucalion research project, Goulandris National Histroy Museum, 2014.

    Full text: http://www.itia.ntua.gr/en/getfile/1466/1/documents/regional_formulas.pdf (759 KB)

  1. A. Tegos, A. Efstratiadis, A. Varveris, N. Mamassis, A. Koukouvinos, and D. Koutsoyiannis, Assesment and implementation of ecological flow constraints in large hydroelectric works: The case of Acheloos, Ecological flow of rivers and the importance of their true assesment, 2014.

    Full text: http://www.itia.ntua.gr/en/getfile/1455/1/documents/2014_envflows_pres.pdf (1344 KB)

  1. N. Mamassis, A. Efstratiadis, and D. Koutsoyiannis, Perspectives of combined management of water and energy in Thessaly region, , Larissa, 21 pages, doi:10.13140/RG.2.2.15760.61442, Technical Chamber of Greece / Department of CW Thessaly, 2014.

    Full text: http://www.itia.ntua.gr/en/getfile/1434/1/documents/larissa_25_2.pdf (2206 KB)

    See also: http://dx.doi.org/10.13140/RG.2.2.15760.61442

  1. A. D. Koussis, S. Lykoudis, A. Efstratiadis, A. Koukouvinos, N. Mamassis, D. Koutsoyiannis, A. Peppas, and A. Maheras, Estimating flood flows in ungauged Greek basins under hydroclimatic variability (Deukalion project) - Development of physically-established conceptual-probabilistic framework and computational tools, Climate and Environmental Change in the Mediterranean Region, Pylos, Navarino Environmental Observatory, 2012.

    Full text: http://www.itia.ntua.gr/en/getfile/1292/1/documents/DeflkalionPoster.pdf (258 KB)

  1. A. Efstratiadis, Models in practice: Experience from the water supply system of Athens, Invited lecture, Tokyo, Tokyo Metropolitan University, 2010.

    The water supply system of Athens is an extensive and complex hydrosystem that lies over an area of around 4000 km2 and comprises multiple resources, surface and groundwater, as well as an extended network of aqueducts and pumping stations. Due to the multiple levels of complexity involved, its operation and management is a really challenging task. The research team ITIA from the National Technical University of Athens has developed an advanced modelling framework, which is implemented within a decision support system; the system is fully operational and continuously improved. An overview of the key philosophical issues is essential to understand the foundation of the entire modelling concept. In this context, we reveal the importance of building models that are holistic and parsimonious, and also account for the inherent uncertainty of the hydrological fluxes, treating them as stochastic processes. Taking advantage of the case study of Athens, the most significant modelling aspects are presented, while their applicability is tested against some representative problems of high practical interest. The presentation is accompanied by a short demonstration of the related software tools, most of which are free and open-source.

    Full text: http://www.itia.ntua.gr/en/getfile/1095/1/documents/TMU2.pdf (5531 KB)

  1. A. Loukas, A. Efstratiadis, and L. Vasiliades, Review of existing simulation based flood-frequency frameworks in Greece, EU COST Action ES0901: European Procedures for Flood Frequency Estimation (FloodFreq) - 3rd Management Committee Meeting, Prague, 2010.

    Full text: http://www.itia.ntua.gr/en/getfile/1060/1/documents/WP3_GR.pdf (869 KB)

  1. A. Efstratiadis, L. Vasiliades, and A. Loukas, Review of existing statistical methods for flood frequency estimation in Greece, EU COST Action ES0901: European Procedures for Flood Frequency Estimation (FloodFreq) - 3rd Management Committee Meeting, Prague, 2010.

    Full text: http://www.itia.ntua.gr/en/getfile/1059/1/documents/WP2_GR.pdf (556 KB)

    Other works that reference this work (this list might be obsolete):

    1. Li, Q., Fuzzy approach to analysis of flood risk based on variable fuzzy sets and improved information diffusion methods, Natural Hazards and Earth System Sciences, 13, 239–249, 2013.

  1. N. Mamassis, E. Tiligadas, D. Koutsoyiannis, M. Salahoris, G. Karavokiros, S. Mihas, K. Noutsopoulos, A. Christofides, S. Kozanis, A. Efstratiadis, E. Rozos, and L. Bensasson, HYDROSCOPE: National Databank for Hydrological, Meteorological and Geographical Information, Towards a rational handling of current water resource problems: Utilizing Data and Informatics for Information, Hilton Hotel, Athens, 2010.

    Full text:

  1. E. Safiolea, A. Efstratiadis, S. Kozanis, I. Liagouris, and C. Papathanasiou, Integrated modelling of a River-Reservoir system using OpenMI, OpenMI-LIFE Pinios Workshop, Volos, 2009.

    Full text: http://www.itia.ntua.gr/en/getfile/920/1/documents/Moore_Pinios_Workshop_part1.pdf (2349 KB)

    See also: http://www.openmi-life.org/events/pinios-workshop.php?lang=0

  1. C. Makropoulos, E. Safiolea, A. Efstratiadis, E. Oikonomidou, and V. Kaffes, Multi-reservoir management with OpenMI, OpenMI-LIFE Pinios Workshop, Volos, 2009.

    Full text: http://www.itia.ntua.gr/en/getfile/919/1/documents/openMI_pinios_2009_evi.pdf (719 KB)

    See also: http://www.openmi-life.org/events/pinios-workshop.php?lang=0

  1. C. Makropoulos, D. Koutsoyiannis, and A. Efstratiadis, Challenges and perspectives in urban water management, Local Govenance Conference: The Green Technology in the Cities, Athens, Ecocity, Central Association of Greek Municipalities, 2009.

    Full text:

  1. D. Koutsoyiannis, and A. Efstratiadis, Energy, water and agriculture: Prospects of integrated management in the Prefecture of Karditsa, Water Resources Management in the Prefecture of Karditsa, Workshop of The Local Union of Municipalities and Communities, Karditsa, doi:10.13140/RG.2.2.33124.37760, 2008.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.33124.37760

  1. E. Safiolea, I. Liagouris, A. Efstratiadis, and S. Kozanis, Impact of climate change scenarios on the reliability of a reservoir, 2nd OpenMI-Life and Association Workshops On Integrated Modelling for Integrated Water Management, CEH, Wallingford, UK, 2007.

    Full text: http://www.itia.ntua.gr/en/getfile/842/1/documents/2007OpenMIWallingford.pdf (1638 KB)

    See also: http://www.openmi-life.org/events/secondWorkshop.php?lang=0

  1. A. Efstratiadis, S. Kozanis, I. Liagouris, and E. Safiolea, Migration of a reservoir management model (RMM-NTUA), 1st OpenMI Life Workshop, Aquafin, Aartselaar, Belgium, 2007.

    Full text: http://www.itia.ntua.gr/en/getfile/834/1/documents/2007OpenMI_RMM.pdf (1401 KB)

    See also: http://www.openmi-life.org/events/workshop.php?lang=0

  1. A. Efstratiadis, D. Koutsoyiannis, and N. Mamassis, Optimization of the water supply network of Athens, Second International Congress: "Environment - Sustainable Water Resource Management", Athens, Association of Civil Engineers of Greece, European Council of Civil Engineers, 2007.

    Full text:

  1. S. Kozanis, and A. Efstratiadis, Zygos: A basin processes simulation model, 21st European Conference for ESRI Users, Athens, Greece, 2006.

    ZYGOS models the main hydrological processes of a watershed, using a lumped approach. It implements a conceptual soil moisture accounting scheme, based on a generalisation of the standard Thornthwaite model, extended with a groundwater tank. A visual representation of modeling components helps the implementation of different configurations. A global optimization procedure, implementing the evolutionary annealing-simplex algorithm, is included for the automatic estimation of model parameters.

    Related works:

    • [188]

    Full text: http://www.itia.ntua.gr/en/getfile/754/1/documents/2006ESRIZygosFullPoster.pdf (625 KB)

    Other works that reference this work (this list might be obsolete):

    1. Bekri, E., M. Disse, P. Yannopoulos, Optimizing water allocation under uncertain system conditions in Alfeios River Basin (Greece), Part B: Fuzzy-boundary intervals combined with multi-stage stochastic programming Model, Water, 7(10), 6427-6466, doi:10.3390/w7116427, 2015.

  1. A. Efstratiadis, Strategies and algorithms for multicriteria calibration of complex hydrological models, Presentation of research activities of the Department of Water Resources, Athens, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, 2006.

    Full text: http://www.itia.ntua.gr/en/getfile/705/1/documents/2006EfstrTYPY8E.pdf (1130 KB)

  1. A. Efstratiadis, HYDROGEIOS: Geo-hydrological model for watershed simulation, 15th meeting of the Greek users of Geographical Information Systems (G.I.S.) ArcInfo - ArcView - ArcIMS, Athens, Marathon Data Systems, 2005.

    Full text: http://www.itia.ntua.gr/en/getfile/685/1/documents/2005GIShydrogeios.pdf (1905 KB)

  1. A. Efstratiadis, Nonlinear methods in multicriteria water resource problems, "Hydromedon" - First meeting of PhD students, Patra, University of Patra, 2005.

    Full text: http://www.itia.ntua.gr/en/getfile/666/1/documents/2005Ydromedon.pdf (491 KB)

  1. D. Koutsoyiannis, and A. Efstratiadis, Climatic change certainty and climatic uncertainty from a hydrological and water resources management viewpoint, Invited seminar, University of Thessaly, Volos, doi:10.13140/RG.2.2.31761.22888, University of Thessaly, 2004.

    Related works:

    • [106] First presentation of the same study (in English).

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.31761.22888

  1. D. Koutsoyiannis, and A. Efstratiadis, The Hydronomeas computational system and its application to the study of the Acheloos river diversion, Water resource management with emphasis in Epiros, Ioannina, doi:10.13140/RG.2.2.35116.67205, Municipal Company of Water Supply and Sewerage of Ioannina, 2003.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.35116.67205

  1. D. Koutsoyiannis, A. Efstratiadis, and A. Koukouvinos, Hydrological investigation of the Plastiras lake management, Workshop for the presentation of the research project "Investigation of scenarios for the management and protection of the quality of the Plastiras Lake", doi:10.13140/RG.2.2.16950.09286, Municipality of Karditsa, Karditsa, 2002.

    To protect the Plastiras Lake, a high quality of the natural landscape and a satisfactory water quality must be ensured, the conflicting water uses and demands must be arranged and effective water management practices must be established. This study focuses on the hydrological point-of-view of reservoir's operation, which is one of the three components of its management. The analysis is based on the collection and processing of the necessary geographical, hydrological and meteorological data. The main subject of the study is to investigate the safe yield capabilities for several minimum allowable reservoir level scenarios, by applying modern stochastic simulation and optimisation methods. The final product is to propose suitable management policies, through which the maximisation of water supply and irrigation withdrawals for a high reliability level can be ensured, after imposing the minimum reservoir level restriction.

    Full text:

    See also: http://dx.doi.org/10.13140/RG.2.2.16950.09286

Various publications

  1. G. Karavokiros, A. Efstratiadis, and D. Koutsoyiannis, The management of resources for the water supply of Athens, Hellenic Association of Consulting Firms Newsletter, 65, 4–5, Athens, October 2001.

    The managent of water resources for the water supply of Athens via the software system Hydronomeas is summarised.

    Full text: http://www.itia.ntua.gr/en/getfile/491/1/documents/2001SEGMHydronomeas.pdf (1221 KB)

Books

  1. D. Koutsoyiannis, and A. Efstratiadis, Lecture Notes on Urban Hydraulic Works - Water Supply, 83 pages, doi:10.13140/RG.2.1.3559.7044, National Technical University of Athens, February 2015.

    Full text: http://www.itia.ntua.gr/en/getfile/1518/1/documents/UHW_book.pdf (21617 KB)

    Additional material:

    See also: http://dx.doi.org/10.13140/RG.2.1.3559.7044

Educational notes

  1. A. Efstratiadis, The water supply system of Athens: Management complexities and modelling challenges vs. low risk & cost decisions, October 2016.

    Remarks:

    Lecture given in the context of TUM visiting activities

    Full text: http://www.itia.ntua.gr/en/getfile/1655/1/documents/TUM.pdf (2204 KB)

  1. S. Mihas, A. Efstratiadis, and D. Dermatas, Lecture notes on "Hydraulic Structures - Dams", Department of Water Resources and Environmental Engineering – National Technical University of Athens, December 2015.

    Full text:

  1. A. Efstratiadis, and D. Koutsoyiannis, Lecture notes: Urban stormwater drainage networks, 23 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, July 2014.

    Full text: http://www.itia.ntua.gr/en/getfile/1472/1/documents/2014UHWUrbanFloods.pdf (1057 KB)

  1. A. Efstratiadis, Applications of stochastic simulation in water resource systems - The software "Castalia", 19 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, March 2014.

    Remarks:

    Presentation within undergraduate course "Stochastic Methods in Water Resources".

    Full text: http://www.itia.ntua.gr/en/getfile/1104/1/documents/Castalia_2014.pdf (801 KB)

  1. A. Efstratiadis, Flood simulation models, 24 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, May 2013.

    Remarks:

    Presentation within the postgraduate course: "Floods and flood protection works"

    Full text: http://www.itia.ntua.gr/en/getfile/1359/1/documents/DPMS_flood_models_2013.pdf (2159 KB)

  1. A. Efstratiadis, Hydrogeios as an operational tool for hydrological simulation and management of human-modified basins, 24 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, May 2012.

    Remarks:

    Presentation within the postgraduate course: "Advanced Hydrology"

    Full text: http://www.itia.ntua.gr/en/getfile/1227/1/documents/advhydro_hydrogeios_2012.pdf (1497 KB)

  1. A. Efstratiadis, Environment-friendly policies and water resources development: The case of Plastiras reservoir , 14 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, May 2012.

    Remarks:

    Presentation within the postgraduate course: "Environmental Impacts from Hydraulic Works"

    Full text: http://www.itia.ntua.gr/en/getfile/1218/1/documents/2012Plastiras.pdf (464 KB)

  1. A. Efstratiadis, Simulation and optimization of the management of the water resource system of Athens, 28 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, January 2012.

    Full text: http://www.itia.ntua.gr/en/getfile/885/1/documents/TSYP_Athens_2012.pdf (1627 KB)

  1. A. Efstratiadis, Lecture notes on flood hydrology and design of sewage networks, 44 pages, June 2011.

    Full text: http://www.itia.ntua.gr/en/getfile/1154/1/documents/STEAMX_FloodHydrology.pdf (1746 KB)

    Other works that reference this work (this list might be obsolete):

    1. Ioannidi, K., A. Karagrigoriou, and D.F. Lekkas, Analysis and modeling of rainfall events, Mathematics in Engineering, Science & Aerospace (MESA), 6(4), 607-614, 2015.

  1. C. Makropoulos, and A. Efstratiadis, Lecture notes on Water Resource System Optimization and Hydroinformatics, 307 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, April 2011.

    Remarks:

    Lecture notes for the postgraduate course: Water resource systems optimization - Hydroinformatics.

    Full text:

  1. A. Efstratiadis, N. Mamassis, and D. Koutsoyiannis, Lecture notes on Water Resources Management - Part 2, 97 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, 2011.

    Full text:

  1. A. Efstratiadis, Hydrological and hydrogeological simulation of modified river basins - The Hydrogeios model, 40 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, April 2010.

    Remarks:

    Presentation within the postgraduate course "Advanced Hydrology".

    Full text: http://www.itia.ntua.gr/en/getfile/974/1/documents/2010_hydrogeios_advhydro.pdf (2677 KB)

  1. D. Koutsoyiannis, and A. Efstratiadis, Lecture notes on Urban Hydraulic Works - Part 1: Water Supply, 146 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, 2007.

    Full text:

    Additional material:

    See also: http://www.itia.ntua.gr/courses/aye/index.html

    Other works that reference this work (this list might be obsolete):

    1. #Yannopoulos, S., M. Spanothymniou and M. Spiliotis, Evaluation of the relative importance of the basic parameters of water distribution networks – investigation of technical specifications in Greece, Proceedings of the 2nd Joint Conference of EYE-EEDYP "Integrated Water Resources Management for Sustainable Development" (Ed.: P. Giannopoulos and A. Dimas), 1134-1147, Patras, Greece, 2012.

  1. A. Efstratiadis, and D. Koutsoyiannis, Lecture notes on Typical Hydraulic Works - Part 2: Water Distribution Networks, 90 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, 2006.

    Related works:

    • [151] Newer version, enhanced.

    Full text:

    See also: http://www.itia.ntua.gr/courses/tye/index.html

  1. A. Efstratiadis, Hydrological investigation of the Plastiras reservoir operation, 16 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, May 2006.

    Full text: http://www.itia.ntua.gr/en/getfile/716/1/documents/2006PlastirasHydroDPMS.pdf (475 KB)

  1. A. Efstratiadis, and D. Koutsoyiannis, Lecture notes on Water Resource System Optimisation - Part 2, 140 pages, National Technical University of Athens, Athens, 2004.

    Full text:

  1. A. Christofides, A. Efstratiadis, and G.-F. Sargentis, Presentation of the research project "Investigation of scenarios for the management and protection of the quality of the Plastiras Lake", 79 pages, 1 April 2003.

    Remarks:

    Slides from presentation in the postgraduate course "Environmental impacts of hydraulic works".

    Full text:

Academic works

  1. A. Efstratiadis, Non-linear methods in multiobjective water resource optimization problems, with emphasis on the calibration of hydrological models, PhD thesis, 391 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, February 2008.

    We attempt a comprehensive overview of nonlinear multiobjective functions optimization, which covers both the computational part (review and development of algorithms) and the application of related approaches in water resources science and technology. We formulate a multiobjective evolutionary annealing-simplex algorithm that aims to locate representative compromises of conflicting criteria in favorable areas of the Pareto front, by combining different methodological approaches and introducing innovative issues within the evaluation and generation procedures. The algorithmic performance is tested, in comparison with well-recognized literature methods, on several mathematical problems, as well as on the estimation of stochastic model parameters. Regarding the technological component, we emphasize on the calibration of complex hydrological models. Various aspects of the problem are studied, from the model configuration (schematization, parameterization) to the strategy of selecting the best-compromise parameter set. The analysis is initially implemented on a theoretical basis, focusing on uncertainty and equifinality, while next we investigate an extended pilot application in the Boeoticos Kephissos basin, where a conjunctive hydrological, hydrogeological and water management model is fitted.

    Remarks:

    Commitee: D. Koutsoyiannis (supervisor), M. Mimikou, N. Mamassis, D. Tolikas, G. Karatzas, I. Nalbantis, M. Karlaftis

    Full text:

    Additional material:

    Other works that reference this work (this list might be obsolete):

    1. Charizopoulos, N., and A. Psilovikos, Hydrologic processes simulation using the conceptual model Zygos: the example of Xynias drained Lake catchment (central Greece), Environmental Earth Sciences, doi:10.1007/s12665-016-5565-x, 2016.

  1. A. Efstratiadis, Investigation of global optimum seeking methods in water resources problems, MSc thesis, 139 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, May 2001.

    The methods for determining the global optimum of nonlinear functions without constraints are investigated. Initially, the global optimisation problem is posed, which was first remedied using classical analytical mathematics and subsequently using deterministic numerical techniques. In the next chapter, a detailed literature review of modern approaches for the global optimisation problem is done. Next, an original optimisation scheme, named evolutionary annealing-simplex algorithm, is presented, which was developed within the framework of this thesis. This algorithm incorporates in an efficient manner the principles of simulated annealing into the well-known downhill simplex method, applying some heuristic strategies in order to escape from local optima. The following two chapters are referred to the evaluation of the major global optimisation methodologies on the basis of theoretical as well as real-world problems, taken from the water resources field. Through the analysis it was proved that the shuffled complex evolution, which is a recent and well-established method, as well as the evolutionary annealing-simplex algorithm, had the best performance, both in terms of accuracy in locating the global optimum and convergence speed. The thesis concludes with a summary of most important points and a list of some proposals for further improvement of the evolutionary annealing-simplex algorithm.

    Related works:

    • [111] First presentation of the research outcomes (EGS conferece, Nice, 2001)
    • [43] Presentation of the optimization method in the Hydroinformatics conference (Cardiff, 2002)
    • [209] Misuse of extended parts of the work in a PhD thesis (2005)

    Full text:

    Other works that reference this work (this list might be obsolete):

    1. #Hendershot, Z. V., A differential evolution algorithm for automatically discovering multiple global optima in multidimensional, discontinuous spaces, Proceedings of the 15th Midwest Artificial Intelligence and Cognitive Science Conference, 2004.
    2. #Hendershot, Z. V., and F. W. Moore, MultiDE: A simple, powerful differential evolution algorithm for finding multiple global optima, Proceedings of the 7th International Florida Artificial Intelligence Research Society Conference, 2004.

  1. A. Efstratiadis, and N. Zervos, Optimal management of reservoir systems - Application to the Acheloos-Thessalia system, Diploma thesis, 181 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, March 1999.

    Optimisation of a multi-reservoir system becomes increasingly complex when conflicting water uses exist, such as water supply, irrigation, hydroelectric power generation etc. Hydronomeas is a software tool, suitable for simulating and conducting a search for the optimum management policy of a multi-purpose hydrosystem. The mathematical model is based on recently introduced and theoretically developed parametric rules for the operation of multi-reservoir systems. Software implementation was performed in such a manner that the model can be easily applied to a wide range of hydrosystems and that simulation will be as accurate as possible, incorporating all natural, operational, environmental and other restrictions. Hydronomeas was applied on the Acheloos - Thessalia hydrosystem, including the proposed diversion projects. The objective was the maximisation of primary energy generation for various scenarios. The program's efficiency and results' reliability were validated through comparison with existing studies and sensitivity analyses.

    Full text:

Research reports

  1. D. Dermatas, N. Mamassis, I. Panagiotakis, and A. Efstratiadis, Evaluation of environmental impracts due to water flows through Mavrorachi landfill, Investigation of the qualitative adequacy of the bottom of cell A3 and of the transitional bonding with cell A1 as well as the environmental impacts from the operation of the landfill , Contractor: Department of Water Resources and Environmental Engineering – National Technical University of Athens, March 2017.

    Related project: Investigation of the qualitative adequacy of the bottom of cell A3 and of the transitional bonding with cell A1 as well as the environmental impacts from the operation of the landfill

  1. A. Koukouvinos, A. Efstratiadis, D. Nikolopoulos, H. Tyralis, A. Tegos, N. Mamassis, and D. Koutsoyiannis, Case study in the Acheloos-Thessaly system, Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO), 98 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, October 2015.

    This report describes the validation of methodologies and computer tools that have been developed in the context of the research project, in the interconnected river basin system of Acheloos and Peneios. The study area is modelled as a hypothetically closed and autonomous (in terms of energy balance) system, in order to investigate the perspectives of sustainable development at the peripheral scale, merely based on renewable energy.

    Related project: Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO)

    Full text: http://www.itia.ntua.gr/en/getfile/1613/1/documents/Report_EE4a.pdf (8010 KB)

  1. A. Siskos, G. Karavokiros, A. Christofides, and A. Efstratiadis, Development of decision support system for renewable energy managment, Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO), 103 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, July 2015.

    We describe the decision support system that implements the simulation and optimization model for combined water and energy systems. The report follows the structure of a user manual, in which are explained in detail the software operations.

    Related project: Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO)

    Full text: http://www.itia.ntua.gr/en/getfile/1604/1/documents/Report_EE3.pdf (3006 KB)

  1. A. Efstratiadis, N. Mamassis, Y. Markonis, P. Kossieris, and H. Tyralis, Methodological framework for optimal planning and management of water and renewable energy resources, Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO), 154 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, April 2015.

    We describe a stochastic simulation and optimization framework for hybrid renewable energy systems, based on effective coupling of different models. Initially, we explain the problem of combined management of water and energy resources, we introduce the main concepts and highlight the peculiarities of the problem, by means of methodology and computational implementation. Next is presented the general context, which is based on the combined use of an hourly simulation model for the renewables of a specific study area (wind and solar units), and a daily simulation model for the water resource system and the associated energy components. The models are fed by synthetic time series of hydrological inflows, wind velocity, solar radiation and electricity demand over the study area, for the generation of which are used appropriate stochastic schemes. The theoretical background of all models and related software systems is based on original methodologies or existing approaches that have been improved or generalized in the context of the research project.

    Related project: Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO)

    Full text: http://www.itia.ntua.gr/en/getfile/1599/1/documents/Report_EE2.pdf (3766 KB)

  1. Y. Markonis, S. Lykoudis, A. Efstratiadis, and A. Koukouvinos, Description of rainfall and meteorological data and processing, DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools, Contractors: ETME: Peppas & Collaborators, Grafeio Mahera, Department of Water Resources and Environmental Engineering – National Technical University of Athens, National Observatory of Athens, 54 pages, September 2014.

    Objective of this report is the analysis of rainfall and meteorological data that are gathered from the pilot basins and the description of their processing for the generation of the essential time series. The time series that are derived through processing of real-time raw data from the monitoring network are: (a) point time series of rainfall and other meteorological variables (temperature, relative humidity, wind velocity), and (b) time series of areal rainfall and potential evapotranspiration across all sub-basins of interest. Point rainfall depths from rain gauges are used for the generation of areal time series as well as the analysis of intense storm events. The extraction of areal rainfall across each basin or sub-basin of interest was done through typical techniques of spatial integration (Thiessen polygons), while the potential evapotranspiration data were indirectly estimated, as function of temperature.

    Related project: DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools

    Full text: http://www.itia.ntua.gr/en/getfile/1496/1/documents/Report_2_2.pdf (3082 KB)

  1. A. Efstratiadis, A. Koukouvinos, E. Michaelidi, E. Galiouna, K. Tzouka, A. D. Koussis, N. Mamassis, and D. Koutsoyiannis, Description of regional approaches for the estimation of characteristic hydrological quantities, DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools, Contractors: ETME: Peppas & Collaborators, Grafeio Mahera, Department of Water Resources and Environmental Engineering – National Technical University of Athens, National Observatory of Athens, 146 pages, September 2014.

    The objective of the report is the systematic investigation and evaluation of regional relationships and associated event-based models that are applied in flood studies, through validating their predictions across the pilot basins of the project. The research focuses on the most popular, in Greece as well as globally, hydrological design procedure, which is based on the application of the SCS-CN method for the estimation of hydrological losses, combined with the unit hydrograph theory for the transformation of surface runoff to flood hydrograph at the basin outlet. In the report are investigated both the theoretical-conceptual background of the models as well as the procedure for estimating their basic input quantities (time of concentration, runoff curve number, initial abstraction ratio, initial soil moisture conditions). In this respect, we analyzed more than 100 flood events in 11 sites of interest, which we attempted to represent through several alternative approaches. The analyses showed that it is essential to revise critical aspects of the hydrological design. The most important are: (a) the correction of the time of concentration, as estimated by the Giandotti formula, according to the rainfall intensity; (b) the estimation of parameter CN of the SCS-CN method on the basis of three characteristic layers of spatial information and its adjustment for given initial abstraction ratio; (c) the application of a parametric synthetic unit hydrograph, the time parameters of which depend not only on the characteristics of the basin’s surface but also the mechanisms of the shallow soil; and (d) the statistically consistent estimation of the flood design quantities on the basis of the probabilities of occurrence of the design rainfall under dry, medium or wet antecedent soil moisture conditions.

    Related project: DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools

    Full text: http://www.itia.ntua.gr/en/getfile/1495/1/documents/Report_3_3.pdf (28157 KB)

  1. A. Efstratiadis, A. Koukouvinos, P. Dimitriadis, E. Rozos, and A. D. Koussis, Theoretical documentation of hydrological-hydraulic simulation model, DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools, Contractors: ETME: Peppas & Collaborators, Grafeio Mahera, Department of Water Resources and Environmental Engineering – National Technical University of Athens, National Observatory of Athens, 108 pages, September 2014.

    We present the theoretical documentation of the hydrological-hydraulic simulation model that has been developed within the new version of computer system Hydrogeios. The model has been enhanced in order to represent the hydrological processes at the hourly time scale, which allows to be used for both hydrological design and flood forecasting. In the report are described in detail the whole theoretical background, based on the integration of simulation models for surface- and groundwater processes, water resources management models, and alternative numerical schemes for flow routing along the river network. Moreover, we explain the procedure for preparation of input data and construction of all essential thematic layers, as well as the procedure for estimating model parameters through advanced calibration tools.

    Related project: DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools

    Full text: http://www.itia.ntua.gr/en/getfile/1491/1/documents/Report_3_5.pdf (3568 KB)

  1. A. Efstratiadis, D. Koutsoyiannis, and S.M. Papalexiou, Description of methodology for intense rainfall analysis , DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools, Contractors: ETME: Peppas & Collaborators, Grafeio Mahera, Department of Water Resources and Environmental Engineering – National Technical University of Athens, National Observatory of Athens, 55 pages, November 2012.

    The objective of the research report is the investigation and implementation of the methodological framework for the statistical analysis of intense rains. In the report are initially reviewed the main concepts of statistical hydrology and are described the extreme statistical distributions, as well as other distributions of general use, which are applied for the analysis of intense rains. Moreover, we describe the statistical methods for the daily rainfall time series, which are employed within stochastic simulation models. Emphasis is given to the development of a methodology for constructing the idf (ombrian) curves, which are typical tools in hydrologic design. Finally, we present the computational system for the extraction of ombrian curves (Ombros software), and we explain it operation with regard to its theoretical context as well as from the end user perspective, by means of examples.

    Related project: DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools

    Full text: http://www.itia.ntua.gr/en/getfile/1296/1/documents/Report_3_2.pdf (1661 KB)

  1. A. Efstratiadis, D. Koutsoyiannis, N. Mamassis, P. Dimitriadis, and A. Maheras, Litterature review of flood hydrology and related tools, DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools, Contractors: ETME: Peppas & Collaborators, Grafeio Mahera, Department of Water Resources and Environmental Engineering – National Technical University of Athens, National Observatory of Athens, 115 pages, October 2012.

    The objective of the research report is the literature review of the theoretical framework of flood hydrology, which is branch of engineering hydrology. The research aims to a critical review of the world experience (in terms of methodologies as well as computer tools), and the practices that are employed within flood hydrology studies in Greece. The topics that are examined are: (a) fundamental concepts of flood hydrology are related processes; (b) characteristic hydrological magnitudes of river basins (physiographic properties, runoff coefficient, time of concentrations, curve number, unit hydrograph, time-area curves); (c) probabilistic assessment of extreme hydrological events; (d) methods for estimating design flows; (e) methods for estimating design hydrographs; (f) flood routing models; (g) computer packages; (h) Greek standards and practices.

    Related project: DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools

    Full text: http://www.itia.ntua.gr/en/getfile/1215/1/documents/Report_WP3_1_1.pdf (3203 KB)

  1. N. Mamassis, A. Efstratiadis, G. Karavokiros, S. Kozanis, and A. Koukouvinos, Final report, Maintenance, upgrading and extension of the Decision Support System for the management of the Athens water resource system, Contractors: , Report 2, 84 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, November 2011.

    Related project: Maintenance, upgrading and extension of the Decision Support System for the management of the Athens water resource system

  1. C. Makropoulos, D. Damigos, A. Efstratiadis, A. Koukouvinos, and A. Benardos, Synoptic report and final conclusions, Cost of raw water of the water supply of Athens, 32 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, October 2010.

    Related project: Cost of raw water of the water supply of Athens

    Full text: http://www.itia.ntua.gr/en/getfile/1099/1/documents/Kostos_Nerou_EYDAP_Teuxos_5.pdf (418 KB)

    Other works that reference this work (this list might be obsolete):

    1. #Makropoulos, C., and E. Papatriantafyllou, Developing roadmaps for the sustainable management of the urban water cycle: The case of WW reuse in Athens, Proceedings of the 13th International Conference of Environmental Science and Technology, Athens, 2013.

  1. C. Makropoulos, A. Efstratiadis, and A. Koukouvinos, Appraisal of financial cost and proposals for a rational management of the hydrosystem, Cost of raw water of the water supply of Athens, 73 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, October 2010.

    Related project: Cost of raw water of the water supply of Athens

    Full text: http://www.itia.ntua.gr/en/getfile/1097/1/documents/Kostos_Nerou_EYDAP_Teuxos_3.pdf (1053 KB)

  1. C. Makropoulos, A. Koukouvinos, A. Efstratiadis, and N. Chalkias, Mehodology for estimation of the financial cost , Cost of raw water of the water supply of Athens, 40 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, July 2010.

    Related project: Cost of raw water of the water supply of Athens

    Full text: http://www.itia.ntua.gr/en/getfile/1008/1/documents/Kostos_Nerou_EYDAP_Teuxos_1__.pdf (732 KB)

  1. S. Kozanis, A. Christofides, and A. Efstratiadis, Scientific documentation of the Hydrognomon software (version 4 ), Development of Database and software applications in a web platform for the "National Databank for Hydrological and Meteorological Information" , Contractor: Department of Water Resources and Environmental Engineering – National Technical University of Athens, 173 pages, Athens, June 2010.

    Hydrognomon software version 4 scientific documentation

    "Hydrognomon" is an application for the analysis of hydrological data. Hydrological data analysis consists of time series processing applications, such as time step aggregation and regularisation, interpolation, regression analysis and filling in of missing values, consistency tests, data filtering, graphical and tabular visualisation of time series, etc.

    The program supports also specific hydrological applications, including evapotranspiration modelling, stage-discharge and discharge-sediment discharge analysis, homogeneity tests, water balance methods, hydrometry, etc. The statistical module provides tools for sampling analysis, distribution functions, statistical forecast, Monte-Carlo simulation, analysis of extreme events and construction of intensity-duration-frequency curves.

    A final module is a lumped hydrological model, with alternative configurations, also supported by automatic calibration facilities.

    Document source in Microsoft Word Format: http://www.itia.ntua.gr/~soulman/hydrognomon/2009HydrognomonTheory.doc

    Remarks:

    Document version 1.02 - 2010-06-23 (Greek)

    Related works:

    • [188]
    • [102]

    Related project: Development of Database and software applications in a web platform for the "National Databank for Hydrological and Meteorological Information"

    Full text: http://www.itia.ntua.gr/en/getfile/928/1/documents/HydrognomonV4TheoryGR-v1.02.pdf (3356 KB)

    See also: http://hydrognomon.org/

    Other works that reference this work (this list might be obsolete):

    1. Tsanis, I. K., M. G. Grillakis, and A. G. Koutroulis, Climate change impact on the hydrology of Spencer Creekwatershed in Southern Ontario, Canada, Journal of Hydrology, 409(1-2), 1-19, doi:10.1016/j.jhydrol.2011.06.018, 2011.
    2. #Τσιντσάρης Α., και Φ. Μάρης, Αξιολόγηση των ορεινών υδρονομικών έργων του χείμαρρου Ελαιώνα Σερρών με την εφαρμογή υδρολογικών μοντέλων και γεωγραφικών συστημάτων πληροφοριών, Υδροτεχνικά, 20, 2011.
    3. Bekri, E., M. Disse, P. Yannopoulos, Optimizing water allocation under uncertain system conditions in Alfeios River Basin (Greece), Part A: Two-stage stochastic programming model with deterministic boundary intervals, Water, 7(10), 5305-5344, doi:10.3390/w7105305, 2015.
    4. Bekri, E., M. Disse, P. Yannopoulos, Optimizing water allocation under uncertain system conditions in Alfeios River Basin (Greece), Part B: Fuzzy-boundary intervals combined with multi-stage stochastic programming model, Water, 7(10), 6427-6466, doi:10.3390/w7116427, 2015.
    5. Ahmed, S., and I. Tsanis, Climate change impact on design storm and performance of urban storm-water management system – A case study on West Central Mountain drainage area in Canada, Hydrology Current Research, 7(1), 229, doi:10.4172/2157-7587.1000229, 2016.
    6. Charizopoulos, N., and A. Psilovikos, Hydrologic processes simulation using the conceptual model Zygos: the example of Xynias drained Lake catchment (central Greece), Environmental Earth Sciences, 75:777, doi:10.1007/s12665-016-5565-x, 2016.

  1. A. Koukouvinos, A. Efstratiadis, and E. Rozos, Hydrogeios - Version 2.0 - User manual, Development of Database and software applications in a web platform for the "National Databank for Hydrological and Meteorological Information" , Contractor: Department of Water Resources and Environmental Engineering – National Technical University of Athens, 100 pages, November 2009.

    Related project: Development of Database and software applications in a web platform for the "National Databank for Hydrological and Meteorological Information"

    Full text: http://www.itia.ntua.gr/en/getfile/1424/1/documents/hydrogeios_manual.pdf (2692 KB)

  1. S.M. Papalexiou, and A. Efstratiadis, Final report, Flood risk estimation and forecast using hydrological models and probabilistic methods , 116 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, November 2009.

    Related project: Flood risk estimation and forecast using hydrological models and probabilistic methods

    Full text: http://www.itia.ntua.gr/en/getfile/939/1/documents/ReportFinal.pdf (2029 KB)

    Additional material:

  1. A. Efstratiadis, E. Rozos, and A. Koukouvinos, Hydrogeios: Hydrological and hydrogeological simulation model - Documentation report, Development of Database and software applications in a web platform for the "National Databank for Hydrological and Meteorological Information" , 139 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, November 2009.

    Related project: Development of Database and software applications in a web platform for the "National Databank for Hydrological and Meteorological Information"

    Full text: http://www.itia.ntua.gr/en/getfile/929/1/documents/Hydrogeios_documentation_.pdf (2561 KB)

  1. A. Efstratiadis, G. Karavokiros, and N. Mamassis, Master plan of the Athens water resource system - Year 2009, Maintenance, upgrading and extension of the Decision Support System for the management of the Athens water resource system, Contractors: , Report 1, 116 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, April 2009.

    Related project: Maintenance, upgrading and extension of the Decision Support System for the management of the Athens water resource system

  1. D. Koutsoyiannis, N. Mamassis, A. Koukouvinos, and A. Efstratiadis, Summary report, Athens, Investigation of management scenarios for the Smokovo reservoir, Contractor: Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, 37 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, August 2008.

    The subject and the objectives of the research project are summarized, comprising: (a) collection of hydrological, geographical and water use data and hydrosystem properties; (b) investigation of a proposed legal, financial and social framework for the management of Smokovo reservoir; (c) investigation of the operational framework of other reservoirs; (d) investigation of alternative means for the organization and operation of the Water Management Body; (e) formulation of an operational plan for water resources management; (f) formulation of alternative management scenarios and optimal operation of the reservoir, according various levels of hydrosystem development, and (h) the integration of data and processes to a computer system.

    Related project: Investigation of management scenarios for the Smokovo reservoir

    Full text: http://www.itia.ntua.gr/en/getfile/875/1/documents/report5.pdf (906 KB)

  1. D. Koutsoyiannis, N. Mamassis, A. Koukouvinos, and A. Efstratiadis, Final report, Investigation of management scenarios for the Smokovo reservoir, Contractor: Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Report 4, 66 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, July 2008.

    The subject and the objectives of the research project are presented, comprising: (a) collection of hydrological, geographical and water use data and hydrosystem properties; (b) investigation of a proposed legal, financial and social framework for the management of Smokovo reservoir; (c) investigation of the operational framework of other reservoirs; (d) investigation of alternative means for the organization and operation of the Water Management Body; (e) formulation of an operational plan for water resources management; (f) formulation of alternative management scenarios and optimal operation of the reservoir, according various levels of hydrosystem development, and (h) the integration of data and processes to a computer system.

    Related project: Investigation of management scenarios for the Smokovo reservoir

    Full text: http://www.itia.ntua.gr/en/getfile/840/1/documents/report4_v4.pdf (1766 KB)

    Other works that reference this work (this list might be obsolete):

    1. #Safiolea, E., C. Makropoulos, and M. Mimikou, Benefits and challenges in integrated water resources modeling using OpenMI: the case of the Pinios River basin, Greece, Integrating Water Systems - Proceedings of the 10th International on Computing and Control for the Water Industry, CCWI 2009, Sheffiled, 481-484, 2010.

  1. A. Efstratiadis, A. Koukouvinos, N. Mamassis, and D. Koutsoyiannis, Alternative scenarios for the management and optimal operation of the Smokovo reservoir and the related works, Investigation of management scenarios for the Smokovo reservoir, Contractor: Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Report 3, 104 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, July 2008.

    A range of scenarios for the management of the Smokovo reservoir and the related works are studied, taking into account the reservoir inflows, the development of works and the various water uses. In order to estimate inflows, a comprehensive hydrological investigation is carried out, based on the process of pluvial, meteorological, hydrometric and geographical data for the hydrosystem, and the representation of the natural processes using the semi-distributed hydrological model Hydrogeios. The model parameters are calibrated on the basis of historical runoff records in three system locations, which are reproduced with satisfactory accuracy. The resulted inflow sample is used for the generation of synthetic time series upstream of the dam, thorough model Castalia, which are input to the water management model Hydronomeas. Through the latter, various safe release scenarios are investigated for different water uses (irrigation, water supply, hydropower), depending on the works progress, and appropriate management policies are proposed, for short and long term horizon. The analyzes are implemented by means of a computer-based system that was developed for the project purposes, comprising databases and software tools.

    Related project: Investigation of management scenarios for the Smokovo reservoir

    Full text: http://www.itia.ntua.gr/en/getfile/839/1/documents/report3_v4.pdf (2966 KB)

    Other works that reference this work (this list might be obsolete):

    1. Charizopoulos, N., and A. Psilovikos, Hydrologic processes simulation using the conceptual model Zygos: the example of Xynias drained Lake catchment (central Greece), Environmental Earth Sciences, doi:10.1007/s12665-016-5565-x, 2016.

  1. D. Koutsoyiannis, A. Andreadakis, R. Mavrodimou, A. Christofides, N. Mamassis, A. Efstratiadis, A. Koukouvinos, G. Karavokiros, S. Kozanis, D. Mamais, and K. Noutsopoulos, National Programme for the Management and Protection of Water Resources, Support on the compilation of the national programme for water resources management and preservation, 748 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, February 2008.

    Related project: Support on the compilation of the national programme for water resources management and preservation

    Full text:

    Other works that reference this work (this list might be obsolete):

    1. Baltas, E. A., Climatic conditions and availability of water resources in Greece, International Journal of Water Resources Development, 24(4), 635-649, 2008
    2. Gikas, P., and G.Tchobanoglous, Sustainable use of water in the Aegean Islands, Journal of Environmental Management, 90(8), 2601-2611, 2009.
    3. Gikas, P., and A.N.Angelakis, Water resources management in Crete and in the Aegean Islands, with emphasis on the utilization of non-conventional water sources, Desalination, 248 (1-3), 1049-1064, 2009.
    4. Agrafioti, E., and E. Diamadopoulos, A strategic plan for reuse of treated municipal wastewater for crop irrigation on the Island of Crete, Agricultural Water Management, 105,57-64, 2012.
    5. #Zafirakis, D., C. Papapostolou, E. Kondili, and J. K. Kaldellis, Water use in the electricity generation sector: A regional approach evaluation for Greek thermal power plants, Protection and Restoration of the Environment XI, 1459-1468, 2012.
    6. Pisinaras, V., C. Petalas, V. A. Tsihrintzis and G. P. Karatzas, Integrated modeling as a decision-aiding tool for groundwater management in a Mediterranean agricultural watershed, Hydrological Processes, 27 (14), 1973-1987, 2013.
    7. Efstathiou, G.A., C. J. Lolis, N. M. Zoumakis, P. Kassomenos and D. Melas, Characteristics of the atmospheric circulation associated with cold-season heavy rainfall and flooding over a complex terrain region in Greece, Theoretical and Applied Climatology, 115 (1-2), 259-279, 2014.
    8. #Antoniou, G. P., Residential rainwater cisterns in Ithaki, Greece, IWA Regional Symposium on Water, Wastewater & Environment: Traditions & Culture (ed. by I. K. Kalavrouziotis and A. N. Angelakis), Patras, Greece, 675-685, International Water Association & Hellenic Open University, 2014.
    9. Kougioumoutzis, K., S.M. Simaiakis, and A. Tiniakou, Network biogeographical analysis of the central Aegean archipelago, Journal of Biogeography, 41 (10) 848-1858, 2014.
    10. Zafirakis, D., C. Papapostolou, E. Kondili, and J. K. Kaldellis, Evaluation of water‐use needs in the electricity generation sector of Greece, International Journal of Environment and Resource, 3(3), 39-45, 2014.
    11. Manakos, I., K. Chatzopoulos-Vouzoglanis, Z. I. Petrou, L. Filchev and A. Apostolakis, Globalland30 Mapping capacity of land surface water in Thessaly, Greece, Land, 4 (1), 1-18, 2015.
    12. Kallioras, A., and P. Marinos, Water resources assessment and management of karst aquifer systems in Greece, Environmental Earth Sciences, 74(1), 83-100, doi:10.1007/s12665-015-4582-5, 2015.
    13. #Grimpylakos , G., K. Albanakis, and T. S. Karacostas, Watershed size, an alternative or a misguided parameter for river’s waterpower? Implementation in Macedonia, Greece, Perspectives on Atmospheric Sciences, Springer Atmospheric Sciences, 295-301, doi:10.1007/978-3-319-35095-0_41, 2017.

  1. G. Karavokiros, A. Efstratiadis, and I. Vazimas, HYDRONOMEAS - Computer System for Simulation and Optimal Management of Water Resources - User Manual - Version 4.0, Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS), Contractor: NAMA, 144 pages, January 2007.

    Related project: Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS)

    Full text:

    Other works that reference this work (this list might be obsolete):

    1. Demertzi, K. A., D.M. Papamichail, P. E. Georgiou, D. N. Karamouzis, and V. G. Aschonitis, Assessment of rural and highly seasonal tourist activity plus drought effects on reservoir operation in a semi-arid region of Greece using the WEAP model, Water International, 39(1), 23–34, 2014.

  1. A. Efstratiadis, G. Karavokiros, and D. Koutsoyiannis, Theoretical documentation of model for simulating and optimising the management of water resources "Hydronomeas", Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS), Contractor: NAMA, Report 9, 91 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, January 2007.

    The subject of the report is the development of the software system HYDRONOMEAS, which is an operational tool for the management of complex water resource systems. The model is applicable to a wide range of hydrosystems, consisting of river branches, reservoirs, boreholes, pumping and hydropower stations, aqueduct networks, demand points, etc. After a general overview of the water resources management problem and a short presentation of some well-recognized decision support systems, we describe the theoretical background of the model, which implements the parameterisation-simulation-optimisation scheme. The former refers to the formulation of parametric control rules for the major infrastructures (reservoirs, boreholes), where the number of parameters is kept as low as possible. Simulation is applied to faithfully represent the processes. Specifically, real economic values in addition to virtual costs are assigned to network components to preserve the physical constraints and water use priorities, ensuring also the lowest-cost transportation path of water from the sources to the consumption. Finally, optimisation is applied to derive the optimal management policy on the basis of multiple performance criteria, thus ensuring simultaneous minimisation of the risk and cost of decision-making. Note that the modelling framework adopts a stochastic approach, providing predictions for all hydrosystem fluxes (storages, discharges, withdrawals) on the basis of synthetic scenarios of inflows. The last part of the report focus on the practical use of the model, as a stand-alone system as well as in co-operation with other modules developed within the ODYSSEUS research project.

    Related project: Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS)

    Full text: http://www.itia.ntua.gr/en/getfile/756/1/documents/report_9.pdf (2701 KB)

    Other works that reference this work (this list might be obsolete):

    1. #Mackey, R., The climate dynamics of total solar variability, 16th Natural Resources Commission Coastal Conference 2007, Australia, 2007.
    2. #Strosser P., J. Roussard, B. Grandmougin, M. Kossida, I. Kyriazopoulou, J. Berbel, S. Kolberg, J. A. Rodríguez-Díaz, P. Montesinos, J. Joyce, T. Dworak, M. Berglund, and C. Laaser, EU Water saving potential (Part 2 – Case Studies), Berlin, Allemagne, Ecologic – Institute for International and European Environmental Policy, 101 pp., 2007.

  1. N. Mamassis, R. Mavrodimou, A. Efstratiadis, M. Heidarlis, A. Tegos, A. Koukouvinos, P. Lazaridou, M. Magaliou, and D. Koutsoyiannis, Investigation of alternative organisations and operations of a Water Management Body for the Smokovo projects, Investigation of management scenarios for the Smokovo reservoir, Report 2, 73 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, March 2007.

    The framework regarding the establishment and operation of a water management body for the Smokovo reservoir and the related projects is investigated. The study area, as well as the responsibility area within it, is defined, and a short description of the characteristics for the physical and artificial system is made. The current legal and institutional framework is examined, on the basis of which various alternative schemes are proposed for the management body. Its legal and administrative status, the competence and the organogram are specified, and an initial financial analysis is attempted, to validate its viability. Finally, the next actions are proposed, regarding the organization of deliberations with the related organs.

    Related project: Investigation of management scenarios for the Smokovo reservoir

    Full text: http://www.itia.ntua.gr/en/getfile/720/1/documents/Smo_teyx2ekd3.pdf (2847 KB)

    Additional material:

  1. A. Efstratiadis, A. Tegos, G. Karavokiros, I. Kyriazopoulou, and I. Vazimas, Master Plan for water resources management for the area of Karditsa, Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS), Report 16, 132 pages, NAMA, Athens, December 2006.

    The present report refers to the Master Plan for water resources management for the area of Karditsa and was elaborated by NAMA's research team in cooperation with DEYA Karditsa and the National Technical University of Athens. This deliverable is part of Work Package 8 with title "Pilot Applications". The Pilot Applications aim to test and evaluate the product (from methodology and software efficiency viewpoints) on hydrosystems with totally different characteristics, in terms of their hydroclimatic regime, structure scale, and institutional and administrative framework of management. After the completion of the pilot applications, the product was re-examined at all levels (theoretical background, software design and implementation), before assuming its final form. This report will include the following main sections, according to the Technical Addendum of the Contract: (a) description of the study area, (b) description of the hydrosystem, (c) data and processing, (d) water needs assessment, (e) hydrological inflow assessment, (f) management of the hydrosystem, (g) simulation of quality parameters, (h) financial analysis and (i) conclusions and proposals.

    Related project: Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS)

    Full text: http://www.itia.ntua.gr/en/getfile/769/1/documents/report_16.pdf (5557 KB)

    Additional material:

    Other works that reference this work (this list might be obsolete):

    1. #Strosser P., J. Roussard, B. Grandmougin, M. Kossida, I. Kyriazopoulou, J. Berbel, S. Kolberg, J. A. Rodríguez-Díaz, P. Montesinos, J. Joyce, T. Dworak, M. Berglund, and C. Laaser, EU Water saving potential (Part 2 – Case Studies), Berlin, Allemagne, Ecologic – Institute for International and European Environmental Policy, 101 pp., 2007.

  1. A. Efstratiadis, A. Koukouvinos, E. Rozos, A. Tegos, and I. Nalbantis, Theoretical documentation of model for simulating hydrological-hydrogeological processes of river basin "Hydrogeios", Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS), Contractor: NAMA, Report 4a, 103 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, December 2006.

    The subject of the report is the development of the software system HYDROGEIOS, which represents the hydrological and hydrogeological processes as well as the water resource management practices of a river basin. After a short review of the most recognized hydrological models and a general overview of the problem, we describe the theoretical background of the approach, comprising the combined operation of three models: (a) a conceptual soil moisture accounting model, with different parameters for each hydrological response unit, which estimates the transformation of precipitation to evapotranspiration, surface runoff and percolation; (b) a multicell groundwater model, which estimates the spatial distribution of the water table, the baseflow (spring runoff) and the underground losses; and (c) a water resources allocation model, which for given hydrological inflows along the river network, given characteristics of technical facilities (aqueducts, wells) and given targets and constraints, estimates the abstractions and the water balance at all hydrosystem control points, selecting the economical optimal management. The spatial analysis assumes a semi-distributed schematisation of the basin and its underlying aquifer, and also a rough description of the technical works, all employed via the use of geographical information systems. The time step of simulation is monthly or daily; in the last case, a routing model is optionally incorporated, based on the well-known Muskingum-Cunge method. Specific emphasis is given to the estimation of model parameters, by using statistical and empirical goodness-of-fit measures and evolutionary algorithms for single- and multi-objective optimisation. Finally, we present an application of the model to the Western Thessaly area.

    Related project: Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS)

    Full text: http://www.itia.ntua.gr/en/getfile/755/1/documents/report_4a.pdf (3877 KB)

  1. A. Koukouvinos, A. Efstratiadis, L. Lazaridis, and N. Mamassis, Data report, Investigation of management scenarios for the Smokovo reservoir, Report 1, 66 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, January 2006.

    The entire raw data (geographical, hydrological, data for water management, etc.) that was collected for the study area is presented, which involves the operation of the Smokovo reservoir and the related projects. The characteristics of the watersheds and the hydraulic structures (Smokovo dam and reservoir, Leontari tunnel and hydropower station, irrigation network) are examined. The water balance of the reservoir is constructed, for its operation period. The water uses (irrigation, water supply, power generation, tourism) are analysed, as well as the water quality parameters and the environmental requirements. Finally, the directions of the future works of the project are specified.

    Related project: Investigation of management scenarios for the Smokovo reservoir

    Full text: http://www.itia.ntua.gr/en/getfile/696/1/documents/DataReport.pdf (2567 KB)

  1. A. Efstratiadis, D. Koutsoyiannis, and S. Kozanis, Theoretical documentation of stochastic simulation of hydrological variables model "Castalia", Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS), Contractor: NAMA, Report 3, 61 pages, doi:10.13140/RG.2.2.30224.40966, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, September 2005.

    This report describes a system for the stochastic simulation and forecast of hydrologic variables. More specifically, an original two-level multivariate scheme was introduced, appropriate for preserving the most important statistics of the historical time series and reproducing characteristic peculiarities of hydrologic processes such as persistence, periodicity and skewness. The mathematical model was implemented in a computer package, named Castalia, and it was applied for the generation of synthetic hydrologic time series within the simulation models the are components of the decision support systems for the management of hydro-systems.

    Related project: Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS)

    Full text: http://www.itia.ntua.gr/en/getfile/742/1/documents/report_3.pdf (1377 KB)

    See also: http://dx.doi.org/10.13140/RG.2.2.30224.40966

    Other works that reference this work (this list might be obsolete):

    1. Bekri, E., M. Disse, P. Yannopoulos, Optimizing water allocation under uncertain system conditions in Alfeios River Basin (Greece), Part A: Two-stage stochastic programming model with deterministic boundary intervals, Water, 7(10), 5305-5344, doi:10.3390/w7105305, 2015.
    2. Bekri, E., M. Disse, P. Yannopoulos, Optimizing water allocation under uncertain system conditions in Alfeios River Basin (Greece), Part B: Fuzzy-boundary intervals combined with multi-stage stochastic programming Model, Water, 7(10), 6427-6466, doi:10.3390/w7116427, 2015.

  1. S. Kozanis, A. Christofides, and A. Efstratiadis, Description of the data management and processing system "Hydrognomon", Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS), Contractor: NAMA, Report 2, 141 pages, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, Athens, September 2005.

    "Hydrognomon" is a software tool for the management and analysis of hydrological data. It is built on a standard Windows platform based on client-server architecture; a database server is holding hydrological data whereas several workstations are executing Hydrognomon, sharing common data. Data retrieval, processing and visualisation are supported by a multilingual Graphical User Interface. Data management is ba