Assistant Professor, Civil Engineer, MSc., Dr. Engineer
A.Efstratiadis@itia.ntua.gr
+30-2107722861
Prediction of water consumption in EYDAP's areas of activity under climate change and social & economic alterations
Duration: September 2024–April 2025
Budget: €50 000
Commissioned by: EYDAP R&D
Project director: A. Efstratiadis
The project aims to predict (by means of scenarios) the water consumption in the areas of activity of EYDAP SA, by taking into account climatic, social, demographic and economic changes. In this context, historical water consumption data, at multiple scales, and the variables that affect it will be collected and analyzed, through Artificial Intelligence tools. Key component will be a simulation model of the behavior of water consumers in the areas supplied by EYDAP SA. This will be calibrated on the basis historical data and used to predict future demands, driven by various scenarios of their predictors (climatic variables, socioeconomic conditions, development plans, etc.). The time horizon of projections will be at least until the year 2045. The outcomes of the project will support the company in planning new projects and taking suitable measures to deal with potentially increased water demands, compared to the current levels.
Analysis of dam break and flood wave channeling of a pumped storage project at the "reservoir" location YHS Sfikias Bravas
Duration: September 2024–November 2024
Budget: €25 000
Commissioned by: Public Power Corporation
Project director: A. Efstratiadis
The purpose of the research project is to provide scientific consultant services to DEI AE, which relate to the analysis of dam break phenomena and flood wave routing, for the pumped storage system under study at the location "Bravas" (about 0.6 km southeast of the Sfikia hydroelectric project). The construction of a dam is planned at the location in question, in order to form the upper reservoir of the system, while the artificial lake of Sfikia will be used as the lower reservoir. The construction of a production-pumping station on the SE bank of the reservoir (next to the "Bravas" site) is also planned, as well as the construction of an underground water transport system, which will connect the upper reservoir with the production-pumping station. The research object includes the modeling of the break of the dam (it concerns the main dam but also the smaller neck dam, in the SE), the hydrodynamic simulation of the passage of the flood wave, and the investigation of the effects they will cause on the existing lower reservoir of Sfikia, the flood wave and the materials that will be carried away by the collapse of the dam. The deliverable of the project will be the technical study and the required accompanying plans.
Technical support services in the context of the establishment of the Islands' Decarbonization Fund
Duration: July 2024–September 2024
Budget: €30 000
Commissioned by: Natural Environment and Climate Change Agency
Project director: A. Efstratiadis
Principal investigator: C. Makropoulos
The program concerns the development of a specialized technical study for the technical and financial analysis and the assessment of the socio‐economic and environmental benefits of implementing multi‐purpose dams/reservoirs with hydroelectric power generation (e.g., water supply, irrigation, flood protection). The results of the study will be used to formulate the project fiche for the subcategory of projects "Multi‐purpose dams/reservoirs" of the Islands" Decarbonization Fund (IDF).
Development of computational infrastructure for the hydrodynamic simulation of the hydrosystem downstream of Asomata Dam
Duration: February 2024–May 2024
Budget: €29 500
Commissioned by: Department of Water Resources and Environmental Engineering
Contractor: Hydroelectric Power Plants Operation Department
Project director: A. Efstratiadis
Principal investigator: N. Mamassis
The project aims at the development of a suitable computational infrastructure for the hydrodynamic simulation of the hydrosystem downstream of Asomata Dam, in Aliakmonas River. This will be applied for various outflow scenarios through the hydroelectric plant and the dam spillway, which will be the upstream boundary of the study area, extending over about 2800 km2, of which approximately 2200 km2 are occupied by the catchment of the so-called Peripheral Trench (T66). The final product will be a computer system for one-dimensional analysis, in a HEC-RAS environment, and the associated data infrastructure, as backgrounds for the hydrodynamic simulation and, eventually, flood risk assessment across the vulnerable areas downstream of Asomata dam.
Modernization of the management of the water supply system of Athens - Update
Duration: May 2019–April 2024
Budget: €120 000
Commissioned by: Water Supply and Sewerage Company of Athens
Contractor: Department of Water Resources and Environmental Engineering
Project director: A. Efstratiadis
Principal investigator: I. Papakonstantis
The project aims to revise, upgrade and expand the software tools that have been developed in the context of previous research programs, and the overall support of the Water Supply Directorate of EYDAP S.A. in topics associated with the management of the water resource system of Athens. In this vein we are planning to employ advanced hydrological and water management analyses, improve the existing computational systems and associated methodologies for stochastic simulation and optimization, the elaboration of Master Plans, on annual basis or less, in case of emergency, and the theoretical investigation with respect to the development of a decision support tool for the hydraulic propagation of water flows across the hydrosystem, to be tested in part of Mornos’ channel.
Open Hydrosystem Information Network (OpenHi.net)
Duration: January 2018–December 2020
Budget: €320 000
Commissioned by: Special Secretary of ERDF & CF
Contractor: Department of Water Resources and Environmental Engineering
Collaborators:
Project director: N. Mamassis
Principal investigator: A. Efstratiadis
OpenHi.net is sub-project of the national research infrastructure “Hellenic Integrated Marine and Inland Water Resources Observing, Forecasting and Offshore Technology Systems” (HIMIOFoTS). Its objective is the design of an integrated e-infrastructure for collection, management and dissemination of hydrological and environmental information for the surface water resources of Greece, and the coordination of sub-projects that are involved in the development and initial operation of the system. The sub-project comprises the recording and evaluation of the existing infrastructures of the country (monitoring networks, databases), the analysis of specifications and assessment of the information system, the organization and processing of geographical data with respect to surface water bodies and hydrosystems of Greece, and their implementation within OpenHi. The system design will foresee the incorporation of all related infrastructure of the country, in a forthcoming phase, in order to provide free access to all hydrological, environmental and geographical data of surface water resources of Greece.
Project web-page: https://openhi.net/
Nonlinear methods in multicriteria water resource optimization problems
Duration: November 2002–December 2007
Budget: €33 274
Commissioned by: Ministry of National Education
Contractor: National Technical University of Athens
Project director: D. Koutsoyiannis
Principal investigator: A. Efstratiadis
Programme: Ηράκλειτος
DEUCALION – Assessment of flood flows in Greece under conditions of hydroclimatic variability: Development of physically-established conceptual-probabilistic framework and computational tools
Duration: March 2011–March 2014
Budget: €145 000
Commissioned by: General Secretariat of Research and Technology
Contractors:
Project director: D. Koutsoyiannis
Principal investigator: N. Mamassis
Programme: ΕΣΠΑ "Συνεργασία"
The project aims to develop a set of physically-based methodologies associated with modelling and forecasting of extreme rainfall events and the subsequent flood events, and adapted to the peculiarities of the hydroclimatic and geomorphological conditions of Greece. It includes the implementation of a set of research river basins that comprises a number of gauged basins in Greece and Cyprus with reliable measurements of adequate length, as well as three new experimental basins (with their sub-basins), which will be equipped with the necessary infrastructure. From the field data analysis (hydrological, meteorological, geographical) physically-established regional models will be devoloped for the estimation of characteristic hydrological design quantities, along with hydrological-hydraulic models, which will be integrated within an operational system for hydrometeorological forecasting. A framework of design criteria and methodologies (in a draft form for discussion) will be prepared for the elaboration of hydrological studies for flood-prevention works.
Project web-page: http://deucalionproject.itia.ntua.gr/
EU COST Action ES0901: European procedures for flood frequency estimation (FloodFreq)
Duration: February 2010–December 2013
Project director: T. Kjeldsen
The main objective is to undertake a pan-European comparison and evaluation of methods for flood frequency estimation under the various climatologic and geographic conditions found in Europe, and different levels of data availability. A scientific framework for assessing the ability of these methods to predict the impact of environmental change (climate change, land-use and river engineering works) on future flood frequency characteristics (flood occurrence and magnitude) will be developed and tested. The availability of such procedures is crucial for the formulation of robust flood risk management strategies as required by the Directive of the European Parliament on the assessment and management of floods. The outputs from FloodFreq will be disseminated to: academics, professionals involved in operational flood risk management from private and public institutions, and relevant policy makers from national and international regulatory bodies. This Action enables cooperation between researchers involved in nationally funded research projects to, thereby enabling testing of methods free from the constraints of administrative boundaries, and allowing a more efficient use of European flood research funding.
Project web-page: http://www.costfloodfreq.eu/
Maintenance, upgrading and extension of the Decision Support System for the management of the Athens water resource system
Duration: October 2008–November 2011
Budget: €72 000
Project director: N. Mamassis
Principal investigator: D. Koutsoyiannis
This research project includes the maintenance, upgrading and extension of the Decision Support System that developed by NTUA for EYDAP in the framework of the research project “Updating of the supervision and management of the water resources’ system for the water supply of the Athens’ metropolitan area”. The project is consisted of the following parts: (a) Upgrading of the Data Base, (b)Upgrading and extension of hydrometeorological network, (c) upgrading of the hydrometeorological data process software, (d) upgrading and extension of the Hydronomeas software, (e) hydrological data analysis and (f) support to the preparation of the annual master plans
Development of Database and software applications in a web platform for the "National Databank for Hydrological and Meteorological Information"
Duration: December 2009–May 2011
Budget: €140 000
Commissioned by: Hydroscope Systems Consortium
Contractor: Department of Water Resources and Environmental Engineering
Project director: N. Mamassis
Principal investigator: N. Mamassis
The Ministry of Environment, Physical Planning & Public Works assigned to a consortium of consultancy companies the Project "Development of a new software platform for the management and operation of the National Databank for Hydrologic and Meteorological Information - 3rd Phase within a GIS environment and relevant dissemination actions". In the framework of the specific project a research team of NTUA undertakes a part as subcontractor. NTUA delivers methodologies for further development of the databases and applications of the Databank and their migration into a web platform (including the experimental node openmeteo.org for free data storage for the public). Specifically, using the knowhow that has been developed in the past by Research Teams from the Department of Water Resources of the School of Civil Engineering a database system and software applications (included hydrological models) are created fully adapted for operation over the Internet. NTUA's contribution is primarily on the design of the new system and the hydrological and geographical database the development of distibuted hydological models, the adaptation of the system to the WFD 2000/60/EC and on supporting dissemination activities. Finally NTUA will participate in the technical support and pilot operation of the project after its delivery from the consortium to the Ministry.
More information is available at http://www.hydroscope.gr/.
OpenMI Life
Duration: January 2006–December 2010
The project's rationale lies in the Water Framework Directive,which demands an integrated approach to water management. This requires an ability to predict how catchment processes will interact. In most contexts, it is not feasible to build a single predictive model that adequately represents all the processes; therefore, a means of linking models of individual processes is required.The FP5 HarmonIT project's innovative and acclaimed solution, the Open Modelling Interface and Environment (OpenMI) met this need by simplifying the linking of hydrology related models.Its establishment will support and assist the strategic planning and integrated catchment management.
Cost of raw water of the water supply of Athens
Duration: June 2010–December 2010
Budget: €110 000
Commissioned by: Fixed Assets Company EYDAP
Contractor: Department of Water Resources and Environmental Engineering
Project director: C. Makropoulos
Observations, Analysis and Modeling of Lightning Activity in Thunderstorms, for Use in Short Term Forecasting of Flash Floods
Duration: October 2006–September 2009
Commissioned by: DGXII / FP6-SUSTDEV-2005-3.II.1.2
Contractor: National Observatory of Athens
Project director: K. Lagouvardos
Flood risk estimation and forecast using hydrological models and probabilistic methods
Duration: February 2007–August 2008
Budget: €15 000
Commissioned by: National Technical University of Athens
Contractor: Department of Water Resources and Environmental Engineering
Collaborators: Hydrologic Research Center
Project director: D. Koutsoyiannis
Principal investigator: S.M. Papalexiou
Programme: Πρόγραμμα Βασικής Έρευνας ΕΜΠ "Κωνσταντίνος Καραθεοδωρή"
The objective of this project is the development of an integrated framework for the estimation and forecast of flood risk using stochastic, hydrological and hydraulics methods. The study area is the Boeticos Kephisos river basin. The project includes analysis of severe storm episodes in the basin, the understanding of mechanisms of flood generation in this karstic basin and the estimation of flood risk in characteristic sites of the hydrosystem.
Support on the compilation of the national programme for water resources management and preservation
Duration: February 2007–May 2007
Budget: €45 000
Commissioned by: Ministry of Environment, Planning and Public Works
Contractor: Department of Water Resources and Environmental Engineering
Project director: D. Koutsoyiannis
Principal investigator: A. Andreadakis
This project updates and expands a previous research project (Classification of quantitative and qualitative parameters of water resources in water districts of Greece), which has been commissioned by the Ministry of Development and conducted by the same team of NTUA in co-operation with the Ministry of Development, IGME, and KEPE.
The project includes defining the methodology, analyzing the water resources in the 14 water districts, quantity and quality and the relations between them, describing the existing administrative and development frameworks for water resources management and protection presenting the national, peripheral and sectoral water-related policies, and proposing an approach to a water resource management and protection programme (conclusions, problems, solutions, and proposals for projects and measures).
Investigation of management scenarios for the Smokovo reservoir
Duration: November 2005–December 2006
Budget: €60 000
Commissioned by: Special Directorate for the Management of Corporate Programs of Thessaly
Contractor: Department of Water Resources, Hydraulic and Maritime Engineering
Project director: D. Koutsoyiannis
Principal investigator: N. Mamassis
Programme: Επιχειρησιακά Σχέδια Διαχείρισης Δικτύων Σμοκόβου
Integrated Management of Hydrosystems in Conjunction with an Advanced Information System (ODYSSEUS)
Duration: July 2003–June 2006
Budget: €779 656
Commissioned by: General Secretariat of Research and Technology
Contractor: NAMA
Collaborators:
Project director: D. Koutsoyiannis
Principal investigator: A. Andreadakis
Programme: ΕΠΑΝ, Φυσικό Περιβάλλον και Βιώσιμη Ανάπτυξη
The project aims at providing support to decision-making processes within the direction of integrated management of water resource systems at a variety of scales. Several methodologies and computing tools are developed, which are incorporated into an integrated information system. The main deliverable is an operational software package of general use, which is evaluated and tested on two pilot case studies, concerning hydrosystems in Greece with varying characteristics (Karditsa, Dodecanesus). The end-product of the project is a software system for simulation and optimisation of hydrosystem operation, as well as a series of separate software applications for solving specific problems, aiming at producing input data to the central system or post-processing of the results. The project includes eleven work packages, eight for basic research, two for industrial research and one for the pilot applications.
Modernisation of the supervision and management of the water resource system of Athens
Duration: March 1999–December 2003
Commissioned by: Water Supply and Sewerage Company of Athens
Contractor: Department of Water Resources, Hydraulic and Maritime Engineering
Project director: D. Koutsoyiannis
Principal investigator: D. Koutsoyiannis
Due to the dry climate of the surrounding region, Athens has suffered from frequent water shortages during its long history but now has acquired a reliable system for water supply. This extensive and complex water resource system extends over an area of around 4000 km2 and includes surface water and groundwater resources. It incorporates four reservoirs, 350 km of main aqueducts, 15 pumping stations and more than 100 boreholes. The water resource system also supplies secondary uses such as irrigation and water supply of nearby towns. The Athens Water Supply and Sewerage Company (EYDAP) that runs the system commissioned this project, which comprises: (a) development of a geographical information system for the representation and supervision of the external water supply system; (b) development of a measurement system for the water resources of Athens; (c) development of a system for the estimation and prediction of the water resource system of Athens utilising stochastic models; (d) development of a decision support system for the integrated management of water resource system of Athens using simulation-optimisation methodologies; and (e) cooperation and transfer of knowledge between NTUA and EYDAP.
Products: 17 reports; 14 publications
Investigation of scenarios for the management and protection of the quality of the Plastiras Lake
Duration: May 2001–January 2002
Commissioned by:
Contractor: Department of Water Resources, Hydraulic and Maritime Engineering
Project director: K. Hadjibiros
Principal investigator: D. Koutsoyiannis
To protect the Plastiras Lake, a high quality of the natural landscape and a satisfactory water quality must be ensured, the conflicting water uses and demands must be arranged and effective water management practices must be established. To this aim, the hydrology of the catchment is investigated, the geographical, meteorological and water power data are collected and processed, the water balance is studied and a stochastic model is constructed to support the study of alternative management scenarios. In addition, an analysis of the natural landscape is performed and the negative influences (e.g. dead tries) are determined and quantified using GIS. Furthermore, the water quality parameters are evaluated, the water quality state is assessed, the quantitative targets are determined, the pollution sources are identified and measures for the reduction of pollution are studied using a hydrodynamic model with emphasis on the nutrient status. Based on the results of these analyses, scenarios of safe water release are suggested.
Evaluation of Management of the Water Resources of Sterea Hellas - Phase 3
Duration: November 1996–December 2000
Commissioned by: Directorate of Water Supply and Sewage
Contractor: Department of Water Resources, Hydraulic and Maritime Engineering
Project director: D. Koutsoyiannis
Principal investigator: D. Koutsoyiannis
The main objectives of the research project are the evaluation and management of the water resources, both surface and subsurface, of the Sterea Hellas region, and the systematic study of all parameters related to the rational development and management of the water resources of this region. Another objective of the project, considered as an infrastructure work, is the development of software for the hydrological, hydrogeological and operational simulation of the combined catchments of the study area. The development of the software and, at the same time, the development of methodologies suitable for the Greek conditions will assist in decision-making concerning the water resources management of Sterea Hellas and of other Greek regions. The project also aims at the improving of the cooperation between the National Technical University of Athens and the Ministry of Environment, Planning and Public Works. This is considered as a necessary condition for the continuous updating of the project results as well as for the rational analysis of the water resource problems of the Sterea Hellas region. The specific themes of Phase 3 are: (a) the completion of the information systems of the previous phases, which concerned hydrological and hydrogeological information, by including two additional levels of information related to the water uses and the water resources development works; (b) the development of methodologies for optimising the hydrosystems operation and the construction of integrated simulation and optimisation models for the two major hydrosystems of the study area (Western and Eastern Sterea Hellas); and (c) the integration of all computer systems (databases, geographical information systems, application models) into a unified system with collaborating components.
Σχέδιο Διαχείρισης Κινδύνων Πλημμύρας των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Ανατολικής Πελοποννήσου (GR03)
Commissioned by: Specific Secreteriat of Water
Contractor: ADT-OMEGA
Consultancy Services for Conceptual Design, Preparation of Bidding Documents, Assistance during the Selection of Contractor & Monitoring/Supervision of Construction, Instalation, Operation & Maintainance for Traffic Control (CTC) for Greater Gaborone City
Contractor: Erasmos Consulting Engineering
Σχέδιο Διαχείρισης Κινδύνων Πλημμύρας των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Κρήτης (GR13)
Commissioned by: Specific Secreteriat of Water
Contractor: ADT-OMEGA
Παροχή Συμβουλευτικών Υπηρεσιών για την Κατάρτιση του 2ου Σχεδίου Διαχείρισης Λεκάνης Απορροής Ποταμού της Κύπρου για την Εφαρμογή της Οδηγίας 2000/60/ΕΚ και για την Κατάρτιση του Σχεδίου Διαχείρισης Κινδύνων Πλημμύρας για την Εφαρμογή της Οδηγίας 2007/60
Commissioned by: Depatment of Water Development of Cyprus
Contractor: LDK & ECOS
Σχέδιο Διαχείρισης Κινδύνων Πλημμύρας των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Δυτικής Πελοποννήσου (GR01)
Commissioned by: Specific Secreteriat of Water
Contractor: ADT-OMEGA
Έργα Ορεινής Υδρονομίας Ρεμάτων Ορεινών Λεκανών Απορροής Αλμωπίας
Σχέδιο Διαχείρισης Κινδύνων Πλημμύρας των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Βόρειας Πελοποννήσου (GR02)
Commissioned by: Specific Secreteriat of Water
Contractor: ADT-OMEGA
Pleriminary study of Almopaios dam
Duration: July 2014–July 2014
Commissioned by: Roikos Consulting Engeineers S.A.
Hydrological study of the ski center area of Parnassos
Duration: June 2010–July 2010
Contractor: Lazaridis and Collaborators
Water supply works from Gadouras dam - Phase B
Duration: July 2009–July 2010
Commissioned by: Ministry of Environment, Planning and Public Works
Contractor: Ydroexigiantiki
Specific Technical Study for the Ecological Flow from the Dam of Stratos
Duration: January 2009–June 2009
Commissioned by: Public Power Corporation
Contractor: ECOS Consultants S.A.
Μελέτες Διερεύνησης Προβλημάτων Άρδευσης και Δυνατότητας Κατασκευής Ταμιευτήρων Νομού Βοιωτίας
Duration: January 2006–December 2006
Commissioned by: Ministry of Agricultural Development and Food
Contractor: ETME- Antoniou Peppas and Co.
Water resource management of the Integrated Tourist Development Area in Messenia
Duration: January 2003–December 2005
Commissioned by: TEMES - Tourist Enterprises of Messinia
Contractor: D. Argyropoulos
Hydrological and hydraulic study for the flood protection of the new railway in the region of Sperhios river
Duration: October 2002–January 2003
Budget: €90 000
Commissioned by: ERGA OSE
Contractor: D. Soteropoulos
Collaborators: D. Koutsoyiannis
Engineering consultant for the project "Water supply of Heracleio and Agios Nicolaos from the Aposelemis dam"
Duration: October 2000–December 2002
Budget: €1 782 000
Commissioned by: Ministry of Environment, Planning and Public Works
Contractor: Aposelemis Joint Venture
Preliminary Water Supply Study of the Thermoelectric Livadia Power Plant
Duration: January 2001–December 2001
Contractor: Ypologistiki Michaniki
Complementary study of environmental impacts from the diversion of Acheloos to Thessaly
Duration: December 2000–February 2001
Commissioned by: Ministry of Environment, Planning and Public Works
Contractor: Ydroexigiantiki
Collaborators: D. Koutsoyiannis
G.-K. Sakki, A. Castelletti, C. Makropoulos, and A. Efstratiadis, Unwrapping the triptych of climatic, social and energy-market uncertainties in the operation of multipurpose hydropower reservoirs, Journal of Hydrology, 628, 132416, doi:10.1016/j.jhydrol.2024.132416, 2025.
Full text: http://www.itia.ntua.gr/en/getfile/2485/1/documents/Unwrapping_the_triptych_of_climatic_social_and_energy-market.pdf (5612 KB)
A. Zisos, D. Chatzopoulos, and A. Efstratiadis, The concept of spatial reliability across renewable energy systems—An application to decentralized solar PV energy, Energies, 17 (23), 5900, doi:10.3390/en17235900, 2024.
Decentralized planning of renewable energy systems aims to address the substantial spatiotemporal variability, and thus uncertainty, associated with their underlying hydrometeorological processes. For instance, solar photovoltaic (PV) energy is driven by two processes, namely solar radiation, which is the main input, and ambient temperature, with the latter affecting the panel efficiency under specific weather conditions. The objective of this work is to provide a comprehensive investigation of the role of spatial scale by assessing the theoretical advantages of the distributed production of renewable energy sources over those of centralized, in probabilistic means. Acknowledging previous efforts for the optimal spatial distribution of different power units across predetermined locations, often employing the Modern Portfolio Theory framework, this work introduces the generic concept of spatial reliability and highlights its practical use as a strategic planning tool for assessing the benefits of distributed generation at a large scale. The methodology is verified by considering the case of Greece, where PV solar energy is one of the predominant renewables. Following a Monte Carlo approach, thus randomly distributing PVs across well-distributed locations, scaling laws are derived in terms of the spatial probability of capacity factors.
Full text: http://www.itia.ntua.gr/en/getfile/2506/1/documents/energies-17-05900.pdf (2013 KB)
V. Thomopoulou, T. Iliopoulou, P. Kossieris, G. Bariamis, I. Tsoukalas, A. Efstratiadis, and C. Makropoulos, A comprehensive approach to building a continuous hydrologic model with soil moisture accounting using Earth Observation data, Hydrology Research, nh2024190, doi:10.2166/nh.2024.190, 2024.
In recent years, both availability and interest in Earth Observations (EO) have increased due to their ability to provide information with extensive spatial coverage, which is valuable for data-scarce regions. This study provides a roadmap to exploit EO/satellite data (EO-based model) for continuous hydrological simulation using the Hydrologic Engineering Center–Hydrologic Modelling System model with a soil moisture accounting (SMA) component. As a case study, we consider the Boeotikos Kephisos River basin, in Greece. The SMA component is calibrated using the HiHydroSoils dataset, to map its parameters to the regionally varying soil hydraulic properties and a comparison is made to an alternative parameterization, following the standard literature approach (literature-based model). The effectiveness of satellite data in enhancing model performance is further assessed, by comparing three different satellite precipitation datasets, as model drivers, and by using satellite-based soil moisture for model initialization. The discussion extends to the potential for integration of EO/satellite data at the operational level, by simulating a significant precipitation event. Yet, the most promising result pertains to the opportunity to exploit satellite-derived estimates of soil hydraulic properties to base the calibration of the data-intensive SMA scheme, with the EO-based model significantly outperforming the literature-based model parameterization.
Full text: http://www.itia.ntua.gr/en/getfile/2489/1/documents/nh2024190_XihaHXB.pdf (1228 KB)
E. Dimitriou, A. Efstratiadis, I. Zotou, A. Papadopoulos, T. Iliopoulou, G.-K. Sakki, K. Mazi, E. Rozos, A. Koukouvinos, A. D. Koussis, N. Mamassis, and D. Koutsoyiannis, Post-analysis of Daniel extreme flood event in Thessaly, Central Greece: Practical lessons and the value of state-of-the-art water monitoring networks, Water, 16 (7), 980, doi:10.3390/w16070980, 2024.
Storm Daniel initiated on 3 September 2023, over the Northeastern Aegean Sea, causing extreme rainfall levels for the following four days, reaching an average of about 360 mm over the Peneus basin, in Thessaly, Central Greece. This event led to extensive floods, with 17 human lives lost and devastating environmental and economic impacts. The automatic water-monitoring network of the HIMIOFoTS National Research Infrastructure captured the evolution of the phenomenon and the relevant hydrometeorological (rainfall, water stage, and discharge) measurements were used to analyse the event’s characteristics. The results indicate that the average rainfall’s return period was up to 150 years, the peak flow close to the river mouth reached approximately 1950 m3/s, and the outflow volume of water to the sea was 1670 hm3. The analysis of the observed hydrographs across Peneus also provided useful lessons from the flood-engineering perspective regarding key modelling assumptions and the role of upstream retentions. Therefore, extending and supporting the operation of the HIMIOFoTS infrastructure is crucial to assist responsible authorities and local communities in reducing potential damages and increasing the socioeconomic resilience to natural disasters, as well as to improve the existing knowledge with respect to extreme flood-simulation approaches.
Full text: http://www.itia.ntua.gr/en/getfile/2451/1/documents/water-16-00980.pdf (9512 KB)
See also: https://www.mdpi.com/2073-4441/16/7/980
Other works that reference this work (this list might be obsolete):
1. | Leivadiotis, E., S. Kohnová, and A. Psilovikos, Evaluating flood events caused by Medicane "Daniel" in the Thessaly District (Central Greece) using remote sensing data and techniques, Acta Hydrologica Slovaca, 25(1), 115-126, doi:10.31577/ahs-2024-0025.01.0013, 2024. |
2. | Mavroulis, S., M. Mavrouli, E. Lekkas, and A. Tsakris, Impact of the September 2023 storm Daniel and subsequent flooding in Thessaly (Greece) on the natural and built environment and on infectious disease emergence, Environments, 11(8), 163, doi:10.3390/environments11080163, 2024. |
3. | Papadopoulou, E. E., and A. Papakonstantinou, Combining drone LiDAR and virtual reality geovisualizations towards a cartographic approach to visualize flooding scenarios, Drones, 8(8), 398, doi:10.3390/drones8080398, 2024. |
4. | Stamos, I., and M. Diakakis, Mapping flood impacts on mortality at European territories of the Mediterranean region within the Sustainable Development Goals (SDGs) framework, Water, 16(17), 2470, doi:10.3390/w16172470, 2024. |
5. | #Flaounas, E., S. Dafis, S. Davolio, D. Faranda, C. Ferrarin, K. Hartmuth, A. Hochman, A. Koutroulis, S. Khodayar, M. M. Miglietta, F. Pantillon, P. Patlakas, M. Sprenger, and I. Thurnherr, Dynamics, predictability, impacts, and climate change considerations of the catastrophic Mediterranean Storm Daniel (2023), EGUsphere, doi:10.5194/egusphere-2024-2809, 2024. |
6. | Kolios, S., and N. Papavasileiou, Daily rainfall patterns during storm “Daniel” based on different satellite data, Atmosphere, 15(11), 1277, doi:10.3390/atmos15111277, 2024. |
7. | Katsanos, D., A. Retalis, J. Kalogiros, B. E. Psiloglou, N. Roukounakis, and M. Anagnostou, Performance evaluation of satellite precipitation products during extreme events — The case of the Medicane Daniel in Thessaly, Greece, Remote Sensing, 16(22), 4216, doi:10.3390/rs16224216, 2024. |
8. | Tupas, M. E., F. Roth, B. Bauer-Marschallinger, and W. Wagner, Assessment of time-series-derived no-flood references for sar-based Bayesian flood mapping, GIScience & Remote Sensing, 61(1), 1-23, doi:10.1080/15481603.2024.2427304, 2024. |
9. | Antoniadis, K., I. Z. Gitas, N. Georgopoulos, D. Stavrakoudis, and D. Hadjimitsis, Investigating the potential of ICEYE-SAR data in storm damage detection in a coniferous forest with rugged terrain, International Journal of Remote Sensing, doi:10.1080/01431161.2024.2433761, 2024. |
E. Boucoyiannis, P. Kossieris, V. Bellos, A. Efstratiadis, and C. Makropoulos, A grey-box approach in the optimization of regulation structures used in urban-water conveyance systems, Urban Water Journal, 21 (4), 483–497, doi:10.1080/1573062X.2024.2312510, 2024.
This paper presents a holistic approach to address the challenges associated with deploying laboratory-derived hydraulic models in real operational conditions within Urban Water Systems (UWS). The underlying methods and tools are tested and validated using real-world data from the conveyance system serving the city of Athens, Greece. Initially, a novel data repair mechanism is developed, to rectify inconsistencies in time series. Subsequently, algorithmic techniques are applied to identify the most suitable datasets for calibration purposes. Furthermore, a grey-box procedure is developed to adjust key hydraulic modelling parameters, following a modular calibration procedure and aligning them with the specific characteristics of the UWS under study. The findings of this study provide valuable insights for effectively adapting and implementing laboratory-derived hydraulic models in real-world UWS scenarios, enabling better decision-making and management strategies for complex hydro-systems under challenging operational conditions.
A. Zisos, G.-K. Sakki, and A. Efstratiadis, Mixing renewable energy with pumped hydropower storage: Design optimization under uncertainty and other challenges, Sustainability, 15 (18), 13313, doi:10.3390/su151813313, 2023.
Hybrid renewable energy systems (HRES), complemented by pumped hydropower storage (PHS), have become increasingly popular amidst the increase of renewable energy penetration. This configuration is even more prosperous in remote regions that are typically not connected to the mainland power grid, where the energy independence challenge intensifies. This research focuses on the design of such systems, from the perspective of establishing an optimal mix of renewable sources that takes advantage of their complementarities and synergies, combined with the versatility of PHS. However, this design is subject to substantial complexities, due to the multiple objectives and constraints to fulfill, on the one hand, and the inherent uncertainties as well, that span over all underlying processes, i.e., external, and internal. In this vein, we utilize a proposed HRES layout for the Aegean Island of Sifnos, Greece, to develop and evaluate a comprehensive simulation-optimization scheme in deterministic and, eventually, stochastic setting, revealing the design problem under the umbrella of uncertainty. In particular, we account for three major uncertain elements, namely the wind velocity (natural process), the energy demand (anthropogenic process), and the wind-to-power conversion (internal process, expressed in terms of a probabilistic power curve). Emphasis is also given to the decision-making procedure, which requires a thorough interpretation of the uncertainty-aware optimization outcomes. Finally, since the proposed PHS uses the sea as the lower reservoir, additional technical challenges are addressed.
Full text: http://www.itia.ntua.gr/en/getfile/2307/1/documents/sustainability-15-13313.pdf (4191 KB)
See also: https://www.mdpi.com/2071-1050/15/18/13313
Other works that reference this work (this list might be obsolete):
1. | Ayed, Y., R. Al Afif, P. Fortes, and C. Pfeifer, Optimal design and techno-economic analysis of hybrid renewable energy systems: A case study of Thala city, Tunisia, Energy Sources, Part B: Economics, Planning, and Policy, 19(1), 2308843, doi:10.1080/15567249.2024.2308843, 2024. |
2. | AlQallaf, N., A. AlQallaf, and R. Ghannam, Solar energy systems design using immersive virtual reality: A multi-modal evaluation approach, Solar, 4, 329-350, doi:10.3390/solar4020015, 2024. |
3. | Wang, H., Υ. Li, F. Wu, S. He, and R. Ding, Capacity optimization of pumped–hydro–wind–photovoltaic hybrid system based on normal boundary intersection method, Sustainability, 16(17), 7244, doi:10.3390/su16177244, 2024. |
4. | Skroufouta, S., A. Mavrogiannis, and E. Baltas, A methodological framework for the development of a hybrid renewable energy system with seawater pumped storage hydropower system under uncertainty in Karystos, Greece, Sustainable Energy Technologies and Assessments, 71, 104002, doi:10.1016/j.seta.2024.104002, 2024. |
5. | Momodu, A.-A., and A. Big-Alabo, Design optimization of a hybrid solar PV panel and pumped hydro energy supply system, Journal of Computational Mechanics, Power System and Control, 7(2), 53-75, doi:10.46253/jcmps.v7i2.a5, 2024. |
6. | Ramos, H. M., J. Pina, O. E. Coronado-Hernández, M. Pérez-Sánchez, and A. McNabola, Conceptual hybrid energy model for different power potential scales: Technical and economic approaches, Renewable Energy, 121486, doi:10.1016/j.renene.2024.121486, 2024. |
7. | Gao, Y., L. Lei, M. Zhang, Z. Zhao, J. Li, Md A. Mahmud, Z. Liu, M. Li, B. Deng, and D. Chen, Boosting floating photovoltaics via cooling methods and reservoir characteristics: Crafting optimal symbiosis with off-river pumped hydro storage, Energy, 312, 133501, doi:10.1016/j.energy.2024.133501, 2024. |
A. Roxani, A. Zisos, G.-K. Sakki, and A. Efstratiadis, Multidimensional role of agrovoltaics in era of EU Green Deal: Current status and analysis of water-energy-food-land dependencies, Land, 12 (5), 1069, doi:10.3390/land12051069, 2023.
The European Green Deal has set climate and energy targets for 2030 and the goal of achieving net zero greenhouse gas emissions by 2050, while supporting energy independence and economic growth. Following these goals, and as expected, the transition to “green” renewable energy is growing and will be intensified, in the near future. One of the main pillars of this transition, particularly for Mediterranean countries, is solar photovoltaic (PV) power. However, this is the least land-efficient energy source, while it is also highly competitive in food production, since solar parks are often developed in former agricultural areas, thus resulting in the systematic reduction in arable lands. Therefore, in the context of PV energy planning, the protection and preservation of arable lands should be considered a key issue. The emerging technology of agrovoltaics offers a balanced solution for both agricultural and renewable energy development. The sustainable “symbiosis” of food and energy under common lands also supports the specific objective of the post-2020 Common Agricultural Policy, regarding the mitigation of and adaptation to the changing climate, as well as the highly uncertain socio-economic and geopolitical environment. The purpose of this study is twofold, i.e., (a) to identify the state of play of the technologies and energy efficiency measures of agrovoltaics, and (b) to present a comprehensive analysis of their interactions with the water–energy–food–land nexus. As a proof of concept, we consider the plain of Arta, which is a typical agricultural area of Greece, where we employ a parametric analysis to assess key features of agrovoltaic development with respect to energy vs. food production, as well as water saving, as result of reduced evapotranspiration.
Full text: http://www.itia.ntua.gr/en/getfile/2290/1/documents/land-12-01069.pdf (656 KB)
See also: https://www.mdpi.com/2073-445X/12/5/1069
Other works that reference this work (this list might be obsolete):
1. | Zhong, T., Q. Zuo, J. Ma, Q. Wu, and Z. Zhang, Relationship identification between water-energy resource utilization efficiency and ecological risk in the context of assessment-decoupling two-stage framework—A case study of Henan Province, China, Water, 15(19), 3377, doi:10.3390/w15193377, 2023. |
2. | Mohammedi, S., G. Dragonetti, N. Admane, and A. Fouial, The impact of agrivoltaic systems on tomato crop: A case study in Southern Italy, Processes, 11(12), 3370, doi:10.3390/pr11123370, 2023. |
3. | Floroian, L., An innovative and sustainable solution – The agrovoltaic panels, Journal of EcoAgriTourism, 19(2), 44, 2023. |
4. | Petrakis, T., V. Thomopoulos, A. Kavga, and A. A. Argyriou, An algorithm for calculating the shade created by greenhouse integrated photovoltaics, Energy, Ecology and the Environment, 9, 272-300, doi:10.1007/s40974-023-00306-4, 2024. |
5. | Zhang, X., X. Wang, D. Si, H. Zhang, M. M. Ageli, and G. Mentel, Natural resources, food, energy and water: Structural shocks, food production and clean energy for USA in the view of COP27, Land Degradation & Development, 35(7), 2602-2613, doi:10.1002/ldr.5085, 2024. |
6. | Vourdoubas, J., Possibility of covering all the power demand in the island of Crete, Greece with solar photovoltaics, European Journal of Applied Science, Engineering and Technology, 2(3), 69-79, doi:10.59324/ejaset.2024.2(3).07, 2024. |
7. | Gartsiyanova, K., and S. Genchev, Potential applications of water-energy-food nexus concept through preservation and restoration of a remarkable site from Bulgarian Black Sea coast, International Journal of Conservation Science, 15(2), 1033-1046, doi:10.36868/IJCS.2024.02.19, 2024. |
8. | Chang, H., B. Zhang, J. Han, Y. Zhao, Y. Cao, J. Yao, and L. Shi, Evaluation of the coupling coordination and sustainable development of water–energy–land–food system on a 40-year scale: A case study of Hebei, China, Land, 13(7), 1089, doi:10.3390/land13071089, 2024. |
9. | Suproń, B., and J. Myszczyszyn, Impact of renewable and non-renewable energy consumption on the production of the agricultural sector in the European Union, Energies, 17(15), 3743, doi:10.3390/en17153743, 2024. |
10. | Vourdoubas, J., Use of solar photovoltaic systems for meeting the power demand in the island of Crete, Greece avoiding the land use conflicts, American Scientific Research Journal for Engineering, Technology, and Sciences, 98(1), 37–52, 2024. |
11. | Hussain, S. N., and A. Ghosh, Evaluating tracking bifacial solar PV based agrivoltaics system across the UK, Solar Energy, 284, 113102, doi:10.1016/j.solener.2024.113102, 2024. |
S. Tsattalios, I. Tsoukalas, P. Dimas, P. Kossieris, A. Efstratiadis, and C. Makropoulos, Advancing surrogate-based optimization of time-expensive environmental problems through adaptive multi-model search, Environmental Modelling and Software, 162, 105639, doi:10.1016/j.envsoft.2023.105639, 2023.
Complex environmental optimization problems often require computationally expensive simulation models to assess candidate solutions. However, the complexity of response surfaces necessitates multiple such assessments and thus renders the search procedure too laborious. Surrogate-based optimization is a powerful approach for accelerating convergence towards promising solutions. Here we introduce the Adaptive Multi-Surrogate Enhanced Evolutionary Annealing Simplex (AMSEEAS) algorithm, as an extension of SEEAS, which is another well-established surrogate-based global optimization method. AMSEEAS exploits the strengths of multiple surrogate models that are combined via a roulette-type mechanism, for selecting a specific metamodel to be activated in every iteration. AMSEEAS proves its robustness and efficiency via extensive benchmarking against SEEAS and other state-of-the-art surrogate-based global optimization methods in both theoretical mathematical problems and in a computationally demanding real-world hydraulic design application. The latter seeks for cost-effective sizing of levees along a drainage channel to minimize flood inundation, calculated by the time-expensive hydrodynamic model HEC-RAS.
Full text: http://www.itia.ntua.gr/en/getfile/2266/1/documents/AMSEEAS_paper.pdf (14432 KB)
Other works that reference this work (this list might be obsolete):
1. | #Zhang, D., J. Zhang, and Y. Wang, Game based pigeon-inspired optimization with repository assistance for stochastic optimizations with uncertain infeasible search regions, 2023 IEEE Congress on Evolutionary Computation (CEC), 1-8, Chicago, IL, USA, doi:10.1109/CEC53210.2023.10253991, 2023. |
2. | Costabile, P., C. Costanzo, J. Kalogiros, and V. Bellos, Toward street‐level nowcasting of flash floods impacts based on HPC hydrodynamic modeling at the watershed scale and high‐resolution weather radar data, Water Resources Research, 59(10), e2023WR034599, doi:10.1029/2023WR034599, 2023. |
3. | Zeigler, B. P., Discrete event systems theory for fast stochastic simulation via tree expansion, Systems, 12(3), 80, doi:10.3390/systems12030080, 2024. |
4. | Priya, G. V., and S. Ganguly, Multi-swarm surrogate model assisted PSO algorithm to minimize distribution network energy losses, Applied Soft Computing, 159, 111616, doi:10.1016/j.asoc.2024.111616, 2024. |
5. | Carey, C. C., R. S. D. Calder, R. J. Figueiredo, R. B. Gramacy, M. E. Lofton, M. E. Schreiber, and R. Q. Thomas, A framework for developing a real-time lake phytoplankton forecasting system to support water quality management in the face of global change, Ambio, doi:10.1007/s13280-024-02076-7, 2024. |
6. | Zeigler, B. P., C. Koertje, and C. Zanni, The utility of homomorphism concepts in simulation: building families of models from base-lumped model pairs, Simulation, 100(12), 1181-1196, doi:10.1177/003754972412648, 2024. |
A. Efstratiadis, and G.-K. Sakki, Revisiting the management of water–energy systems under the umbrella of resilience optimization, Environmental Sciences Proceedings, 21 (1), 72, doi:10.3390/environsciproc2022021072, 2022.
The optimal management of sociotechnical systems across the water–energy nexus is a critical issue for the overall goal of sustainable development. However, the new challenges induced by global crises and sudden changes require a paradigm shift in order to ensure tolerance against such kinds of disturbance that are beyond their “normal” operational standards. This may be achieved by incorporating the concept of resilience within the procedure for extracting optimal management policies and assessing their performance by means of well-designed stress tests. The proposed approach is investigated by using as proof of concept the complex and highly extended water resource system of Athens, Greece.
Full text: http://www.itia.ntua.gr/en/getfile/2252/1/documents/environsciproc-21-00072.pdf (2203 KB)
See also: https://www.mdpi.com/2673-4931/21/1/72
Other works that reference this work (this list might be obsolete):
1. | Wang, S., P. Zhong, F. Zhu, B. Xu, C. Xu, L. Yang, and m. Ben, Multi-objective optimization operation of multiple water sources under inflow-water demand forecast dual uncertainties, Journal of Hydrology, 130679, doi:10.1016/j.jhydrol.2024.130679, 2024. |
G.-K. Sakki, I. Tsoukalas, P. Kossieris, C. Makropoulos, and A. Efstratiadis, Stochastic simulation-optimisation framework for the design and assessment of renewable energy systems under uncertainty, Renewable and Sustainable Energy Reviews, 168, 112886, doi:10.1016/j.rser.2022.112886, 2022.
As the share of renewable energy resources rapidly increases in the electricity mix, the recognition, representation, quantification, and eventually interpretation of their uncertainties become important. In this vein, we propose a generic stochastic simulation-optimization framework tailored to renewable energy systems (RES), able to address multiple facets of uncertainty, external and internal. These involve the system’s drivers (hydrometeorological inputs) and states (by means of fuel-to-energy conversion model parameters and energy market price), both expressed in probabilistic terms through a novel coupling of the triptych statistics, stochastics and copulas. Since the most widespread sources (wind, solar, hydro) exhibit several common characteristics, we first introduce the formulation of the overall modelling context under uncertainty, and then offer uncertainty quantification tools to put in practice the plethora of simulated outcomes and resulting performance metrics (investment costs, energy production, revenues). The proposed framework is applied to two indicative case studies, namely the design of a small hydropower plant (particularly, the optimal mixing of its hydro-turbines), and the long-term assessment of a planned wind power plant. Both cases reveal that the ignorance or underestimation of uncertainty may hide a significant perception about the actual operation and performance of RES. In contrast, the stochastic simulation-optimization context allows for assessing their technoeconomic effectiveness against a wide range of uncertainties, and as such provides a critical tool for decision making, towards the deployment of sustainable and financially viable RES.
Full text: http://www.itia.ntua.gr/en/getfile/2229/1/documents/stochasticRES.pdf (6011 KB)
See also: https://www.sciencedirect.com/science/article/pii/S1364032122007687
Other works that reference this work (this list might be obsolete):
1. | Woon, K. S., Z. X. Phuang, J. Taler, P. S. Varbanov, C. T. Chong, J. J. Klemeš, and C. T. Lee, Recent advances in urban green energy development towards carbon neutrality, Energy, 126502, doi:10.1016/j.energy.2022.126502, 2022. |
2. | Angelakis, A., Reframing the high-technology landscape in Greece: Empirical evidence and policy aspects, International Journal of Business & Economic Sciences Applied Research, 15(2), 58-70, doi:10.25103/ijbesar.152.06, 2022. |
3. | Kim, J., M. Qi, J. Park, and I. Moon, Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach, Applied Energy, 339, 121015, doi:10.1016/j.apenergy.2023.121015, 2023. |
4. | Yin, S., L. Chen, and H. Qin, Reduced space optimization-based evidence theory method for response analysis of space-coiled acoustic metamaterials with epistemic uncertainty, Mathematical Problems in Engineering, 2023, 9937158, doi:10.1155/2023/9937158, 2023. |
5. | Qu, K., H. Zhang, X. Zhou, F. Causone, X. Huang, X. Shen, and X. Zhu, Optimal design of building integrated energy systems by combining two-phase optimization and a data-driven model, Energy and Buildings, 295, 113304, doi:10.1016/j.enbuild.2023.113304, 2023. |
6. | Wang, Z., W. Zhang, H. Fan, C. Zhang, Y. Zhao, and Z. Huang, An uncertainty-tolerant robust distributed control strategy for building cooling water systems considering measurement uncertainties, Journal of Building Engineering, 76, 107162, doi:10.1016/j.jobe.2023.107162, 2023. |
7. | Caputo, A. C., A. Federici, P. M. Pelagagge, and P. Salini, Offshore wind power system economic evaluation framework under aleatory and epistemic uncertainty, Applied Energy, 350, 121585, doi:10.1016/j.apenergy.2023.121585, 2023. |
8. | Liu, J., Y. Li, Y. Ma, R. Qin, X. Meng, and J. Wu, Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy, Energy, 285, 128673, doi:10.1016/j.energy.2023.128673, 2023. |
9. | Wang, Q., and L. Zhao, Data-driven stochastic robust optimization of sustainable utility system, Renewable and Sustainable Energy Reviews, 188, 113841, doi:10.1016/j.rser.2023.113841, 2023. |
10. | Ahmed, S., T. Li, P. Yi, and R. Chen, Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations, Renewable and Sustainable Energy Reviews, 188, 113774, doi:10.1016/j.rser.2023.113774, 2023. |
11. | Maitra, S., V. Mishra, and S. Kundu, A novel approach with Monte-Carlo simulation and hybrid optimization approach for inventory management with stochastic demand, arXiv e-prints, 2023. |
12. | Al Hasibi, R. A., and A. Haris, An analysis of the implementation of a hybrid renewable-energy system in a building by considering the reduction in electricity price subsidies and the reliability of the grid, Clean Energy, 7(5), 1125-1135, doi:10.1093/ce/zkad053, 2023. |
13. | Caputo, A. C., A. Federici, P. M. Pelagagge, and P. Salini, Scenario analysis of offshore wind-power systems under uncertainty, Sustainability, 15(24), 16912, doi:10.3390/su152416912, 2023. |
14. | Li, Y., F. Wu, X. Song, L. Shi, K. Lin, and F. Hong, Data-driven chance-constrained schedule optimization of cascaded hydropower and photovoltaic complementary generation systems for shaving peak loads, Sustainability, 15(24), 16916, doi:10.3390/su152416916, 2023. |
15. | Kim, S., Y. Choi, J. Park, D. Adams, S. Heo, and J. H. Lee, Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty, Renewable and Sustainable Energy Reviews, 190(A), 114049, doi:10.1016/j.rser.2023.114049, 2024. |
16. | García-Merino, J. C., C. Calvo-Jurado, and E. García-Macías, Sparse polynomial chaos expansion for universal stochastic kriging, Journal of Computational and Applied Mathematics, 444, 115794, doi:10.1016/j.cam.2024.115794, 2024. |
17. | Hasanien, H. M., I. Alsaleh, Z. Ullah, and A. Alassaf, Probabilistic optimal power flow in power systems with renewable energy integration using enhanced walrus optimization algorithm, Ain Shams Engineering Journal, 15(3), 102663, doi:10.1016/j.asej.2024.102663, 2024. |
18. | Gómez-Beas, R., E. Contreras, M. J. Polo, and C. Aguilar, Stochastic flow analysis for optimization of the operationality in run-of-river hydroelectric plants in mountain areas, Energies, 17(7), 1705, doi:10.3390/en17071705, 2024. |
19. | Chang, K.-H., and T.-L. Chen, Simulation learning and optimization: Methodology and applications, Asia-Pacific Journal of Operational Research, doi:10.1142/S0217595924400086, 2024. |
20. | Leng, R., Z. Li, and Y. Xu, Joint planning of utility-owned distributed energy resources in an unbalanced active distribution network considering asset health degradation, IEEE Transactions on Smart Grid, 15(4), 3768-3781, doi:10.1109/TSG.2024.3365974, 2024. |
21. | Kim, S., J. Park, S. Heo, and J. H. Lee, Green hydrogen vs Green ammonia: A hierarchical optimization-based integrated temporal approach for comparative techno-economic analysis of international supply chains, Journal of Cleaner Production, 142750, doi:10.1016/j.jclepro.2024.142750, 2024. |
22. | Gawusu, S., and A. Ahmed, Analyzing variability in urban energy poverty: A stochastic modeling and Monte Carlo simulation approach, Energy, 304, 132194, doi:10.1016/j.energy.2024.132194, 2024. |
23. | Hasanien, H. M., I. Alsaleh, and A. Alassaf, Impact of electric vehicles and wave energy systems on OPF of power networks using hybrid Osprey-PSO approach, Energy, 308, 132818, doi:10.1016/j.energy.2024.132818, 2024. |
24. | Lu, M. L., y. J. Sun, G. Kokogiannakis, and Z. J. Ma, Design of flexible energy systems for nearly/net zero energy buildings under uncertainty characteristics: A review, Renewable and Sustainable Energy Reviews, 205, 114828, doi:10.1016/j.rser.2024.114828, 2024. |
25. | #Maitra, S., Adaptive Bayesian optimization algorithm for unpredictable business environments, ISMSI '24: Proceedings of the 2024 8th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, 78-85, doi:10.1145/3665065.3665078, 2024. |
26. | Ahmed, S., T. Li, X. Y. Zhou, P. Yi, and R. Chen, Quantifying the environmental footprints of biofuels for sustainable passenger ship operations, Renewable and Sustainable Energy Reviews, 207, 114919, doi:10.1016/j.rser.2024.114919, 2025. |
27. | Plamonia, N., E. R. A. Saputra, N. I. Said, T. Hernaningsih, W. Widayat, M. Hanif, P. D. Adi, W. A. Yohanitas, N. Niode, and R. P. Dewa, Penstock pipe's hydraulic design for the mini hydropower plant at Besai Kemu, Bukit Kemuning, Lampung, Indonesia, IOP Conference Series: Earth and Environmental Science, 1388, 012057, doi:10.1088/1755-1315/1388/1/012057, 2024. |
28. | Volpato, G., G. Carraro, L. De Giovanni, E. Dal Cin, P. Danieli, E. Bregolin, and A. Lazzaretto, A stochastic optimization procedure to design the fair aggregation of energy users in a Renewable Energy Community, Renewable Energy, 121580, doi:10.1016/j.renene.2024.121580, 2024. |
29. | Melo, G. de A., F. L. C. Oliveira, P. M. Maçaira, and E. Meira, Exploring complementary effects of solar and wind power generation, Renewable and Sustainable Energy Reviews, 209, 115139, doi:10.1016/j.rser.2024.115139, 2025. |
R. Ioannidis, N. Mamassis, A. Efstratiadis, and D. Koutsoyiannis, Reversing visibility analysis: Towards an accelerated a priori assessment of landscape impacts of renewable energy projects, Renewable and Sustainable Energy Reviews, 161, 112389, doi:10.1016/j.rser.2022.112389, 2022.
Impacts to landscapes have been identified as major drivers of social opposition against renewable energy projects. We investigate how the process of mitigating landscape impacts can be improved and accelerated, through a re-conceptualization of visibility analysis. In their conventional format, visibility analyses cannot be implemented in early planning phases as they require the finalized locations of projects as input. Thus, visual impacts to landscapes cannot be assessed until late in development, when licensing procedures have already begun and projects' locations have already been finalized. In order to overcome this issue and facilitate the earlier identification of impactful projects we investigate the reversal of visibility analyses. By shifting the focus of the analyses from the infrastructure that generates visual impacts to the areas that have to be protected from these impacts, visibility analyses no longer require projects' locations as input. This methodological shift is initially investigated theoretically and then practically, in the region of Thessaly, Greece, computing Reverse - Zones of Theoretical Visibility (R-ZTVs) for important landscape elements of the region, in order to then project visual impacts to them by planned wind energy projects. It was demonstrated that reversing visibility analyses (a) enables the creation of R-ZTV-type maps that facilitate the anticipation of landscape impacts of projects from earlier planning stages and (b) discards the requirement for individual visibility analyses for each new project, thus accelerating project development. Furthermore, R-ZTV maps can be utilized in participatory planning processes or be used independently by projects' investors and by stakeholders in landscape protection.
Additional material:
Other works that reference this work (this list might be obsolete):
1. | Duarte, R., Á. García-Riazuelo, L. A. Sáez, and C. Sarasa, Analysing citizens’ perceptions of renewable energies in rural areas: A case study on wind farms in Spain, Energy Reports, 8, 12822-12831, doi:10.1016/j.egyr.2022.09.173, 2022. |
2. | Ko, I., Rural opposition to landscape change from solar energy: Explaining the diffusion of setback restrictions on solar farms across South Korean counties, Energy Research & Social Science, 99, 103073, doi:10.1016/j.erss.2023.103073, 2023. |
3. | Mikita, T., L. Janošíková, J. Caha, and E. Avoiani, The potential of UAV data as refinement of outdated inputs for visibility analyses, Remote Sensing, 15(4), 1028, doi:10.3390/rs15041028, 2023. |
4. | Rodríguez-Segura, F. J., and M. Frolova, How does society assess the impact of renewable energy in rural inland areas? Comparative analysis between the province of Jaén (Spain) and Somogy county (Hungary), Investigaciones Geográficas, 80, 193-214, doi:10.14198/INGEO.24444, 2023. |
5. | Beer, M., R. Rybár, and L. Gabániová, Visual impact of renewable energy infrastructure: implications for deployment and public perception, Processes, 11(8), 2252, doi:10.3390/pr11082252, 2023. |
6. | García-Ayllón, S., and G. Martínez, Analysis of correlation between anthropization phenomena and landscape values of the territory: A GIS framework based on spatial statistics, ISPRS International Journal of Geo-Information, 12(8), 323, doi:10.3390/ijgi12080323, 2023. |
7. | Sas-Bojarska, A., I. Orzechowska-Szajda, K. Puzdrakiewicz, and M. Kiejzik-Głowińska, Landscape, EIA and decision-making. A case study of the Vistula Spit Canal, Poland, Impact Assessment and Project Appraisal, 42(1), 2-29, doi:10.1080/14615517.2023.2273612, 2024. |
8. | Alphan, H., Incorporating visibility information into multi-criteria decision making (MCDM) for wind turbine deployment, Applied Energy, 353(B), 122164, doi:10.1016/j.apenergy.2023.122164, 2024. |
9. | Song, R., X. Gao, H. Nan, S. Zeng, and V. W. Y. Tam, Ecological restoration for mega-infrastructure projects: a study based on multi-source heterogeneous data, Engineering, Construction and Architectural Management, doi:10.1108/ECAM-12-2022-1197, 2023. |
10. | Abdul, D., J. Wenqi, A. Tanveer, and M. Sameeroddin, Comprehensive analysis of renewable energy technologies adoption in remote areas using the integrated Delphi-Fuzzy AHP-VIKOR approach, Arabian Journal for Science and Engineering, 49, 7585-7610, doi:10.1007/s13369-023-08334-2, 2024. |
11. | Codemo, A., M. Ghislanzoni, M.-J. Prados, and R. Albatici, Landscape-based spatial energy planning: minimization of renewables footprint in the energy transition, Journal of Environmental Planning and Management, doi:10.1080/09640568.2023.2287978, 2024. |
12. | Xiao, T. J. Deng, C. Wen, and Q. Gu, Parallel algorithm for multi-viewpoint viewshed analysis on the GPU grounded in target cluster segmentation, International Journal of Digital Earth, 17(1), doi:10.1080/17538947.2024.2308707, 2024. |
13. | Ji, G., and H. Sun, Assessing urban river landscape visual quality with extreme learning machines: A case study of the yellow river in Ningxia Hui autonomous region, China, Ecological Indicators, 165, 112173, doi:10.1016/j.ecolind.2024.112173, 2024. |
14. | Rosley, M. S. F., N. Z. Harun, J. N. Yusof, and S. R. Abdul Rahman, Empowering public participation in assessing the indicators of aesthetic value for historical landscape: a case study on Melaka, Malaysia, Cogent Arts & Humanities, 11(1), doi:10.1080/23311983.2024.2380114, 2024. |
15. | Tsani, T., J. M. Weinand, J. Linßen, and D. Stolten, Quantifying social factors for onshore wind planning – A systematic review, Renewable and Sustainable Energy Reviews, 203, 114762, doi:10.1016/j.rser.2024.114762, 2024. |
16. | Karasmanaki, E., S. Galatsidas, and G. Tsantopoulos, Exploring the nuances in citizen willingness-to-invest in renewable energy, Energy Efficiency, 17, 69, doi:10.1007/s12053-024-10250-9, 2024. |
17. | Wolsink, M., Land use as a crucial resource for smart grids — The ‘common good’ of renewables in distributed energy systems, Land, 13(8), 1236, doi:10.3390/land13081236, 2024. |
18. | Gleason, M., A. Lopez, and M. Rivers, Mapping and characterizing the visual impacts of the existing US wind turbine fleet, Applied Energy, 378(A), 124801, doi:10.1016/j.apenergy.2024.124801, 2024. |
19. | Krasniqi, I., Evaluating strategic approaches to energy transition: leadership, policy, and innovation in European countries, Economics and Environment, 90(3), 929, doi:10.34659/eis.2024.90.3.929, 2024. |
A. Efstratiadis, P. Dimas, G. Pouliasis, I. Tsoukalas, P. Kossieris, V. Bellos, G.-K. Sakki, C. Makropoulos, and S. Michas, Revisiting flood hazard assessment practices under a hybrid stochastic simulation framework, Water, 14 (3), 457, doi:10.3390/w14030457, 2022.
We propose a novel probabilistic approach to flood hazard assessment, aiming to address the major shortcomings of everyday deterministic engineering practices in a computationally efficient manner. In this context, the principal sources of uncertainty are defined across the overall modelling procedure, namely, the statistical uncertainty of inferring annual rainfall maxima through distribution models that are fitted to empirical data, and the inherently stochastic nature of the underlying hydrometeorological and hydrodynamic processes. Our work focuses on three key facets, i.e., the temporal profile of storm events, the dependence of flood generation mechanisms to antecedent soil moisture conditions, and the dependence of runoff propagation over the terrain and the stream network on the intensity of the flood event. These are addressed through the implementation of a series of cascade modules, based on publicly available and open-source software. Moreover, the hydrodynamic processes are simulated by a hybrid 1D/2D modelling approach, which offers a good compromise between computational efficiency and accuracy. The proposed framework enables the estimation of the uncertainty of all flood-related quantities, by means of empirically-derived quantiles for given return periods. Finally, a set of easily applicable flood hazard metrics are introduced for the quantification of flood hazard.
Full text: http://www.itia.ntua.gr/en/getfile/2170/1/documents/water-14-00457.pdf (6083 KB)
See also: https://www.mdpi.com/2073-4441/14/3/457
Other works that reference this work (this list might be obsolete):
1. | Tegos, A., A. Ziogas, V. Bellos, and A. Tzimas, Forensic hydrology: a complete reconstruction of an extreme flood event in data-scarce area, Hydrology, 9(5), 93, doi:10.3390/hydrology9050093, 2022. |
2. | Afzal, M. A., S. Ali, A. Nazeer, M. I. Khan, M. M. Waqas, R. A. Aslam, M. J. M. Cheema, M. Nadeem, N. Saddique, M. Muzammil, and A. N. Shah, Flood inundation modeling by integrating HEC–RAS and satellite imagery: A case study of the Indus river basin, Water, 14(19), 2984, doi:10.3390/w14192984, 2022. |
3. | Vangelis, H., I. Zotou, I. M. Kourtis, V. Bellos, and V. A. Tsihrintzis, Relationship of rainfall and flood return periods through hydrologic and hydraulic modeling, Water, 14(22), 3618, doi:10.3390/w14223618, 2022. |
4. | Maranzoni, A., M. D’Oria, and C. Rizzo, Quantitative flood hazard assessment methods: A review, Journal of Flood Risk Management, 16(1), e12855, doi:10.1111/jfr3.12855, 2022. |
5. | Szeląg, B., P. Kowal, A. Kiczko, A. Białek, D. Majerek, P. Siwicki, F. Fatone, and G. Boczkaj, Integrated model for the fast assessment of flood volume: Modelling – management, uncertainty and sensitivity analysis, Journal of Hydrology, 625(A), 129967, doi:10.1016/j.jhydrol.2023.129967, 2023. |
6. | Rozos, E., V. Bellos, J. Kalogiros, and K. Mazi, efficient flood early warning system for data-scarce, karstic, mountainous environments: A case study, Hydrology, 10(10), 203, doi:10.3390/hydrology10100203, 2023. |
7. | Szeląg, B., D. Majerek, A. L. Eusebi, A. Kiczko, F. de Paola, A. McGarity, G. Wałek, and F. Fatone, Tool for fast assessment of stormwater flood volumes for urban catchment: A machine learning approach, Journal of Environmental Management, 355, 120214, doi:10.1016/j.jenvman.2024.120214, 2024. |
8. | Lahsaini, M., F. Albano, R. Albano, A. Mazzariello, and T. Lacava, A synthetic aperture radar-based robust satellite technique (RST) for timely mapping of floods, Remote Sensing, 16(12), 2193, doi:10.3390/rs161221932024. |
K.-K. Drakaki, G.-K. Sakki, I. Tsoukalas, P. Kossieris, and A. Efstratiadis, Day-ahead energy production in small hydropower plants: uncertainty-aware forecasts through effective coupling of knowledge and data, Advances in Geosciences, 56, 155–162, doi:10.5194/adgeo-56-155-2022, 2022.
Motivated by the challenges induced by the so-called Target Model and the associated changes to the current structure of the energy market, we revisit the problem of day-ahead prediction of power production from Small Hydropower Plants (SHPPs) without storage capacity. Using as an example a typical run-of-river SHPP in Western Greece, we test alternative forecasting schemes (from regression-based to machine learning) that take advantage of different levels of information. In this respect, we investigate whether it is preferable to use as predictor the known energy production of previous days, or to predict the day-ahead inflows and next estimate the resulting energy production via simulation. Our analyses indicate that the second approach becomes clearly more advantageous when the expert’s knowledge about the hydrological regime and the technical characteristics of the SHPP is incorporated within the model training procedure. Beyond these, we also focus on the predictive uncertainty that characterize such forecasts, with overarching objective to move beyond the standard, yet risky, point forecasting methods, providing a single expected value of power production. Finally, we discuss the use of the proposed forecasting procedure under uncertainty in the real-world electricity market.
Remarks:
The simulation and forecasting models have been developed in the R environment and they are available at: https://github.com/corinadrakaki/Day-ahead-energy-production-in-small-hydropower-plants
Full text: http://www.itia.ntua.gr/en/getfile/2165/1/documents/adgeo-56-155-2022.pdf (217 KB)
See also: https://adgeo.copernicus.org/articles/56/155/2022/
Other works that reference this work (this list might be obsolete):
1. | Krechowicz, A., M. Krechowicz, and K. Poczeta, Machine learning approaches to predict electricity production from renewable energy sources, Energies, 15(23), 9146, doi:10.3390/en15239146, 2022. |
2. | Ghobadi, F., and D. Kang, Application of machine learning in water resources management: A systematic literature review, Water, 15(4), 620, doi:10.3390/w15040620, 2023. |
3. | Chen, B., Y. Long, H. Wei, B. Li, Y. Zhang, W. Deng, and C. Li, A weak-coupling flow-power forecasting method for small hydropower station group, International Journal of Energy Research, 2023, 1214269, doi:10.1155/2023/1214269, 2023. |
4. | Karakuş, M. O., Impact of climatic factors on the prediction of hydroelectric power generation: A deep CNN-SVR approach, Geocarto International, 38(1), doi:10.1080/10106049.2023.2253203, 2023. |
5. | #Chauhan, R., N. Batra, S. Goyal, and A. Kaur, Optimizing water resources with IoT and ML: A water management system, Innovations in Machine Learning and IoT for Water Management, A. Kumar, A. Lal Srivastav, A. Kumar Dubey, V. Dutt, N. Vyas (editors), Chapter 4, 94-109, doi:10.4018/979-8-3693-1194-3.ch005, 2024. |
6. | Sahin, M. E., and M. Ozbay Karakus, Smart hydropower management: utilizing machine learning and deep learning method to enhance dam’s energy generation efficiency, Neural Computing & Applications, doi:10.1007/s00521-024-09613-1, 2024. |
7. | Lincaru, C., A. Grigorescu, and H. Dincer, Parabolic modeling forecasts of space and time european hydropower production, Processes, 12, 1098, doi:10.3390/pr12061098, 2024. |
G.-K. Sakki, I. Tsoukalas, and A. Efstratiadis, A reverse engineering approach across small hydropower plants: a hidden treasure of hydrological data?, Hydrological Sciences Journal, 67 (1), 94–106, doi:10.1080/02626667.2021.2000992, 2022.
The limited availability of hydrometric data makes the design, management, and real-time operation of water systems a difficult task. Here, we propose a generic stochastic framework for the so-called inverse problem of hydroelectricity, using energy production data from small hydropower plants (SHPPs) to retrieve the upstream inflows. In this context, we investigate the alternative configurations of water-energy transformations across SHPPs of negligible storage capacity, which are subject to multiple uncertainties. We focus on two key sources, i.e. observational errors in energy production and uncertain efficiency curves of turbines. In order to extract the full hydrograph, we also extrapolate the high and low flows outside of the range of operation of turbines, by employing empirical rules for representing the rising and falling limbs of the simulated hydrographs. This framework is demonstrated to a real-world system at Evinos river basin, Greece. By taking advantage of the proposed methodology, SHPPs may act as potential hydrometric stations and improve the existing information in poorly gauged areas.
Additional material:
Other works that reference this work (this list might be obsolete):
1. | Garrett, K. P., R. A. McManamay, and A. Witt, Harnessing the power of environmental flows: Sustaining river ecosystem integrity while increasing energy potential at hydropower dams, Renewable and Sustainable Energy Reviews, 173(1), 113049, doi:10.1016/j.rser.2022.113049, 2023. |
2. | Rumbayan, M., S. R. U. Sompie, S. Tangkuman, K. Abast, and R. Rumbayan, The concept of educational park for introducing micro hydro energy in rural communities (The case study of Lalumpe Village in Indonesia), Journal of Physics: Conference Series, Vol. 2828, 7th International Energy Conference (Astechnova 2023), doi:10.1088/1742-6596/2828/1/012049, 2024. |
P. Kossieris, I. Tsoukalas, A. Efstratiadis, and C. Makropoulos, Generic framework for downscaling statistical quantities at fine time-scales and its perspectives towards cost-effective enrichment of water demand records, Water, 13 (23), 3429, doi:10.3390/w13233429, 2021.
The challenging task of generating synthetic time series at finer temporal scales than the observed data, embeds the reconstruction of a number of essential statistical quantities at the desirable (i.e., lower) scale of interest. This paper introduces a parsimonious and general framework for the downscaling of statistical quantities, based solely on available information at coarser time scales. The methodology is based on three key elements: a) the analysis of statistics’ behaviour across multiple temporal scales; b) the use of parametric functions to model this behaviour; and c) the exploitation of extrapolation capabilities of the functions to downscale the associated statistical quantities at finer scales. Herein, we demonstrate the methodology using residential water demand records, and focus on the downscaling of the following key quantities: variance, L-variation, L-skewness and probability of zero value (no demand; intermittency), which are typically used to parameterise a stochastic simulation model. Specifically, we downscale the above statistics down to 1 min scale, assuming two scenarios of initial data resolution, i.e., 5 and 10 min. The evaluation of the methodology on several cases indicates that the four statistics can be well reconstructed. Going one step further, we place the downscaling methodology in a more integrated modelling framework for a cost-effective enhancement of fine-resolution records with synthetic ones, embracing the current limited availability of fine-resolution water demand measurements.
Full text: http://www.itia.ntua.gr/en/getfile/2164/1/documents/water-13-03429.pdf (2042 KB)
N. Mamassis, K. Mazi, E. Dimitriou, D. Kalogeras, N. Malamos, S. Lykoudis, A. Koukouvinos, I. L. Tsirogiannis, I. Papageorgaki, A. Papadopoulos, Y. Panagopoulos, D. Koutsoyiannis, A. Christofides, A. Efstratiadis, G. Vitantzakis, N. Kappos, D. Katsanos, B. Psiloglou, E. Rozos, T. Kopania, I. Koletsis, and A. D. Koussis, OpenHi.net: A synergistically built, national-scale infrastructure for monitoring the surface waters of Greece, Water, 13 (19), 2779, doi:10.3390/w13192779, 2021.
The large-scale surface-water monitoring infrastructure for Greece Open Hydrosystem Information Network (Openhi.net) is presented in this paper. Openhi.net provides free access to water data, incorporating existing networks that manage their own databases. In its pilot phase, Openhi.net operates three telemetric networks for monitoring the quantity and the quality of surface waters, as well as meteorological and soil variables. Aspiring members must also offer their data for public access. A web-platform was developed for on-line visualization, processing and managing telemetric data. A notification system was also designed and implemented for inspecting the current values of variables. The platform is built upon the web 2.0 technology that exploits the ever-increasing capabilities of browsers to handle dynamic data as a time series. A GIS component offers web-services relevant to geo-information for water bodies. Accessing, querying and downloading geographical data for watercourses (segment length, slope, name, stream order) and for water basins (area, mean elevation, mean slope, basin order, slope, mean CN-curve number) are provided by Web Map Services and Web Feature Services. A new method for estimating the streamflow from measurements of the surface velocity has been advanced as well to reduce hardware expenditures, a low-cost ‘prototype’ hydro-telemetry system (at about half the cost of a comparable commercial system) was designed, constructed and installed at six monitoring stations of Openhi.net.
Full text: http://www.itia.ntua.gr/en/getfile/2147/1/documents/water-13-02779-v2.pdf (3567 KB)
See also: https://www.mdpi.com/2073-4441/13/19/2779
Other works that reference this work (this list might be obsolete):
1. | Spyrou, C., M. Loupis, N. Charizopoulos, P. Arvanitis, A. Mentzafou, E. Dimitriou, S. E. Debele, J. Sahani, and P. Kumar, Evaluating nature-based solution for flood reduction in Spercheios river basin Part 2: Early experimental evidence, Sustainability, 14(6), 10345, doi:10.3390/su141610345, 2022. |
2. | #Chrysanthopoulos, E., C. Pouliaris, I. Tsiroggianis, K. Markantonis, P. Kofakis, and A. Kallioras, Evaluating the efficiency of numerical and data driven modeling in forecasting soil water content, Proceedings of the 3rd IAHR Young Professionals Congress, 64-65, 2022. |
3. | #Samih, I., and D. Loudyi, Short-term urban water demand forecasting using Theta Models in Casablanca city, Morocco, Proceedings of the 3rd IAHR Young Professionals Congress, International Association for Hydro-Environment Engineering and Research, 2022. |
4. | Mazi, K., A. D. Koussis, S. Lykoudis, B. E. Psiloglou, G. Vitantzakis, N. Kappos, D. Katsanos, E. Rozos, I. Koletsis, and T. Kopania, Establishing and operating (pilot phase) a telemetric streamflow monitoring network in Greece, Hydrology, 10(1), 19, doi:10.3390/hydrology10010019, 2023. |
5. | Koltsida, E., N. Mamassis, and A. Kallioras, Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece), Hydrology and Earth System Sciences, 27, 917-931, doi:10.5194/hess-27-917-2023, 2023. |
6. | Tsirogiannis, I. L., N. Malamos, and P. Baltzoi, Application of a generic participatory decision support system for irrigation management for the case of a wine grapevine at Epirus, Northwest Greece, Horticulturae, 9(2), 267, doi:10.3390/horticulturae9020267, 2023. |
7. | Yeşilköy, S., Ö. Baydaroğlu, N. Singh, Y. Sermet, and I. Demir, A contemporary systematic review of cyberinfrastructure systems and applications for flood and drought data analytics and communication, EarthArXiv, doi:10.31223/X5937W, 2023. |
8. | Fotia, K., and I. Tsirogiannis, Water footprint score: A practical method for wider communication and assessment of water footprint performance, Environmental Sciences Proceedings, 25(1), 71, doi:10.3390/ECWS-7-14311, 2023. |
9. | Bloutsos, A. A., V. I. Syngouna, I. D. Manariotis, and P. C. Yannopoulos, Seasonal and long-term water quality of Alfeios River Basin in Greece, Water, Air and Soil Pollution, 235, 215, doi:10.1007/s11270-024-06981-1, 2024. |
10. | Kalantzopoulos, G., P. Paraskevopoulos, G. Domalis, A. Liopa-Tsakalidi, D. E. Tsesmelis, and P. E. Barouchas, The Western Greece Soil Information System (WΕSIS)—A soil health design supported by the internet of things, soil databases, and artificial intelligence technologies in Western Greece, Sustainability, 16(8), 3478, doi:10.3390/su16083478, 2024. |
11. | Pappa, D., A. Kallioras, and D. Kaliampakos, Water mismanagement in agriculture: a case study of Greece. Starting with “how” and "why", Al-Qadisiyah Journal For Agriculture Sciences, 14(1), 90-106, doi:10.33794/qjas.2024.149833.1175, 2024. |
12. | #Chrysanthopoulos, E., C. Pouliaris, I. Tsirogiannis, P. Kofakis, and A. Kallioras, Development of soil moisture model based on deep learning, In: Ksibi, M., et al. Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (4th Edition), EMCEI 2022. Advances in Science, Technology & Innovation. Springer, Cham, doi:10.1007/978-3-031-51904-8_105, 2024. |
G.-F. Sargentis, P. Siamparina, G.-K. Sakki, A. Efstratiadis, M. Chiotinis, and D. Koutsoyiannis, Agricultural land or photovoltaic parks? The water–energy–food nexus and land development perspectives in the Thessaly plain, Greece, Sustainability, 13 (16), 8935, doi:10.3390/su13168935, 2021.
Water, energy, land, and food are vital elements with multiple interactions. In this context, the concept of a water–energy–food (WEF) nexus was manifested as a natural resource management approach, aiming at promoting sustainable development at the international, national, or local level and eliminating the negative effects that result from the use of each of the four resources against the other three. At the same time, the transition to green energy through the application of renewable energy technologies is changing and perplexing the relationships between the constituent elements of the nexus, introducing new conflicts, particularly related to land use for energy production vs. food. Specifically, one of the most widespread “green” technologies is photovoltaic (PV) solar energy, now being the third foremost renewable energy source in terms of global installed capacity. However, the growing development of PV systems results in ever expanding occupation of agricultural lands, which are most advantageous for siting PV parks. Using as study area the Thessaly Plain, the largest agricultural area in Greece, we investigate the relationship between photovoltaic power plant development and food production in an attempt to reveal both their conflicts and their synergies.
Full text: http://www.itia.ntua.gr/en/getfile/2136/1/documents/sustainability-13-08935.pdf (2709 KB)
See also: https://www.mdpi.com/2071-1050/13/16/8935
Other works that reference this work (this list might be obsolete):
1. | Abouaiana, A., and A. Battisti, Multifunction land use to promote energy communities in Mediterranean region: Cases of Egypt and Italy, Land, 11(5), 673, doi:10.3390/land11050673, 2022. |
2. | Reasoner, M., and A. Ghosh, Agrivoltaic engineering and layout optimization approaches in the transition to renewable energy technologies: a review, Challenges, 13(2), 43, doi:10.3390/challe13020043, 2022. |
3. | Bhambare, P. S., and S. C. Vishweshwara, Design aspects of a fixed focus type Scheffler concentrator and its receiver for its utilization in thermal processing units, Energy Nexus, 7, 100103, doi:10.1016/j.nexus.2022.100103, 2022. |
4. | Padilla, J., C. Toledo, and J. Abad, Enovoltaics: Symbiotic integration of photovoltaics in vineyards, Frontiers in Energy Research, 10, 1007383, doi:10.3389/fenrg.2022.1007383, 2022. |
5. | Garcia, J. A., and A. Alamanos, Integrated modelling approaches for sustainable agri-economic growth and environmental improvement: Examples from Greece, Canada and Ireland, Land, 11(9), 1548, doi:10.3390/land11091548, 2022. |
6. | Dias, I. Y. P., L. L. B. Lazaro, and V. G. Barros, Water–energy–food security nexus—estimating future water demand scenarios based on nexus thinking: The watershed as a territory, Sustainability, 15(9), 7050, doi:10.3390/su15097050, 2023. |
7. | Goldberg, G. A., Solar energy development on farmland: Three prevalent perspectives of conflict, synergy and compromise in the United States, Energy Research & Social Science, 101, 103145, doi:10.1016/j.erss.2023.103145, 2023. |
8. | Lucca, E., J. El Jeitany, G. Castelli, T. Pacetti, E. Bresci, F. Nardi, and E. Caporali, A review of water-energy-food-ecosystems nexus research in the Mediterranean: Evolution, gaps and applications, Environmental Research Letters, 18, 083001, doi:10.1088/1748-9326/ace375, 2023. |
9. | Zavahir, S., T. Elmakki, M. Gulied, H. K. Shon, H. Park, K. K. Kakosimos, and D. S. Han, Integrated photoelectrochemical (PEC)-forward osmosis (FO) system for hydrogen production and fertigation application, Journal of Environmental Chemical Engineering, 11(5), 110525, doi:10.1016/j.jece.2023.110525, 2023. |
10. | Karasmanaki, E., S. Galatsidas, K. Ioannou, and G. Tsantopoulos, Investigating willingness to invest in renewable energy to achieve energy targets and lower carbon emissions, Atmosphere, 14(10), 1471, doi:10.3390/atmos14101471, 2023. |
11. | Zhou, Z., H. Liao, H. Li, X. Gu, and M. M. Ageli, The trilemma of food production, clean energy, and water: COP27 perspective of global economy, Land Degradation and Development, 35(4), 1425-1436, doi:10.1002/ldr.4996, 2024. |
12. | Kock, S., R. Piastrellini, and A. P. Arena, Assessment of the water-energy-food nexus in the life cycle of energy products, Heliyon, doi:10.1016/j.heliyon.2024.e31961, 2024. |
13. | Sargentis, G. F., and M. Kougkia, Vulnerabilities of water-energy and food nexus in cities of digital era, Insight - Civil Engineering, 7(1), 608, doi:10.18282/ice.v7i1.608, 2024. |
14. | Chang, H., B. Zhang, J. Han, Y. Zhao, Y. Cao, J. Yao, and L. Shi, Evaluation of the coupling coordination and sustainable development of water–energy–land–food system on a 40-year scale: A case study of Hebei, China, Land, 13(7), 1089, doi:10.3390/land13071089, 2024. |
15. | Rosley, M. S. F., N. Z. Harun, J. N. Yusof, and S. R. Abdul Rahman, Empowering public participation in assessing the indicators of aesthetic value for historical landscape: a case study on Melaka, Malaysia, Cogent Arts & Humanities, 11(1), doi:10.1080/23311983.2024.2380114, 2024. |
16. | Wang, J., X. Cui, M. Zhao, T. Zheng, C. Tu, and Y. Zhang, Research on the synergy of the water–energy–food composite system in the Beijing–Tianjin–Hebei region, Water Policy, 26(9), 875-894, doi:10.2166/wp.2024.065, 2024. |
17. | Uzoechina, B. I., J. O. Ezekwike, G. A. Ekwoh, E. A. Eze, P. C. Imoagwu, and J. N. Edeh, Impact of energy consumption on life expectancy in lower-middle-income West African countries, Global Health Economics and Sustainability, 3518, doi:10.36922/ghes.3518, 2024. |
18. | Dias, I. Y. P., L. L. B. Lazaro, M. P. B. de Castro, R. N. Dagios, and V. G. Barros, Watersheds governance optimizing water-energy-food nexus approach across water users and watershed scales, Water Resources Management, doi:10.1007/s11269-024-03984-9, 2024. |
19. | Neto, A. B., A. G. Rocha, and B. G. de Oliveira, Reconciling photovoltaic energy production and agribusiness: Challenges for sustainable energy growth and land use for agricultural production, Estudios Rurales, 14(30), doi:10.48160/22504001er30.540, 2024. |
G. Papaioannou, L. Vasiliades, A. Loukas, A. Alamanos, A. Efstratiadis, A. Koukouvinos, I. Tsoukalas, and P. Kossieris, A flood inundation modelling approach for urban and rural areas in lake and large-scale river basins, Water, 13 (9), 1264, doi:10.3390/w13091264, 2021.
Fluvial floods are one of the primary natural hazards to our society, and the associated flood risk should always be evaluated for present and future conditions. The European Union’s Floods Directive highlights the importance of flood mapping as a key-stage for detecting vulnerable areas, assessing floods’ impacts, and identifying damages and compensation plans. The implementation of the E.U. Flood Directive in Greece is challenging, because of its geophysical and climatic variability and diverse hydrologic and hydraulic conditions. This study addresses this challenge by modelling of design rainfall at sub-watershed level and subsequent estimation of flood design hydrographs using the NRCS Unit Hydrograph Procedure. HEC-RAS 2D model is used for flood routing, estimation of flood attributes (i.e., water depths and flow velocities) and mapping of inundated areas. The modelling approach has been applied at two complex and ungauged representative basins: Lake Pamvotida basin located in the Epirus Region of the wet western Greece and Pinios River basin located in Thessaly Region of the drier central Greece, a basin with a complex dendritic hydrographic system, expanding to more than 1188 river-km. The proposed modelling approach aims to better estimation and mapping of flood inundation areas including relative uncertainties and providing guidance to professionals and academics.
Full text: http://www.itia.ntua.gr/en/getfile/2121/1/documents/water-13-01264-v2.pdf (45029 KB)
See also: https://www.mdpi.com/2073-4441/13/9/1264
Other works that reference this work (this list might be obsolete):
1. | Varlas, G., A. Papadopoulos, G. Papaioannou, and E. Dimitriou, Evaluating the forecast skill of a hydrometeorological modelling system in Greece, Atmosphere, 12(7), 902, doi:10.3390/atmos12070902, 2021. |
2. | Karamvasis, K., and V. Karathanassi, FLOMPY: An open-source toolbox for floodwater mapping using Sentinel-1 intensity time series, Water, 13(21), 2943, doi:10.3390/w13212943, 2021. |
3. | Alamanos, A., P. Koundouri, L. Papadaki, and T. Pliakou, A system innovation approach for science-stakeholder interface: theory and application to water-land-food-energy nexus, Frontiers in Water, 3, 744773, doi:10.3389/frwa.2021.744773, 2022. |
4. | Papaioannou, G., V. Markogianni, A. Loukas, and E. Dimitriou, Remote sensing methodology for roughness estimation in ungauged streams for different hydraulic/hydrodynamic modeling approaches, Water, 14(7), 1076, doi:10.3390/w14071076, 2022. |
5. | Borowska-Stefańska, M., L. Balážovičová, K. Goniewicz, M. Kowalski, P. Kurzyk, M. Masný, S. Wiśniewski, M. Žoncová, and A. Khorram-Manesh, Emergency management of self-evacuation from flood hazard areas in Poland, Transportation Research Part D: Transport and Environment, 107, 103307, doi:10.1016/j.trd.2022.103307, 2022. |
6. | #Alamanos, A., and P. Koundouri, Emerging challenges and the future of water resources management, DEOS Working Papers, 2221, Athens University of Economics and Business, 2022. |
7. | Ciurte, D. L., A. Mihu-Pintilie, A. Urzică, and A. Grozavu, Integrating LIDAR data, 2d HEC-RAS modeling and remote sensing to develop flood hazard maps downstream of a large reservoir in the inner Eastern Carpathians, Carpathian Journal of Earth and Environmental Sciences, 18(1), 149-169, doi:10.26471/cjees/2023/018/248, 2023. |
8. | Vasiliades, L., G. Papaioannou, and A. Loukas, A unified hydrologic framework for flood design estimation in ungauged basins, Environmental Sciences Proceedings, 25(1), 40, doi:10.3390/ECWS-7-14194, 2023. |
9. | Iliadis, C., P. Galiatsatou, V. Glenis, P. Prinos, and C. Kilsby, Urban flood modelling under extreme rainfall conditions for building-level flood exposure analysis, Hydrology, 10(8), 172, doi:10.3390/hydrology10080172, 2023. |
10. | Iliadis, C., V. Glenis, and C. Kilsby, Cloud modelling of property-level flood exposure in megacities, Water, 15(19), 3395, doi:10.3390/w15193395, 2023. |
11. | Alamanos, A., G. Papaioannou, G. Varlas, V. Markogianni, A. Papadopoulos, and E. Dimitriou, Representation of a post-fire flash-flood event combining meteorological simulations, remote sensing, and hydraulic modeling, Land, 13(1), 47, doi:10.3390/land13010047, 2024. |
12. | Semiem A. G., G. T. Diro, T. Demissie, Y. M. Yigezu, and B. Hailu, Towards improved flash flood forecasting over Dire Dawa, Ethiopia using WRF-Hydro, Water, 15(18), 3262, doi:10.3390/w15183262, 2023. |
13. | #Alamanos, A., and P. Kountouri, Integrated and sustainable water resources management: Modeling, Elgar Encyclopedia of Water Policy, Economics and Management, edited by P. Kountouri and A. Alamanos, Chapter 32, 137-141, Edward Elgar Publishing, doi:10.4337/9781802202946.00039, 2024. |
14. | #Alamanos, A., and P. Kountouri, Future challenges of water resources management, Elgar Encyclopedia of Water Policy, Economics and Management, edited by P. Kountouri and A. Alamanos, Chapter 21, 87-93, Edward Elgar Publishing, doi:10.4337/9781802202946.00028, 2024. |
15. | Varlas, G., A. Papadopoulos, G. Papaioannou, V. Markogianni, A. Alamanos, and E. Dimitriou, Integrating ensemble weather predictions in a hydrologic-hydraulic modelling system for fine-resolution flood forecasting: The Case of Skala bridge at Evrotas River, Greece, Atmosphere, 15(1), 120, doi:10.3390/atmos15010120, 2024. |
16. | Alamanos, A., G. Papaioannou, G. Varlas, V. Markogianni, A. Plataniotis, A. Papadopoulos, E. Dimitriou, and P. Koundouri, Article designing post-fire flood protection techniques for a real event in Central Greece, Prevention and Treatment of Natural Disasters, 3(2), doi:10.54963/ptnd.v3i2.303, 2024. |
17. | Dulawan, J. M. T., Y. Imamura, and H. Amaguchi, Integrating social vulnerability to flood risk assessment in Metro Manila, River, doi:10.1002/rvr2.108, 2024. |
18. | Gholami F., Y. Li, J. Zhang, and A. Nemati, Quantitative assessment of future environmental changes in hydrological risk components: Integration of remote sensing, machine learning, and hydraulic modeling, Water, 16(23), 3354, doi:10.3390/w16233354, 2024. |
A. Efstratiadis, I. Tsoukalas, and D. Koutsoyiannis, Generalized storage-reliability-yield framework for hydroelectric reservoirs, Hydrological Sciences Journal, 66 (4), 580–599, doi:10.1080/02626667.2021.1886299, 2021.
Although storage-reliability-yield (SRY) relationships have been widely used in the design and planning of water supply reservoirs, their application in hydroelectricity is practically nil. Here, we revisit the SRY analysis and seek its generic configuration for hydroelectric reservoirs, following a stochastic simulation approach. After defining key concepts and tools of conventional SRY studies, we adapt them for hydropower systems, which are subject to several peculiarities. We illustrate that under some reasonable assumptions, the problem can be substantially simplified. Major innovations are the storage-head-energy conversion via the use of a sole parameter, representing the reservoir geometry, and the development of an empirical statistical metric expressing the reservoir performance on the basis of the simulated energy-probability curve. The proposed framework is applied to numerous hypothetical reservoirs at three river sites in Greece, using monthly synthetic inflow data, to provide empirical expressions of reliable energy as a function of reservoir storage and geometry.
Additional material:
Other works that reference this work (this list might be obsolete):
1. | Spanoudaki, K., P. Dimitriadis, E. A. Varouchakis, and G. A. C. Perez, Estimation of hydropower potential using Bayesian and stochastic approaches for streamflow simulation and accounting for the intermediate storage retention, Energies, 15(4), 1413, doi:10.3390/en15041413, 2022. |
2. | Levitin, G., L. Xing, and Y. Dai, Unrepairable system with single production unit and n failure-prone identical parallel storage units, Reliability Engineering & System Safety, 222, 108437, doi:10.1016/j.ress.2022.108437, 2022. |
3. | Levitin, G., L. Xing, and Y. Dai, Minimizing mission cost for production system with unreliable storage, Reliability Engineering & System Safety, 227, 108724, doi:10.1016/j.ress.2022.108724, 2022. |
4. | Levitin, G., L. Xing, and Y. Dai, Optimizing the maximum filling level of perfect storage in system with imperfect production unit, Reliability Engineering & System Safety, 225, 108629, doi:10.1016/j.ress.2022.108629, 2022. |
5. | Levitin, G., L. Xing, and Y. Dai, Unrepairable system with consecutively used imperfect storage units, Reliability Engineering & System Safety, 225, 108574, doi:10.1016/j.ress.2022.108574, 2022. |
6. | Ren, P., M. Stewardson, and M. Peel, A simple analytical method to assess multiple-priority water rights in carryover systems, Water Resources Research, 58(12), e2022WR032530, doi:10.1029/2022WR032530, 2022. |
7. | Santos Araújo, J. E., and A. B. Celeste, Explicit stochastic procedure for developing reservoir storage-yield-reliability-vulnerability relationships, Water Resources Management, doi:10.1007/s11269-024-03970-1, 2024. |
8. | Hidalgo, R., B. Chanalata, C. Ricardo, R. Chango, and C. Sarango, Impact of electricity generation by hydropower: Literature review and case study, Revista Ingeniería e Innovación del Futuro, 3(2), 36–51, doi:10.62465/riif.v3n2.2024.80, 2024. |
9. | Mylonas, N., C. Tzimopoulos, B. Papadopoulos, and N. Samarinas, Estimation of reservoir storage capacity using the Gould-Dincer formula with the aid of possibility theory, Hydrology, 11(10), 172, doi:10.3390/hydrology11100172, 2024. |
I. Tsoukalas, A. Efstratiadis, and C. Makropoulos, Building a puzzle to solve a riddle: A multi-scale disaggregation approach for multivariate stochastic processes with any marginal distribution and correlation structure, Journal of Hydrology, 575, 354–380, doi:10.1016/j.jhydrol.2019.05.017, 2019.
The generation of hydrometeorological time series that exhibit a given probabilistic and stochastic behavior across multiple temporal levels, traditionally expressed in terms of specific statistical characteristics of the observed data, is a crucial task for risk-based water resources studies, and simultaneously a puzzle for the community of stochastics. The main challenge stems from the fact that the reproduction of a specific behavior at a certain temporal level does not imply the reproduction of the desirable behavior at any other level of aggregation. In this respect, we first introduce a pairwise coupling of Nataf-based stochastic models within a disaggregation scheme, and next we propose their puzzle-type configuration to provide a generic stochastic simulation framework for multivariate processes exhibiting any distribution and any correlation structure. Within case studies we demonstrate two characteristic configurations, i.e., a three-level one, operating at daily, monthly and annual basis, and a two-level one to disaggregate daily to hourly data. The first configuration is applied to generate correlated daily rainfall and runoff data at the river basin of Achelous, Western Greece, which preserves the stochastic behavior of the two processes at the three temporal levels. The second configuration disaggregates daily rainfall, obtained from a meteorological station at Germany, to hourly. The two studies reveal the ability of the proposed framework to represent the peculiar behavior of hydrometeorological processes at multiple temporal resolutions, as well as its flexibility on formulating generic simulation schemes.
Full text: http://www.itia.ntua.gr/en/getfile/1914/1/documents/A038_Building_a_puzzle_to_solve_a_riddle.pdf (16518 KB)
Other works that reference this work (this list might be obsolete):
1. | Macian-Sorribes, H., J.-L. Molina, S. Zazo, and M. Pulido-Velázquez, Analysis of spatio-temporal dependence of inflow time series through Bayesian causal modelling, Journal of Hydrology, 597, 125722, doi:10.1016/j.jhydrol.2020.125722, 2021. |
2. | Wang, Q., J. Zhou, K. Huang, L. Dai, B. Jia, L. Chen, and H. Qin, A procedure for combining improved correlated sampling methods and a resampling strategy to generate a multi-site conditioned streamflow process, Water Resources Management, 35, 1011-1027, doi:10.1007/s11269-021-02769-8, 2021. |
3. | Brereton, R. G., P values and multivariate distributions: Non-orthogonal terms in regression models, Chemometrics and Intelligent Laboratory Systems, 210, 104264, doi:10.1016/j.chemolab.2021.104264, 2021. |
4. | Pouliasis, G., G. A. Torres-Alves, and O. Morales-Napoles, Stochastic modeling of hydroclimatic processes using vine copulas, Water, 13(16), 2156, doi:10.3390/w13162156, 2021. |
5. | Biondi, D., E. Todini, and A. Corina, A parsimonious post-processor for uncertainty evaluation of ensemble precipitation forecasts: An application to quantitative precipitation forecasts for civil protection purposes, Hydrology Research, 52(6), 1405-1422, doi:10.2166/nh.2021.045, 2021. |
6. | Jahangir, M. S., and J. Quilty, Temporal hierarchical reconciliation for consistent water resources forecasting across multiple timescales: An application to precipitation forecasting, Water Resources Research, 58(6), e2021WR031862, doi:10.1029/2021WR031862, 2022. |
7. | Wan Mazlan, W. A. S., and N. N. A. Tukimat, Comparative analyses on disaggregation methods for the rainfall projection, Water Resources Management, 37, 4195-4209, doi:10.1007/s11269-023-03546-5, 2023. |
8. | Zeng, J., B. Yu, X. Fu, and h. Hu, Multi-century flow reconstruction of the Lhasa River, China, Journal of Hydrology: Regional Studies, 53, 101795, doi:10.1016/j.ejrh.2024.101795, 2024. |
A. Tegos, W. Schlüter, N. Gibbons, Y. Katselis, and A. Efstratiadis, Assessment of environmental flows from complexity to parsimony - Lessons from Lesotho, Water, 10 (10), 1293, doi:10.3390/w10101293, 2018.
Over the last decade, Environmental Flow Assessment (EFA) has focused scientific attention around heavily-modified hydrosystems, such as flow regulated releases downstream of dams. In this light, numerous approaches of varying complexity have been developed, the most holistic of which incorporate hydrological, hydraulic, biological and water quality inputs, as well as socioeconomic issues. Finding the optimal flow releases, informing policy and determining an operational framework are often the main focus. This work exhibits a simplification of the DRIFT framework, and is regarded as the first holistic EFA approach, consisting of three modules, namely hydrological, hydraulic and fish quality. A novel conceptual classification for fish quality is proposed, associating fish fauna requirements with hydraulic characteristics, exported by fish survey analyses. The new methodology was applied and validated successfully at three stream sites in Lesotho, where DRIFT was formerly employed.
Full text: http://www.itia.ntua.gr/en/getfile/1878/1/documents/water-10-01293.pdf (2633 KB)
See also: http://www.mdpi.com/2073-4441/10/10/1293/htm
Other works that reference this work (this list might be obsolete):
1. | Yang, Z., K. Yang, L. Su, and H. Hu, The multi-objective operation for cascade reservoirs using MMOSFLA with emphasis on power generation and ecological benefit, Journal of Hydroinformatics, 21(2), 257-278, doi:10.2166/hydro.2019.064, 2019. |
2. | Langat, P. K., L. Kumar, and R. Koech, Identification of the most suitable probability distribution models for maximum, minimum, and mean streamflow, Water, 11, 734, doi:10.3390/w11040734, 2019. |
3. | Sahoo, B. B., R. Jha, A. Singh, A. and D. Kumar, Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting, Acta Geophysica, 67, 1471-1481, doi:10.1007/s11600-019-00330-1, 2019. |
4. | Ding, L., Q. Li, J. Tang, J. Wang, and X. Chen, Linking land use metrics measured in aquatic-terrestrial interfaces to water quality of reservoir-based water sources in Eastern China, Sustainability, 11(18), 4860, doi:10.3390/su11184860, 2019. |
5. | Koskinas, A., Stochastics and ecohydrology: A study in optimal reservoir design, Dams and Reservoirs, 30(2), 53-59, doi:10.1680/jdare.20.00009, 2020. |
6. | Jo, Y.-J., J.-H. Song, Y. Her, G. Provolo, J. Beom, M. Jeung, Y.-J. Kim, S.-H. Yoo, and K.-S. Yoon, Assessing the potential of agricultural reservoirs as the source of environmental flow, Water; 13(4), 508, doi:10.3390/w13040508, 2021. |
7. | Wu, M., H. Wu, A. T. Warner, H. Li, and Z. Liu, Informing environmental flow planning through landscape evolution modeling in heavily modified urban rivers in China, Water, 13(22), 3244, doi:10.3390/w13223244, 2021. |
8. | Hoque, M. M., A. Islam, and S. Ghosh, Environmental flow in the context of dams and development with special reference to the Damodar Valley Project, India: a review, Sustainable Water Resources Management, 8, 62, doi:10.1007/s40899-022-00646-9, 2022. |
9. | Owusu, A., M. Mul, M. Strauch, P. van der Zaag, M. Volk, and J. Slinger, The clam and the dam: A Bayesian belief network approach to environmental flow assessment in a data scarce region, Science of The Total Environment, 810, 151315, doi:10.1016/j.scitotenv.2021.151315, 2022. |
10. | Liu, S., Q. Zhang, Y. Xie, P. Xu, and H. Du, Evaluation of minimum and suitable ecological flows of an inland basin in China considering hydrological variation, Water, 15(4), 649, doi:10.3390/w15040649, 2023. |
11. | Nasiri Khiavi, A., R. Mostafazadeh, and F. Ghanbari Talouki, Using game theory algorithm to identify critical watersheds based on environmental flow components and hydrological indicators, Environment, Development and Sustainability, doi:10.1007/s10668-023-04390-8, 2024. |
12. | Bănăduc, D., A. Curtean-Bănăduc, S. Barinova, V. L. Lozano, S. Afanasyev, T. Leite, P. Branco, D. F. Gomez Isaza, J. Geist, A. Tegos, H. Olosutean, and K. Cianfanglione, Multi-interacting natural and anthropogenic stressors on freshwater ecosystems: Their current status and future prospects for 21st century, Water, 16(11), 1483, doi:10.3390/w16111483, 2024. |
13. | Tegos, A., A Monte Carlo model for WWTP effluent flow treatment through enhanced willow evapotranspiration, Hydrology, 11(9), 134, doi:10.3390/hydrology11090134, 2024. |
14. | Kumre, S. K., S. Swain, K. Amrit, S. K. Mishra, and A. Pandey, Linking curve number with environmental flows: a novel approach, Environmental Science and Pollution Research, doi:10.1007/s11356-024-35303-5, 2024. |
E. Klousakou, M. Chalakatevaki, P. Dimitriadis, T. Iliopoulou, R. Ioannidis, G. Karakatsanis, A. Efstratiadis, N. Mamassis, R. Tomani, E. Chardavellas, and D. Koutsoyiannis, A preliminary stochastic analysis of the uncertainty of natural processes related to renewable energy resources, Advances in Geosciences, 45, 193–199, doi:10.5194/adgeo-45-193-2018, 2018.
The ever-increasing energy demand has led to overexploitation of fossil fuels deposits, while renewables offer a viable alternative. Since renewable energy resources derive from phenomena related to either atmospheric or geophysical processes, unpredictability is inherent to renewable energy systems. An innovative and simple stochastic tool, the climacogram, was chosen to explore the degree of unpredictability. By applying the climacogram across the related timeseries and spatial-series it was feasible to identify the degree of unpredictability in each process through the Hurst parameter, an index that quantifies the level of uncertainty. All examined processes display a Hurst parameter larger than 0.5, indicating increased uncertainty on the long term. This implies that only through stochastic analysis may renewable energy resources be reliably manageable and cost efficient. In this context, a pilot application of a hybrid renewable energy system in the Greek island of Astypalaia is discussed, for which we show how the uncertainty (in terms of variability) of the input hydrometeorological processes alters the uncertainty of the output energy values.
Full text: http://www.itia.ntua.gr/en/getfile/1864/1/documents/adgeo-45-193-2018.pdf (559 KB)
See also: https://www.adv-geosci.net/45/193/2018/
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | Kaps, C., S. Marinesi, and S. Netessine, When should the off-grid sun shine at night? Optimum renewable generation and energy storage investment, Management Science, 69(12), 7633-7650, doi:10.1287/mnsc.2021.04129, 2023. |
2. | Adewumi, A., C. E. Okoli, F. O. Usman, K. A. Olu-lawal, and O. T. Soyombo, Reviewing the impact of AI on renewable energy efficiency and management, International Journal of Science and Research Archive, 11(01), 1518–1527, doi:10.30574/ijsra.2024.11.1.0245, 2024. |
3. | #Awudu, S., A. K. Yeliawati, and M. Sari, Unveiling the green tapestry: Exploring the influence of green budget tagging on the nexus of fiscal policy sustainability and green budgeting practices in metropolitan municipal and district assemblies in Ghana, Proceedings of the 8th Global Conference on Business, Management, and Entrepreneurship (GCBME 2023), 186-192, Atlantic Press, 2024. |
K. Risva, D. Nikolopoulos, A. Efstratiadis, and I. Nalbantis, A framework for dry period low flow forecasting in Mediterranean streams, Water Resources Management, 32 (15), 4911–1432, doi:10.1007/s11269-018-2060-z, 2018.
The objective of this article is to provide a simple and effective tool for low flow forecasting up to six months ahead, with minimal data requirements, i.e. flow observations retrieved at the end of wet period (first half of April, for the Mediterranean region). The core of the methodological framework is the exponential decay function, while the typical split-sample approach for model calibration, which is known to suffer from the dependence on the selection of the calibration data set, is enhanced by introducing the so-called Randomly Selected Multiple Subsets (RSMS) calibration procedure. Moreover, we introduce and employ a modified efficiency metric, since in this modelling context the classical Nash-Sutcliffe efficiency yields unrealistically high performance. The proposed framework is evaluated at 25 Mediterranean rivers of different scales and flow dynamics, including streams with intermittent regime. Initially, signal processing and data smoothing techniques are applied to the raw hydrograph, in order to cut-off high flows that are due to flood events occurring in dry periods, and allow for keeping the decaying form of the baseflow component. We then employ the linear reservoir model to extract the annually varying recession coefficient, and, then, attempt to explain its median value (over a number of years) on the basis of typical hydrological indices and the catchment area. Next, we run the model in forecasting mode, by considering that the recession coefficient of each dry period ahead is a linear function of the observed flow at the end of the wet period. In most of the examined catchments, the model exhibits very satisfactory predictive capacity and is also robust, as indicated by the limited variability of the optimized model parameters across randomly selected calibration sets.
Full text: http://www.itia.ntua.gr/en/getfile/1861/2/documents/Risva2018_Article_AFrameworkForDryPeriodLowFlowF.pdf (2268 KB)
Other works that reference this work (this list might be obsolete):
1. | Tsihrintzis, V. A., and H. Vangelis, Water resources and environment, Water Resources Management, 32(15), 4813-4817, doi:10.1007/s11269-018-2164-5, 2018. |
2. | Kapetas, L., N. Kazakis, K. Voudouris, and D. McNicholl, Water allocation and governance in multi-stakeholder environments: Insight from Axios Delta, Greece, Science of The Total Environment, 695, 133831, doi:10.1016/j.scitotenv.2019.133831, 2019. |
3. | Azarnivand, A., M. Camporese, S. Alaghmand, and E. Dal, Simulated response of an intermittent stream to rainfall frequency patterns, Hydrological Processes, 34(3), 615-632, doi:10.1002/hyp.13610, 2020. |
4. | Lee, D., H. Kim, I. Jung, and J. Yoon, Monthly reservoir inflow forecasting for dry period using teleconnection indices: A statistical ensemble approach, Applied Sciences, 10(10), 3470, doi:10.3390/app10103470, 2020. |
5. | Nicolle, P., F. Besson, O. Delaigue, P. Etchevers, D. François, M. Le Lay, C. Perrin, F. Rousset, D. Thiéry, F. Tilmant, C. Magand, T. Leurent, and É. Jacob, PREMHYCE: An operational tool for low-flow forecasting, Proceedings of the International Association of Hydrological Sciences, 383, 381-389, doi:10.5194/piahs-383-381-2020, 2020. |
6. | Tilmant, F., P. Nicolle, F. Bourgin, F. Besson, O. Delaigue, P. Etchevers, D. François, M. Le Lay, C. Perrin, F. Rousset, D. Thiéry, C. Magand, T. Leurent, et É. Jacob, PREMHYCE : un outil opérationnel pour la prévision des étiages, La Houille Blanche, 5, 37-44, doi:10.1051/lhb/2020043, 2020. |
7. | Singh, S. K., and G. A. Griffiths, Prediction of streamflow recession curves in gauged and ungauged basins, Water Resources Research, 57(11), e2021WR030618, doi:10.1029/2021WR030618, 2021. |
8. | Orta, S., and H. Aksoy, Development of low flow duration-frequency curves by hybrid frequency analysis, Water Resources Management, 36, 1521-1534, doi:10.1007/s11269-022-03095-3, 2022. |
9. | Kadu, A., and B. Biswal, A model combination approach for improving streamflow prediction, Water Resources Management, 36, 5945-5959, doi:10.1007/s11269-022-03336-5, 2022. |
10. | Wang, F., R. Men, S. Yan, Z. Wang, H. Lai, K. Feng, S. Gao, Y. Li, W. Guo, and Q. Tian, Identification of the runoff evolutions and driving forces during the dry season in the Xijiang river basin, Water, 16(16), 2317, doi:10.3390/w16162317, 2024. |
11. | Bertels, D., L. Breugelmans, and P. Willems, Real-time integrated water availability – Salt intrusion modelling and management during droughts, Journal of Hydrology, 642, 131894, doi:10.1016/j.jhydrol.2024.131894, 2024. |
I. Tsoukalas, S.M. Papalexiou, A. Efstratiadis, and C. Makropoulos, A cautionary note on the reproduction of dependencies through linear stochastic models with non-Gaussian white noise, Water, 10 (6), 771, doi:10.3390/w10060771, 2018.
Since the prime days of stochastic hydrology back in 1960s, autoregressive (AR) and moving average (MA) models (as well as their extensions) have been widely used to simulate hydrometeorological processes. Initially, AR(1) or Markovian models with Gaussian noise prevailed due to their conceptual and mathematical simplicity. However, the ubiquitous skewed behavior of most hydrometeorological processes, particularly at fine time scales, necessitated the generation of synthetic time series to also reproduce higher-order moments. In this respect, the former schemes were enhanced to preserve skewness through the use of non-Gaussian white noise— a modification attributed to Thomas and Fiering (TF). Although preserving higher-order moments to approximate a distribution is a limited and potentially risky solution, the TF approach has become a common choice in operational practice. In this study, almost half a century after its introduction, we reveal an important flaw that spans over all popular linear stochastic models that employ non-Gaussian white noise. Focusing on the Markovian case, we prove mathematically that this generating scheme provides bounded dependence patterns, which are both unrealistic and inconsistent with the observed data. This so-called “envelope behavior” is amplified as the skewness and correlation increases, as demonstrated on the basis of real-world and hypothetical simulation examples.
Full text: http://www.itia.ntua.gr/en/getfile/1848/1/documents/water-10-00771.pdf (14101 KB)
See also: http://www.mdpi.com/2073-4441/10/6/771
Other works that reference this work (this list might be obsolete):
1. | Papalexiou, S. M., Y. Markonis, F. Lombardo, A. AghaKouchak, and E. Foufoula‐Georgiou, Precise temporal Disaggregation Preserving Marginals and Correlations (DiPMaC) for stationary and non‐stationary processes, Water Resources Research, 54(10), 7435-7458, doi:10.1029/2018WR022726, 2018. |
2. | Cheng, Y., P. Feng, J. Li, Y. Guo, and P. Ren, Water supply risk analysis based on runoff sequence simulation with change point under changing environment, Advances in Meteorology, 9619254, doi:10.1155/2019/9619254, 2019. |
3. | Marković, D., S. Ilić, D. Pavlović, J. Plavšić, and N. Ilich, Multivariate and multi-scale generator based on non-parametric stochastic algorithms, Journal of Hydroinformatics, 21(6), 1102–1117, doi:10.2166/hydro.2019.071, 2019. |
4. | Nazemi, A., M. Zaerpour, and E. Hassanzadeh, Uncertainty in bottom-up vulnerability assessments of water supply systems due to regional streamflow generation under changing conditions, Journal of Water Resources Planning and Management, 146(2), doi:10.1061/(ASCE)WR.1943-5452.0001149, 2020. |
5. | Wang, Q., J. Zhou, K. Huang, L. Dai, B. Jia, L. Chen, and H. Qin, A procedure for combining improved correlated sampling methods and a resampling strategy to generate a multi-site conditioned streamflow process, Water Resources Management, 35, 1011-1027, doi:10.1007/s11269-021-02769-8, 2021. |
6. | Zounemat-Kermani, M., A. Mahdavi-Meymand, and A. Hinkelmann, A comprehensive survey on conventional and modern neural networks: application to river flow forecasting, Earth Science Informatics, 14, 893-911, doi:10.1007/s12145-021-00599-1, 2021. |
7. | Pouliasis, G., G. A. Torres-Alves, and O. Morales-Napoles, Stochastic modeling of hydroclimatic processes using vine copulas, Water, 13(16), 2156, doi:10.3390/w13162156, 2021. |
8. | Jia, B., J. Zhou, Z. Tang, Z. Xu, X. Chen, and W. Fang, Effective stochastic streamflow simulation method based on Gaussian mixture model, Journal of Hydrology, 605, 127366, doi:10.1016/j.jhydrol.2021.127366, 2022. |
G. Papaioannou, A. Efstratiadis, L. Vasiliades, A. Loukas, S.M. Papalexiou, A. Koukouvinos, I. Tsoukalas, and P. Kossieris, An operational method for Floods Directive implementation in ungauged urban areas, Hydrology, 5 (2), 24, doi:10.3390/hydrology5020024, 2018.
An operational framework for flood risk assessment in ungauged urban areas is developed within the implementation of the EU Floods Directive in Greece, and demonstrated for Volos metropolitan area, central Greece, which is frequently affected by intense storms causing fluvial flash floods. A scenario-based approach is applied, accounting for uncertainties of key modeling aspects. This comprises extreme rainfall analysis, resulting to spatially-distributed Intensity-Duration-Frequency (IDF) relationships and their confidence intervals, and flood simulations, through the SCS-CN method and the unit hydrograph theory, producing design hydrographs at the sub-watershed scale, for several soil moisture conditions. The propagation of flood hydrographs and the mapping of inundated areas are employed by the HEC-RAS 2D model, with flexible mesh size, by representing the resistance caused by buildings through the local elevation rise method. For all hydrographs, upper and lower estimates on water depths, flow velocities and inundation areas are estimated, for varying roughness coefficient values. The methodology is validated against the flood event of the 9th October 2006, using observed flood inundation data. Our analyses indicate that although typical engineering practices for ungauged basins are subject to major uncertainties, the hydrological experience may counterbalance the missing information, thus ensuring quite realistic outcomes.
Remarks:
This article won the Hydrology Best Paper Award for 2020 (https://www.mdpi.com/journal/hydrology/awards/850)
Full text: http://www.itia.ntua.gr/en/getfile/1829/1/documents/hydrology-05-00024_Idnk8fW.pdf (5243 KB)
Additional material:
Other works that reference this work (this list might be obsolete):
1. | Petroselli, A., M. Vojtek, and J. Vojteková, Flood mapping in small ungauged basins: A comparison of different approaches for two case studies in Slovakia, Hydrology Research, 50(1), 379-392, doi:10.2166/nh.2018.040, 2018. |
2. | Manfreda, S., C. Samela, A. Refice, V. Tramutoli, and F. Nardi, Advances in large-scale flood monitoring and detection, Hydrology, 5(3), 49, doi:10.3390/hydrology5030049, 2018. |
3. | Doroszkiewicz, J., R. J. Romanowicz, and A. Kiczko, The influence of flow projection errors on flood hazard estimates in future climate conditions, Water, 11(1), 49, doi:10.3390/w11010049, 2019. |
4. | Enigl, K., C. Matulla, M. Schlögla, and F. Schmid, Derivation of canonical total-sequences triggering landslides and floodings in complex terrain, Advances in Water Resources, 129, 178-188, doi:10.1016/j.advwatres.2019.04.018, 2019. |
5. | Chen, N., S. Yao, C. Wang, and W. Du, A method for urban flood risk assessment and zoning considering road environments and terrain, Sustainability, 11(10), 2734, doi:10.3390/su11102734, 2019. |
6. | Jiang, X., L., Yang, and H. Tatano, Assessing spatial flood risk from multiple flood sources in a small river basin: A method based on multivariate design rainfall, Water, 11(5), 1031, doi:10.3390/w11051031, 2019. |
7. | Vojtek, M., A. Petroselli, J. Vojteková, and S. Asgharinia, Flood inundation mapping in small and ungauged basins: sensitivity analysis using the EBA4SUB and HEC-RAS modeling approach, Hydrology Research, 50(4), 1002-1019, doi:10.2166/nh.2019.163, 2019. |
8. | Lorenzo-Lacruz, J., C. Garcia, E. Morán-Tejeda, A. Amengual, V. Homar, A. Maimó-Far, A. Hermoso, C. Ramis, and R. Romero, Hydro-meteorological reconstruction and geomorphological impact assessment of the October, 2018 catastrophic flash flood at Sant Llorenç, Mallorca (Spain), Natural Hazards and Earth System Sciences, 19(11), 2597-2617, doi:10.5194/nhess-19-2597-2019, 2019. |
9. | Hamdan, A. N. A., A. A. Abbas, and A. T. Najm, Flood hazard analysis of proposed regulator on Shatt Al-Arab river, Hydrology, 6(3), 80, doi:0.3390/hydrology6030080, 2019. |
10. | Deby, R., V. Dermawan, and D. Sisinggih, Analysis of Wanggu river flood inundation Kendari City Southeast Sulawesi province using HEC RAS 5.0.6, International Research Journal of Advanced Engineering and Science, 4(2), 270-275, 2019. |
11. | Rauter, M., T. Thaler, M.-S. Attems, and S. Fuchs, Obligation or innovation: Can the EU Floods Directive Be seen as a tipping point towards more resilient flood risk management? A case study from Vorarlberg, Austria, Sustainability, 11, 5505, doi:10.3390/su11195505, 2019. |
12. | Papaioannou, G., G. Varlas, G. Terti, A. Papadopoulos, A. Loukas, Y. Panagopoulos, and E. Dimitriou, Flood inundation mapping at ungauged basins using coupled hydrometeorological-hydraulic modelling: The catastrophic case of the 2006 flash flood in Volos City, Greece, Water, 11, 2328, doi:10.3390/w11112328, 2019. |
13. | Rahmati, O., H. Darabi, A. T. Haghighi, S. Stefanidis, A. Kornejady, O. A. Nalivan, and D. T. Bui, Urban flood hazard modeling using self-organizing map neural network, Water, 11(11), 2370, doi:10.3390/w11112370, 2019. |
14. | Dano, U. L., A.-L. Balogun, A.-N. Matori,K. Wan Yusouf, I. R. Abubakar, M. A. Said Mohamed, , Y.A. Aina, and B. Pradhan, Flood susceptibility mapping using an improved analytic network process with statistical models, Water, 11(3), 615, doi:10.3390/w11030615, 2019. |
15. | Petroselli, A., S. Grimaldi, R. Piscopia, and F. Tauro, Design hydrograph estimation in small and ungauged basins: a comparative assessment of event based (EBA4SUB) and continuous (COSMO4SUB) modeling approaches, Acta Scientiarum Polonorum Formatio Circumiectus, 18(4), 113-124, doi:10.15576/ASP.FC/2019.18.4.113, 2019. |
16. | Nguyen, V.-N., P. Yariyan, M. Amiri, A. Dang Tran, T.D. Pham, M.P. Do, P. T. Thi Ngo, V.-H. Nhu, N. Quoc Long, and D. Tien Bui, A new modeling approach for spatial prediction of flash flood with biogeography optimized CHAID tree ensemble and remote sensing data, Remote Sensing, 12(9), 1373, doi:10.3390/rs12091373, 2020. |
17. | Kastridis, A., and D. Stathis, Evaluation of hydrological and hydraulic models applied in typical Mediterranean ungauged watersheds using post-flash-flood measurements, Hydrology, 7(1), 12, doi:10.3390/hydrology7010012, 2020. |
18. | Stavropoulos, S., G. N. Zaimes, E. Filippidis, D. C. Diaconu, and D. Emmanouloudis, Mitigating flash floods with the use of new technologies: A multi-criteria decision analysis to map flood susceptibility for Zakynthos island, Greece, Journal of Urban & Regional Analysis, 12(2), 233-248, 2020. |
19. | Kastridis, A., C. Kirkenidis, and M. Sapountzis, An integrated approach of flash flood analysis in ungauged Mediterranean watersheds using post‐flood surveys and Unmanned Aerial Vehicles (UAVs), Hydrological Processes, 34(25), 4920-4939, doi:10.1002/hyp.13913, 2020. |
20. | Abdrabo, K. I., S. A. Kantoush, M. Saber, T. Sumi, O. M. Habiba, D. Elleithy, and B. Elboshy, Integrated methodology for urban flood risk mapping at the microscale in ungauged regions: A case study of Hurghada, Egypt, Remote Sensing, 12(21), 3548, doi:10.3390/rs12213548, 2020. |
21. | Yariyan, P., M. Avand, R. A. Abbaspour, A. T. Haghighi, R. Costache, O. Ghorbanzadeh, S. Janizadeh, and T. Blaschke, Flood susceptibility mapping using an improved analytic network process with statistical models, Geomatics, Natural Hazards and Risk, 11(1), 2282-2314, doi:10.1080/19475705.2020.1836036, 2020. |
22. | Papaioannou, G., C. Papadaki, and E. Dimitriou, Sensitivity of habitat hydraulic model outputs to DTM and computational mesh resolution, Ecohydrology, 13(2), e2182, doi:10.1002/eco.2182, 2020. |
23. | Papaioannou, G., G. Varlas, A. Papadopoulos, A. Loukas, P. Katsafados, and E. Dimitriou, Investigating sea‐state effects on flash flood hydrograph and inundation forecasting, Hydrological Processes, 35(4), e14151, doi:10.1002/hyp.14151, 2021. |
24. | Mahamat Nour, A., C. Vallet‐Coulomb, J. Gonçalves, F. Sylvestre, and P. Deschamps, Rainfall-discharge relationship and water balance over the past 60 years within the Chari-Logone sub-basins, Lake Chad basin, Journal of Hydrology: Regional Studies, 35, 100824, doi:10.1016/j.ejrh.2021.100824, 2021. |
25. | Varlas, G., A. Papadopoulos, G. Papaioannou, and E. Dimitriou, Evaluating the forecast skill of a hydrometeorological modelling system in Greece, Atmosphere, 12(7), 902, doi:10.3390/atmos12070902, 2021. |
26. | Khalaj, M. R., H. Noor, and A. Dastranj, Investigation and simulation of flood inundation hazard in urban areas in Iran, Geoenvironmental Disasters, 8, 18, doi:10.1186/s40677-021-00191-1, 2021. |
27. | Hooke, J., J. Souza, and M. Marchamalo, Evaluation of connectivity indices applied to a Mediterranean agricultural catchment, Catena, 207, 105713, doi:10.1016/j.catena.2021.105713, 2021. |
28. | Seleem, O., M. Heistermann, and A. Bronstert, Efficient hazard assessment for pluvial floods in urban environments: A benchmarking case study for the city of Berlin, Germany, Water, 13(18), 2476, doi:10.3390/w13182476, 2021. |
29. | Cotugno, A., V. Smith, T. Baker, and R. Srinivasan, A framework for calculating peak discharge and flood inundation in ungauged urban watersheds using remotely sensed precipitation data: A case study in Freetown, Sierra Leone, Remote Sensing, 13(19), 3806, doi:10.3390/rs13193806, 2021. |
30. | Berteni, F., A. Dada, and G. Grossi, Application of the MUSLE model and potential effects of climate change in a small Alpine catchment in Northern Italy, Water, 13(19), 2679, doi:10.3390/w13192679, 2021. |
31. | Kastridis, A., G. Theodosiou, and G. Fotiadis, Investigation of flood management and mitigation measures in ungauged NATURA protected watersheds, Hydrology, 8(4), 170, doi:10.3390/hydrology8040170, 2021. |
32. | Ali, A. A., and H. A. Al Thamiry, H. A., Controlling the salt wedge intrusion in Shatt Al-Arab river by a barrage, Journal of Engineering, 27(12), 69-86, doi:10.31026/j.eng.2021.12.06, 2021. |
33. | Alamanos, A., P. Koundouri, L. Papadaki, and T. Pliakou, A system innovation approach for science-stakeholder interface: theory and application to water-land-food-energy nexus, Frontiers in Water, 3, 744773, doi:10.3389/frwa.2021.744773, 2022. |
34. | Papaioannou, G., V. Markogianni, A. Loukas, and E. Dimitriou, Remote sensing methodology for roughness estimation in ungauged streams for different hydraulic/hydrodynamic modeling approaches, Water, 14(7), 1076, doi:10.3390/w14071076, 2022. |
35. | Jessie, L., O. Brivois, P. Mouillon, A. Maspataud, P. Belz, and J.-M. Laloue, Coastal flood modeling to explore adaptive coastal management scenarios and land-use changes under sea level rise, Frontiers in Marine Science, 9, 710086, doi:10.3389/fmars.2022.710086, 2022. |
36. | Tegos, A., A. Ziogas, V. Bellos, and A. Tzimas, Forensic hydrology: a complete reconstruction of an extreme flood event in data-scarce area, Hydrology, 9(5), 93, doi:10.3390/hydrology9050093, 2022. |
37. | Neves, J. L., T. K. Sellick, A. Hasan, and P. Pilesjö, Flood risk assessment under population growth and urban land use change in Matola, Mozambique, African Geographical Review, doi:10.1080/19376812.2022.2076133, 2022. |
38. | Khosh Bin Ghomash, S., D. Bachmann, D. Caviedes-Voullième, and C. Hinz, Impact of rainfall movement on flash flood response: A synthetic study of a semi-arid mountainous catchment, Water, 14(12), 1844, doi:10.3390/w14121844, 2022. |
39. | Arnsteg, A., J. Glinski, P. Marijauskaite, A. Nitschke, M. Olsson, A. Pierre, L. Rosenquist Ohlsson, S. van der Vleuten, and P. Pilesjö, Flood modelling and proposed Blue-Green Solutions – A case study in Lisbon, Portugal, AGILE: GIScience Series, 3, 53, doi:10.5194/agile-giss-3-53-2022, 2022. |
40. | Yavuz, C., K. Yilmaz, and G. Onder, Combined hazard analysis of flood and tsunamis on the western Mediterranean coast of Turkey, Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2022-121, 2022. |
41. | Giannaros, C., S. Dafis, S. Stefanidis, T. M. Giannaros, I. Koletsis, and C. Oikonomou, Hydrometeorological analysis of a flash flood event in an ungauged Mediterranean watershed under an operational forecasting and monitoring context, Meteorological Applications, 29(4), e2079, doi:10.1002/met.2079, 2022. |
42. | Koutalakis, P., and G. N. Zaimes, River flow measurements utilizing UAV-based surface velocimetry and bathymetry coupled with sonar, Hydrology, 9(8), 148, doi:10.3390/hydrology9080148, 2022. |
43. | #Yassine, R., M. Lastes, A. Argence, A. Gandouin, C. Imperatrice, P. Michel, R. Zhang, P. Brigode, O. Delestre, and F. Taccone, Simulation of the Alex storm flash-flood in the Vésubie catchment (South Eastern France) using Telemac-2D hydraulic code, Advances in Hydroinformatics, Gourbesville, P., Caignaert, G. (eds.), Springer Water, Springer, Singapore, doi:10.1007/978-981-19-1600-7_52, 2022. |
44. | Donnelly, J., S. Abolfathi, J. Pearson, O. Chatrabgoun, and A. Daneshkhah, Gaussian process emulation of spatio-temporal outputs of a 2D inland flood model, Water Research, 225, 119100, doi:10.1016/j.watres.2022.119100, 2022. |
45. | Alamanos, A., P. Koundouri, L. Papadaki, T. Pliakou, and E. Toli, Water for tomorrow: A living lab on the creation of the science-policy-stakeholder interface, Water, 14(18), 2879, doi:10.3390/w14182879, 2022. |
46. | #Alves, R., J. C. Branco, and J. S. Baptista, Flood risk assessment and emergency planning – A short review, Occupational and Environmental Safety and Health IV, Studies in Systems, Decision and Control, 449, 615-629, Springer, Cham, doi:10.1007/978-3-031-12547-8_49, 2023. |
47. | Alarifi, S. S., M. Abdelkareem, F. Abdalla, and M. Alotaibi, Flash flood hazard mapping using remote sensing and GIS techniques in Southwestern Saudi Arabia, Sustainability, 14(21), 14145, doi:10.3390/su142114145, 2022. |
48. | Yavuz, C., K. Yilmaz, K., and G. Onder, Multi-hazard analysis of flood and tsunamis on the western Mediterranean coast of Turkey, Natural Hazards and Earth System Sciences, 22, 3725-3736, doi:10.5194/nhess-22-3725-2022, 2022. |
49. | Rusinko, A., and S. Horáčková, Flash flood simulation in the urbanised catchment: Aa case study of Bratislava-Karlova Ves, Geographia Cassoviensis, 16(2), 81-97, doi:10.33542/GC2022-2-01, 2022. |
50. | #Vasiliades, L., E. Farsirotou, and A. Psilovikos, An integrated hydrologic/hydraulic analysis of the Medicane "Ianos" flood event in Kalentzis River Basin, Greece, Proceedings of 7th IAHR Europe Congress "Innovative Water Management in a Changing Climate”, 235-236, Athens, International Association for Hydro-Environment Engineering and Research (IAHR), 2022. |
51. | Efe, H., and F. Önen, Failure analysis of Batman Dam and evaluation in terms of dam safety, Dicle University Journal of Engineering, 13(3), 579-587, doi:10.24012/dumf.1097025, 2022. |
52. | Adnan, M. S. G. , Z. S. Siam, I. Kabir, Z. Kabir, M. R. Ahmed, Q. K. Hassan, R. M. Rahman, and A. Dewan, A novel framework for addressing uncertainties in machine learning-based geospatial approaches for flood prediction, Journal of Environmental Management, 326(B), 116813, doi:10.1016/j.jenvman.2022.116813, 2023. |
53. | Cahyono, A. B., and A. B. Hak, Flood inundation simulation using HEC-GeoRAS with hydro-enforced-DTM LiDAR data, IOP Conference Series: Earth and Environmental Science, 1127, 012049, doi:10.1088/1755-1315/1127/1/012049, 2023. |
54. | Khosh Bin Ghomash, S., D. Bachmann, D. Caviedes-Voullième, and C Hinz, Effects of within-storm variability on allochthonous flash flooding: A synthetic study, Water, 15(4), 645, doi:10.3390/w15040645, 2023. |
55. | Yilmaz, K., Y. Darama, Y., Y. Oruc, and A. B. Melek, Assessment of flood hazards due to overtopping and piping in Dalaman Akköprü Dam, employing both shallow water flow and diffusive wave equations, Natural Hazards, 117, 979-1003, doi:10.1007/s11069-023-05891-5, 2023. |
56. | Mattas, C., D. Karpouzos, P. Georgiou, and T. Tsapanos, Two-dimensional modelling for dam break analysis and flood hazard mapping: A case study of Papadia Dam, Northern Greece, Water, 15(5), 994, doi:10.3390/w15050994, 2023. |
57. | Hughes, W., L. Santos, Q. Lu, R. Malla, N. Ravishanker, and W. Zhang, Probabilistic risk assessment framework for predicting large woody debris accumulations and scour near bridges, Structure and Infrastructure Engineering, doi:10.1080/15732479.2023.2177875, 2023. |
58. | Vasiliades, L., G. Papaioannou, and A. Loukas, A unified hydrologic framework for flood design estimation in ungauged basins, Environmental Sciences Proceedings, 25(1), 40, doi:10.3390/ECWS-7-14194, 2023. |
59. | Akkus, H., E. Yildiz, and I. Bulut, HEC-RAS 2B Modeli Kullanılarak Yazılıkaya Deresi (Nallıhan Ankara) Sel Tehlike Haritalarının Hazırlanması ve Sel Kontrol Yapısının Etkinliği, Jeoloji Muhendisligi Dergisi, 47(1), 29-46, doi:10.24232/jmd.1268945, 2023. |
60. | Le Gal, M., T. Fernández-Montblanc, E. Duo, J. Montes Perez, P. Cabrita, P. Souto Ceccon, V. Gastal, P. Ciavola, and C. Armaroli, A new European coastal flood database for low-medium intensity events, EGUsphere, doi:10.5194/egusphere-2023-1157, 2023. |
61. | Iliadis, C., P. Galiatsatou, V. Glenis, P. Prinos, and C. Kilsby, Urban flood modelling under extreme rainfall conditions for building-level flood exposure analysis, Hydrology, 10(8), 172, doi:10.3390/hydrology10080172, 2023. |
62. | Uysal, G., and E. Taşçı, Analysis of downstream flood risk in the failure of Batman Dam with two-dimensional hydraulic modeling and satellite data, Journal of Natural Hazards and Environment, 9(1), 39-57, doi:10.21324/dacd.1107630, 2023. |
63. | Kiesel, J., M. Lorenz, M. König, U. Gräwe, and A. T. Vafeidis, Regional assessment of extreme sea levels and associated coastal flooding along the German Baltic Sea coast, Natural Hazards and Earth System Sciences, 23, 2961-2985, doi:10.5194/nhess-23-2961-2023, 2023. |
64. | Çirağ, B., and M. Firat, Two-dimensional (2D) flood analysis and calibration of stormwater drainage systems using geographic information systems, Water Science & Technology, 87(10), 2577-2596, doi:10.2166/wst.2023.126, 2023. |
65. | Bouadila, A., I. Bouizrou, M. Aqnouy, K. En-nagre, Y. El Yousfi, A. Khafouri, I. Hilal, K. Abdelrahman, L. Benaabidate, T. Abu-Alam, J. E. S. El Messari, and M. Abioui, Streamflow simulation in semiarid data-scarce regions: A comparative study of distributed and lumped models at Aguenza watershed (Morocco), Water, 15(8), 1602, doi:10.3390/w15081602, 2023. |
66. | Kiesel, J., M. Lorenz, M. König, U. Gräwe, and A. T. Vafeidis, A new modelling framework for regional assessment of extreme sea levels and associated coastal flooding along the German Baltic Sea coast, Natural Hazards and Earth System Sciences, 23, 2961-2985, doi:10.5194/nhess-2022-275, 2023. |
67. | Baykal, T., S. Terzi, and E. D. Taylan, Examination of safe routes for emergency responders and people during urban flood: a case study of Isparta, Türkiye, Natural Hazards, doi:10.1007/s11069-023-06171-y, 2023. |
68. | Le Gal, M., T. Fernández-Montblanc, E. Duo, J. Montes Perez, P. Cabrita, P. Souto Ceccon, V. Gastal, P. Ciavola, and C. Armaroli, A new European coastal flood database for low–medium intensity events, Natural Hazards and Earth System Sciences, 23, 3585-3602, doi:10.5194/nhess-23-3585-2023, 2023. |
69. | Sfetsos, A., N. Politi, and D. Vlachogiannis, Multi-hazard extreme scenario quantification using intensity, duration, and return period characteristics, Climate, 11(12), 242, doi:10.3390/cli11120242, 2023. |
70. | Nistoran, D. E. G., C. S. Ionescu, and S. M. Simionescu, Assessing the impact of an arch-dam breach magnitude and reservoir inflow on flood maps, Journal of Hydroinformatics, doi:10.2166/hydro.2023.301, 2024. |
71. | #Sardar, F., M. H. Ali, I. Popescu, A. Jonoski, S. J. van Andel, and C. Bertini, Surface-subsurface interaction analysis and the influence of precipitation spatial variability on a lowland mesoscale catchment, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2023-276, 2023. |
72. | Aljber, M., H. S. Lee, J.-S. Jeong, and J. S. Cabrera, Tsunami inundation modelling in a built-in coastal environment with adaptive mesh refinement: The Onagawa benchmark test, Journal of Marine Science and Engineering, 12(1), 177, doi:10.3390/jmse12010177, 2024. |
73. | Kyaw, K. K., F. Bonaiuti, H. Wang, S. Bagli, P. Mazzoli, P. P. Alberoni, S. Persiano, and A. Castellarin, Fast-processing DEM-based urban and rural inundation scenarios from point-source flood volumes, Sustainability, 16(2), 875, doi:10.3390/su16020875, 2024. |
74. | Peker, İ. B., S. Gülbaz, V. Demir, O. Orhan, and N. Beden, Integration of HEC-RAS and HEC-HMS with GIS in flood modeling and flood hazard mapping, Sustainability, 16(3), 1226, doi:10.3390/su16031226, 2024. |
75. | Velegrakis, A. F., D. Chatzistratis, T. Chalazas, C. Armaroli, E. Schiavon, B. Alves, D. Grigoriadis, T. Hasiotis, and E. Ieronymidi, Earth observation technologies, policies and legislation for the coastal flood risk assessment and management: a European perspective, Anthropocene Coasts, 7(3), doi:10.1007/s44218-024-00037-x, 2024. |
76. | Alshammari, E., A. Abdul Rahman, R. Ranis, N. Abu Seri, and F. Ahmad, Investigation of runoff and flooding in urban areas based on hydrology models: A literature review, International Journal of Geoinformatics, 20(1), 99–119, doi:10.52939/ijg.v20i1.3033, 2024. |
77. | Gogoașe Nistoran, D. E., C. S. Ionescu, and S. M. Simionescu, Assessing the impact of an arch-dam breach magnitude and reservoir inflow on flood maps, Journal of Hydroinformatics, 26(1), 33–50, doi:10.2166/hydro.2023.301, 2024. |
78. | Hop, F. J., R. Linneman, B. Schnitzler, A. Bomers, and M. J. Booij, Real time probabilistic inundation forecasts using a LSTM neural network, Journal of Hydrology, 635, 131082, doi:10.1016/j.jhydrol.2024.131082, 2024. |
79. | Turkel, A. O., H. Zaifoglu, and A. M. Yanmaz, Probabilistic modeling of dam failure scenarios: a case study of Kanlikoy Dam in Cyprus, Natural Hazards, doi:10.1007/s11069-024-06599-w, 2024. |
80. | Ghanem, M. A. A. N., and H. Zaifoglu, A geospatial analysis of flood risk zones in Cyprus: insights from statistical and multi-criteria decision analysis methods, Environmental Science and Pollution Research, 31, 32875-32900, doi:10.1007/s11356-024-33391-x, 2024. |
81. | Yadav, R., and S. M. Yadav, BHARAT: a MADM approach to prioritizing the best performing EPS in a semi-arid river basin, Natural Hazards, 120, 9035–9055, doi:10.1007/s11069-024-06566-5, 2024. |
82. | Apriana, A., A. R. A. Ansory, T. Agustina, I. Amalia, and Refrizon, Mapping flood-prone areas using GIS through as geo-artificial intelligence (Geo-Ai) approach in Bengkulu City, Journal of Technomaterial Physics, 06(01), 56-61, doi:10.32734/jotp.v5i1.16006, 2024. |
83. | Le Gal, M., T. Fernández-Montblanc, J. M. Perez, E. Duo, P. S. Seccon, P. Ciavola, and C. Armaroli, Influence of model configuration for coastal flooding across Europe, Coastal Engineering, 192, 104541, doi:10.1016/j.coastaleng.2024.104541, 2024. |
84. | Öztürk, Ş., K. Yılmaz, A. E. Dinçer, and V. Kalpakcı, Effect of urbanization on surface runoff and performance of green roofs and permeable pavement for mitigating urban floods, Natural Hazards, doi:10.1007/s11069-024-06688-w, 2024. |
85. | Cabrita, P., J. Montes, E. Duo, R. Brunetta, and P. Ciavola, The role of different total water level definitions in coastal flood modelling on a low-elevation dune system, Journal of Marine Science and Engineering, 12(6), 1003, doi:10.3390/jmse12061003, 2024. |
86. | Costabile, P., G. Barbero, E. D. Nagy, K. Négyesi, G. Petaccia, and C. Costanzo, Predictive capabilities, robustness and limitations of two event-based approaches for lag time estimation in heterogeneous watersheds, Journal of Hydrology, 131814, doi:10.1016/j.jhydrol.2024.131814, 2024. |
87. | Siakara, G., N. Gourgouletis, and E. Baltas, Assessing the efficiency of fully two-dimensional hydraulic HEC-RAS models in rivers of Cyprus, Geographies, 4(3), 513-536, doi:10.3390/geographies4030028, 2024. |
88. | Liu, D., Z. Shi, Y. Yang, and X. Zhu, Delimiting of ecological buffer zone in Hongze Lake based on Phillips retention model, Journal of Ecology and Rural Environment, 40(1), 147-155, doi:10.19741/j.issn.1673-4831.2022.1243, 2024. |
89. | Tzanou, E., and C. Skoulikaris, Geo-Referenced databases and SWOT analysis for assessing flood protection structures, measures, and works at a river basin scale, Hydrology, 11(9), 136, doi:10.3390/hydrology11090136, 2024. |
90. | Lima, D. M., A. R. da Paz, X. Xuan, and D. G. A. Piccilli, Incorporating spatial variability in surface runoff modeling with new DEM-based distributed approaches, Computational Geosciences, doi:10.1007/s10596-024-10321-x, 2024. |
91. | Bashir, B., and A. Alsalman, Flooding hazard vulnerability assessment using remote sensing data and geospatial techniques: A case study from Mekkah Province, Saudi Arabia, Water, 16(19), 2714, doi:10.3390/w16192714, 2024. |
92. | Bellos, V., C. Costanzo, J. Kalogiros, R. Ahmadian, E. Rozos, and P. Costabile, Nowcasting floods in detailed scales considering the uncertainties associated with impact-based practical applications, Water Resources Management, doi:10.1007/s11269-024-03988-5, 2024. |
93. | #Chatzistratis A., I. Monioudi, T. Chalazas, G. Papaioannou, K. Moschopoulos, A. F. Velegrakis, and A. Polydoropoulou, Flood risk assessment on two Greek island ports under the impact of rising sea levels, HydroMedit 2024 – Book of Proceedings, 376-379, 2024. |
E. Michailidi, S. Antoniadi, A. Koukouvinos, B. Bacchi, and A. Efstratiadis, Timing the time of concentration: shedding light on a paradox, Hydrological Sciences Journal, 63 (5), 721–740, doi:10.1080/02626667.2018.1450985, 2018.
From the origins of hydrology, the time of concentration, tc, has been conventionally tackled as constant quantity. However, theoretical proof and empirical evidence imply that tc exhibits significant variability against rainfall, making its definition and estimation a hydrological paradox. Adopting the assumptions of the Rational method and the kinematic approach, an effective procedure in a GIS environment for estimating the travel time across a catchment’s longest flow path is provided. By applying it in 30 Mediterranean basins, it is illustrated that tc is a negative power function of excess rainfall intensity. Regional formulas are established to infer its multiplier (unit time of concentration) and exponent from abstract geomorphological information, which are validated against observed data and theoretical literature outcomes. Besides offering a fast and easy solution to the paradox, we highlight the necessity for implementing the varying tc concept within hydrological modelling, signalling a major shift from current engineering practices.
Remarks:
2020 Tison Award, by International Association of Hydrological Sciences, awared to young hydrologists Eleni Maria Michailidi and Sylvia Antoniadi (https://iahs.info/About-IAHS/Competition--Events/Tison-Award/Tison-Award-winners/EMichailidi-SAntoniadi/)
Full text: http://www.itia.ntua.gr/en/getfile/1777/2/documents/Timing_the_time_of_concentration_shedding_light_on_a_paradox_nNWG5Fq.pdf (2538 KB)
Additional material:
Other works that reference this work (this list might be obsolete):
1. | Yazdia, M. N., D. J. Sample, D. Scott, J. Owen, M. Ketabchy, and N. Alamdari, Water quality characterization of storm and irrigation runoff from a container nursery, Science of the Total Environment, 667, 166-178, doi:10.1016/j.scitotenv.2019.02.326, 2019. |
2. | Jiang, X., L., Yang, and H. Tatano, Assessing spatial flood risk from multiple flood sources in a small river basin: A method based on multivariate design rainfall, Water, 11(5), 1031, doi:10.3390/w11051031, 2019. |
3. | Harisuseno, D., D. N. Khaeruddin, and R. Haribowo, Time of concentration based infiltration under different soil density, water content, and slope during a steady rainfall, Journal of Water and Land Development, 41 (IV–VI), 61-68, doi:10.2478/jwld-2019-0028, 2019. |
4. | Vojtek, M., A. Petroselli, J. Vojteková, and S. Asgharinia, Flood inundation mapping in small and ungauged basins: sensitivity analysis using the EBA4SUB and HEC-RAS modeling approach, Hydrology Research, 50(4), 1002-1019, doi:10.2166/nh.2019.163, 2019. |
5. | Osuagwu, J., J. C. Agunwamba, and C. E. Nwabunor, Verification of time of concentration equation for improved drainage design, Environmental Management and Sustainable Development, 8(2), 151-161, doi:10.5296/emsd.v8i2.14902, 2019. |
6. | Sandoval, S., and J.-L. Bertrand-Krajewski, From marginal to conditional probability functions of parameters in a conceptual rainfall-runoff model: an event-based approach, Hydrological Sciences Journal, 64(11), 1340-1350, doi:10.1080/02626667.2019.1635696, 2019. |
7. | Masseroni, D., G. Ercolani, E. A. Chiaradia, and C. Gandolfi, A procedure for designing natural water retention measures in new development areas under hydraulic-hydrologic invariance constraints, Hydrology Research, 50(5), 1293-1308, doi:10.2166/nh.2019.018, 2019. |
8. | Santos, S. M., J. C. N. Pscheidt, G. Tiago, S. Klein, N. B. Bonumá, P. L. B. Chaffe, and K. Masato, Time of concentration in an experimental basin: Methods for analysis, backwater effects and vegetation removal, Journal of Urban & Environmental Engineering, 13(1), 163-173, 2019. |
9. | Beven, K. J., A history of the concept of time of concentration, Hydrology and Earth System Sciences, 24, 2655–2670, doi:10.5194/hess-24-2655-2020, 2020. |
10. | Veeck, S., F. F. da Costa, D. L. C. Lima, A. Rolim da Paz, and D. G. A. Piccilli, Scale dynamics of the HIDROPIXEL high-resolution DEM-based distributed hydrologic modeling approach, Environmental Modelling & Software, 127, 104695, doi:10.1016/j.envsoft.2020.104695, 2020. |
11. | Allnutt, C. E., O. J. Gericke, and J. P. J. Pietersen, Estimation of time parameter proportionality ratios in large catchments: Case study of the Modder‐Riet River Catchment, South Africa, Journal of Flood Risk Management, 13(3), e12628, doi:10.1111/jfr3.12628, 2020. |
12. | González-Álvarez, Á., J. Molina-Pérez, B. Meza-Zúñiga, O. M. Viloria-Marimón, K. Tesfagiorgis, and J. A. Mouthón-Bello, Assessing the performance of different time of concentration equations in urban ungauged watersheds: Case study of Cartagena de Indias, Colombia, Hydrology, 7(3), 47, doi:10.3390/hydrology7030047, 2020. |
13. | Dey, R., A. J. E. Gallant, and S. C. Lewis, Evidence of a continent-wide shift of episodic rainfall in Australia, Weather and Climate Extremes, 29, 100274, doi:10.1016/j.wace.2020.100274, 2020. |
14. | Kastridis, A., C. Kirkenidis, and M. Sapountzis, An integrated approach of flash flood analysis in ungauged Mediterranean watersheds using post‐flood surveys and Unmanned Aerial Vehicles (UAVs), Hydrological Processes, 34(25), 4920-4939, doi:10.1002/hyp.13913, 2020. |
15. | Ruman, S., R. Tichavský, K. Šilhán, K. and M. G. Grillakis, Palaeoflood discharge estimation using dendrogeomorphic methods, rainfall-runoff and hydraulic modelling—a case study from southern Crete, Natural Hazards, 105, 1721-1742, doi:10.1007/s11069-020-04373-2, 2021. |
16. | Giani, G., M. A. Rico‐Ramirez, and R. A. Woods, A practical, objective and robust technique to directly estimate catchment response time, Water Resources Research, 57(2), e2020WR028201, doi:10.1029/2020WR028201, 2021. |
17. | Bournas, A., and E. Baltas, Comparative analysis of rain gauge and radar precipitation estimates towards rainfall-runoff modelling in a peri-urban basin in Attica, Greece, Hydrology, 8(1), 29, doi:10.3390/hydrology8010029, 2021. |
18. | Jato-Espino, D., and S. Pathak, Geographic location system for identifying urban road sections sensitive to runoff accumulation, Hydrology, 8(2), 72, doi:10.3390/hydrology8020072, 2021. |
19. | Nash, D. M., A. J. Weatherley, P. J. A. Kleinman, and A. N. Sharpley, Estimating dissolved p losses from legacy sources in pastures - The limits of soil tests and small-scale rainfall simulators, Journal of Environmental Quality, 50(5), 1042-1062, doi:10.1002/jeq2.20265, 2021. |
20. | Almedeij. J., Modified NRCS abstraction method for flood hydrograph generation, Journal of Irrigation and Drainage Engineering, 47(10), doi:10.1061/(ASCE)IR.1943-4774.0001609, 2021. |
21. | Lapides, D. A., A. Sytsma, O. Crompton, and S. Thompson, Rational method time of concentration can underestimate peak discharge for hillslopes, Journal of Hydraulic Engineering, 147(10), doi:10.1061/(ASCE)HY.1943-7900.0001900, 2021. |
22. | Lapides, D. A., A. Sytsma, and S. Thompson, Implications of distinct methodological interpretations and runoff coefficient usage for rational method predictions, Journal of the American Water Resources Association, 57(6), 859-874, doi:10.1111/1752-1688.12949, 2021. |
23. | Fadhel, S., M. Al Aukidy, and M. S. Saleh, Uncertainty of intensity-duration-frequency curves due to adoption or otherwise of the temperature climate variable in rainfall disaggregation, Water, 13(17), 2337, doi:10.3390/w13172337, 2021. |
24. | Sapountzis, M., A. Kastridis, A. Kazamias, A. Karagiannidis, P. Nikopoulos, and K. Lagouvardos, Utilization and uncertainties of satellite precipitation data in flash flood hydrological analysis in ungauged watersheds, Global NEST Journal, 23, 1-12, 2021. |
25. | Kastridis, A., G. Theodosiou, and G. Fotiadis, Investigation of flood management and mitigation measures in ungauged NATURA protected watersheds, Hydrology, 8(4), 170, doi:10.3390/hydrology8040170, 2021. |
26. | Nagy, E. D., J. Szilagyi, and P. Torma, Assessment of dimension-reduction and grouping methods for catchment response time estimation in Hungary, Journal of Hydrology: Regional Studies, 38, 100971, doi:10.1016/j.ejrh.2021.100971, 2021. |
27. | Sanz-Ramos, M., E. Bladé, F. González-Escalona, G. Olivares, and J. L. Aragón-Hernández, Interpreting the Manning roughness coefficient in overland flow simulations with coupled hydrological-hydraulic distributed models, Water, 13(23), 3433, doi:10.3390/w13233433, 2021. |
28. | Rautela, K. S., M. Kumar, V. Khajuria, and M. A. Alam, Comparative geomorphometric approach to understand the hydrological behaviour and identification of the erosion prone areas of a coastal watershed using RS and GIS tools, Discover Water, 2, 1, doi:10.1007/s43832-021-00009-z, 2022. |
29. | Tardif, F., F. St-Pierre, G. Pelletier, and M. J. Rodriguez, Comparison of methods to evaluate overland travel times for source water protection, Journal of Environmental Planning and Management, 65(10), 1932-1948, doi:10.1080/09640568.2021.1952858, 2022. |
30. | Barbero, G., P. Costabile, C. Costanzo, D. Ferraro, and G. Petaccia, 2D Hydrodynamic approach supporting evaluations of hydrological response in small watersheds: implications for lag time estimation, Journal of Hydrology, 610, 127870, doi:10.1016/j.jhydrol.2022.127870, 2022. |
31. | Tegos, A., A. Ziogas, V. Bellos, and A. Tzimas, Forensic hydrology: a complete reconstruction of an extreme flood event in data-scarce area, Hydrology, 9(5), 93, doi:10.3390/hydrology9050093, 2022. |
32. | Giannaros, C., S. Dafis, S. Stefanidis, T. M. Giannaros, I. Koletsis, and C. Oikonomou, Hydrometeorological analysis of a flash flood event in an ungauged Mediterranean watershed under an operational forecasting and monitoring context, Meteorological Applications, 29(4), e2079, doi:10.1002/met.2079, 2022. |
33. | Nagy, E. D., J. Szilagyi, and P. Torma, Estimation of catchment response time using a new automated event-based approach, Journal of Hydrology, 613(A), 128355, doi:10.1016/j.jhydrol.2022.128355, 2022. |
34. | Mehta, O., M. Lal Kansal; and D. Singh Bisht, A comparative study of the time of concentration methods for designing urban drainage infrastructure, Journal of Water Supply: Research and Technology – Aqua, 71(10), 1197-1218, doi:10.2166/aqua.2022.107, 2022. |
35. | Zolghadr, M., M. R. Rafiee, F. Esmaeilmanesh, A. Fathi, R. P. Tripathi, U. Rathnayake, S. R. Gunakala, and H. M. Azamathulla, Computation of time of concentration based on two-dimensional hydraulic simulation, Water, 14(19), 3155, doi:10.3390/w14193155, 2022. |
36. | Alamri, N., K. Afolabi, H. Ewea, and A. Elfeki, Evaluation of the time of concentration models for enhanced peak flood estimation in arid regions, Sustainability, 15(3), 1987, doi:10.3390/su15031987, 2023. |
37. | Kotyra, B., and L. Chabudziński, Fast parallel algorithms for finding the longest flow paths in flow direction grids, Environmental Modelling & Software, 167, 105728, doi:10.1016/j.envsoft.2023.105728, 2023. |
38. | Zhang, J., S. Zhang, C. Wang, W. Wang, L. Ma, X. Xu, and J. Zhou, Influence of vegetation lodging on the flow regime and resistance characteristic of overland flow, Hydrological Processes, 37(3), e14848, doi:10.1002/hyp.14848, 2023. |
39. | #Martin, V. T., L. E. Bock, B. P. Bule, F. C. Pimentel, G. S. Araujo, L. C. Pinto, R. Tassi, and D. G. A. Piccilli, Estudo preliminar do tempo de concentração ajustado para aplicação do HUT-NRCS em bacias brasileiras, XXV SBRH - Simpósio Brasileiro de Recursos Hídricos, 2023. |
40. | Evangelista, J., R. Woods, and P. Claps, Dimensional analysis of literature formulas to estimate the characteristic flood response time in ungauged basins: a velocity-based approach, Journal of Hydrology, 130409, doi:10.1016/j.jhydrol.2023.130409, 2023. |
41. | Nagy, E. D., Sebesség alapú számítási módszer adaptálása hazai kisvízgyűjtőkön, Hidrológiai Közlöny, 103(4), 16-24, doi:10.59258/hk.13170, 2023. |
42. | Macdonald, E., B. Merz, B. Guse, V. D. Nguyen, X. Guan, and S. Vorogushyn, What controls the tail behaviour of flood series: Rainfall or runoff generation?, Hydrology and Earth System Sciences, 28, 833–850, doi:10.5194/hess-28-833-2024, 2024. |
43. | Nam, S., H. Lim, B. Choi, Q. Li, H. Moon, and H. T. Choi, Characteristics and estimation of the time of concentration for small forested catchments in steep mountainous terrain, Forests, 15(1), 186, doi:10.3390/f15010186, 2024. |
44. | Pramana, Y. H., and D. Harisuseno, Time of concentration estimated of overland flow, IOP Conference Series: Earth and Environmental Science, 1311, 012004, doi:10.1088/1755-1315/1311/1/012004, 2024. |
45. | Peramuna, P. D. P. O., N. G. P. B. Neluwala, K. K. Wijesundara, S. Venkatesan, S. De Silva, and P. B. R. Dissanayake, Novel approach to the derivation of dam breach parameters in 2D hydrodynamic modeling of earthquake induced dam failures, Science of The Total Environment, 927, 171505, doi:10.1016/j.scitotenv.2024.171505, 2024. |
46. | Costabile, P., G. Barbero, E. D. Nagy, K. Négyesi, G. Petaccia, and C. Costanzo, Predictive capabilities, robustness and limitations of two event-based approaches for lag time estimation in heterogeneous watersheds, Journal of Hydrology, 131814, doi:10.1016/j.jhydrol.2024.131814, 2024. |
47. | Bolduc, S., A. Mailhot, and G. Talbot, Estimation of the time of concentration of small watersheds located in northeastern North America, Hydrological Sciences Journal, doi:10.1080/02626667.2024.2387155, 2024. |
48. | Kaless, G., H. Malnero, O. Frumento, and M. Pascual, Rainfall and hydrograph styles in ephemeral streams of the drylands of Patagonia (South America–Argentina), Water Resources Research, 60(8), e2024WR037601, doi:10.1029/2024WR037601, 2024. |
49. | #Négyesi, K., E. D. Nagy, G. Barbero, G. Petaccia, C. Costanzo, and P. Costabile, Lag time predictions using characteristic times deduced by the 2D shallow water equations at basin-scale, River Flow 2022, A. M. F. da Silva, C. Rennie, S. Gaskin, J. Lacey, and B. MacVicar (editors), Chapter 8, CRC Press, 2024. |
50. | Papasarafianou, S., I. Siarkos, A. Gkaifyllia, S. Sahtouris, G. Varra, A. Chatzipavlis, T. Hasiotis, and O. Tzoraki, A holistic approach for coastal–watershed management on tourist islands: A case study from Petra–Molyvos coast, Lesvos island (Greece), Geosciences, 14(12), 326, doi:10.3390/geosciences14120326, 2024. |
E. Savvidou, A. Efstratiadis, A. D. Koussis, A. Koukouvinos, and D. Skarlatos, The curve number concept as a driver for delineating hydrological response units, Water, 10 (2), 194, doi:10.3390/w10020194, 2018.
In this paper, a new methodology for delineating Hydrological Response Units (HRUs), based on the Curve Number (CN) concept, is presented. Initially, a semi-automatic procedure in a GIS environment is used to produce basin maps of distributed CN values as the product of the three classified layers, soil permeability, land use/land cover characteristics and drainage capacity. The map of CN values is used in the context of model parameterization, in order to identify the essential number and spatial extent of HRUs and, consequently, the number of control variables of the calibration problem. The new approach aims at reducing the subjectivity introduced by the definition of HRUs and providing parsimonious modelling schemes. In particular, the CN-based parameterization (1) allows the user to assign as many parameters as can be supported by the available hydrological information, (2) associates the model parameters with anticipated basin responses, as quantified in terms of CN classes across HRUs, and (3) reduces the effort for model calibration, simultaneously ensuring good predictive capacity. The advantages of the proposed approach are demonstrated in the hydrological simulation of the Nedontas River Basin, Greece, where parameterizations of different complexities are employed in a recently improved version of the HYDROGEIOS model. A modelling experiment with a varying number of HRUs, where the parameter estimation problem was handled through automatic optimization, showed that the parameterization with three HRUs, i.e., equal to the number of flow records, ensured the optimal performance. Similarly, tests with alternative HRU configurations confirmed that the optimal scores, both in calibration and validation, were achieved by the CN-based approach, also resulting in parameters values across the HRUs that were in agreement with their physical interpretation.
Full text:
See also: http://www.mdpi.com/2073-4441/10/2/194
Other works that reference this work (this list might be obsolete):
1. | Aqnouy, M., J. E. S. El Messari, H. Ismail, A. Bouadila, J. G. M. Navarro, B. Loubna, and M. R. A. Mansour, Assessment of the SWAT model and the parameters affecting the flow simulation in the watershed of Oued Laou (Northern Morocco), Journal of Ecological Engineering, 20(4), 104-113, doi:10.12911/22998993/102794, 2019. |
2. | Day, C., and G. Seay, Watershed surface characteristics and storm distribution impacts on low-order urban stream hydrology response, The Geographical Bulletin – Gamma Theta Upsilon, 60(2), 95-107, 2019. |
3. | Rozos, E., A methodology for simple and fast streamflow modelling, Hydrological Sciences Journal, 65(7), 1084-1095, doi:10.1080/02626667.2020.1728475, 2020. |
4. | Pobletei, D., J Arévaloi, O. Nicolis, and F. Figueroa, Optimization of the Hydrologic Response Units (HRU) using gridded meteorological data and spatially varying parameters, Earth and Space Science Open Archive, doi:10.1002/essoar.10502299.1, 2020. |
5. | Weber, M., M. Feigl, K. Schulz, and M. Bernhardt, On the ability of LIDAR snow depth measurements to determine or evaluate the HRU discretization in a land surface model, Hydrology, 7(2), 20, doi:10.3390/hydrology7020020, 2020. |
6. | Στεφανίδης, Σ. Ντάφης, και Χ. Γιάνναρος, Υδρολογική απόκριση της λεκάνης απορροής του χειμάρρου «Μπασδέκη» Ολυμπιάδας στην καταιγίδα της 25ης Νοεμβρίου 2019, Υδροτεχνικά (2019-2020), 29, 13-26, 2020. |
7. | Soulis, K. X., E. Psomiadis, P. Londra, and D. Skuras, A new model-based approach for the evaluation of the net contribution of the European Union rural development program to the reduction of water abstractions in agriculture, Sustainability, 12(17), 7137, doi:10.3390/su12177137, 2020. |
8. | Harisuseno, D., M. Bisri, and T.S. Haji, Inundation controlling practice in urban area: Case study in residential area of Malang, Indonesia, Journal of Water and Land Development, 46(VII–IX), 112–120, doi:10.24425/jwld.2020.134203, 2020. |
9. | Nagel, G. W., F. Da Silva Terra, J. S. De Oliveira, I. Horák-Terra, and S. Beskow, Cálculo da curva número para bacia hidrográfica urbana utilizando diferentes abordagens de classificação para imagem orbital RapidEye: estudo de caso para o arroio Pepino (Pelotas, RS), Pesquisas em Geociências, 47(2), doi:10.22456/1807-9806.108583, 2020. |
10. | Poblete, D., J. Arevalo, O. Nicolis, O., and F. Figueroa, Optimization of Hydrologic Response Units (HRUs) using gridded meteorological data and spatially varying parameters, Water, 12(12), 3558, doi:10.3390/w12123558, 2020. |
11. | Ramadan, A. N. A., D. Nurmayadi, A. Sadili, R. R. Solihin, and Z. Sumardi, Pataruman watershed Curve Number determination study based on Indonesia land map unit, Media Komunikasi Teknik Sipil, 26(2), 258-266, doi:10.14710/mkts.v26i2.26563, 2020. |
12. | Athira, P., and K. P. Sudheer, Calibration of distributed hydrological models considering the heterogeneity of the parameters across the basin: a case study of SWAT model, Environmental Earth Sciences, 80, 131, doi:10.1007/s12665-021-09434-8, 2021. |
13. | Assaye, H., J. Nyssen, J. Poesen, H. Lemma, D. T. Meshesha, A. Wassie, E. Adgo, and A. Frank, Curve number calibration for measuring impacts of land management in sub-humid Ethiopia, Journal of Hydrology: Regional Studies, 35, 100819, doi:10.1016/j.ejrh.2021.100819, 2021. |
14. | Gunn, K. M., A. R. Buda, H. E. Gall, R. Cibin, C. D. Kennedy, and T. L. Veith, Integrating daily CO2 concentrations in SWAT-VSA to examine climate change impacts on hydrology in a karst watershed, Transactions of the ASABE, 64(4), 1303-1318, doi:10.13031/trans.13711, 2021. |
15. | #Soulis, K., Hydrological data sources and analysis for the determination of environmental water requirements in mountainous areas, Environmental Water Requirements in Mountainous Areas, E. Dimitriou and C. Papadaki (editors), Chapter 2, 51-98, Elsevier, doi: 10.1016/B978-0-12-819342-6.00007-5, 2021. |
16. | #Muñoz-Mas, R., and P. Vezza, Quantification of environmental water requirements; how far can we go?, Environmental Water Requirements in Mountainous Areas, E. Dimitriou and C. Papadaki (editors), Chapter 6, 235-280, Elsevier, doi:10.1016/B978-0-12-819342-6.00001-4, 2021. |
17. | Azizah, C., H. Pawitan, B. D. Dasanto, I. Ridwansyah, and M. Taufik, Risk assessment of flash flood potential in the humid tropics Indonesia: a case study in Tamiang River basin, International Journal of Hydrology Science and Technology, 13(1), 57-73, 2022. |
18. | Anurogo, W., K. Pratiwi, M. Z. Lubis, M. K. Mufida, L. R. Sari, and S. N. Chayati, Analysis on the change of runoff curve number influence to surface flow debit using ALOS AVNIR-2 data imagery, Jurnal Pendidikan Geografi: Kajian, Teori, dan Praktek dalam Bidang Pendidikan dan Ilmu Geografi, 27(1), 15-25, doi:10.17977/um017v27i12022p15-25, 2022. |
19. | Lee, H., J.-Y. Park, and Y. S. Park, Developing and applying a QGIS-based model that accounts for nonpoint source pollution due to domestic animals, Water, 14(17), 2742, doi:10.3390/w14172742, 2022. |
20. | Gavhane, K. P., A. K. Mishra, A. Sarangi, D. K. Singh, and S. Sudhishri, Estimation of surface runoff potential of an ungauged watershed in semi-arid region using geospatial techniques, Arabian Journal of Geosciences, 16, 402, doi:10.1007/s12517-023-11497-9, 2023. |
21. | Hendrayantoa, W., and Y. Suharnoto, Simulation of the impact of land use change on surface run-off in karst Leang Lonrong sub-watershed, Journal of Natural Resources and Environmental Management, 13(2), 313-326, doi:10.29244/jpsl.13.2.313-326, 2023. |
22. | Patel, A., and S. M. Yadav, Development of flood forecasting and warning system using hybrid approach of ensemble and hydrological model for Dharoi Dam, Water Practice and Technology, 18(11), 2862-2883, doi:10.2166/wpt.2023.178, 2023. |
23. | Bitew, M. M., and H. H. Kebede, Effect of land use land cover change on stream flow in Azuari watershed of the Upper Blue Nile Basin, Ethiopia, Sustainable Water Resources Management, 10, 112, doi:10.1007/s40899-024-01084-5, 2024. |
24. | Stefanidis, S., N. Proutsos, V. Alexandridis, and G. Mallinis, Ecosystem services supply from peri-urban watersheds in Greece: Soil conservation and water retention, Land, 13(6), 765, doi:10.3390/land13060765, 2024. |
25. | Muchtar, A., W. Wahyullah, H. Herawaty, U. Arsyad, and A. F. Fathurrahman, Estimasi limpasan permukaan dengan menggunakan metode CN modifikasi di sub DAS mamasa, Jurnal Ilmu Lingkungan, 22(4), 1001-1008, doi:10.14710/jil.22.4.1001-1008, 2024. |
26. | #Chrysafis, I., K. Vatitsi, I. P. Kokkoris, P. Dimopoulos, T. Roustanis, E. Chalkidou, and G. Mallinis, Mapping ecosystem services trade-offs and synergies at Natura 2000 sites: a case study from Greece, Proceedings of Tenth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2024), A. Christofe, S. Michaelides, D. Hadjimitsis, C. Danezis, K. Themistocleous, N. Kyriakides, and G. Schreier (editors), Vol. 13212, 1321213, doi:10.1117/12.3037295, 2024. |
27. | Kumar, G. P., K. S. Sreejith, and G. S. Dwarakish, The influence of land use and land cover transitions on hydrology in a tropical river basin of Southwest India, Water Conservation Science and Engineering, 9, 64, doi:10.1007/s41101-024-00301-8, 2024. |
28. | Sreejith, K. S., G. P. Kumar, and G. S. Dwarakish, A critical review of the Soil Conservation Services – Curve Number method in hydrological modelling, Wetlands, 44, 117, doi:10.1007/s13157-024-01873-w, 2024. |
I. Tsoukalas, A. Efstratiadis, and C. Makropoulos, Stochastic periodic autoregressive to anything (SPARTA): Modelling and simulation of cyclostationary processes with arbitrary marginal distributions, Water Resources Research, 54 (1), 161–185, WRCR23047, doi:10.1002/2017WR021394, 2018.
Stochastic models in hydrology traditionally aim at reproducing the empirically derived statistical characteristics of the observed data rather than any specific distribution model that attempts to describe the usually non-Gaussian statistical behavior of the associated processes. SPARTA (Stochastic Periodic AutoRegressive To Anything) offers an alternative and novel approach which allows the explicit representation of each process of interest with any distribution model, while simultaneously establishes dependence patterns that cannot be fully captured by the typical linear stochastic schemes. Cornerstone of the proposed approach is the Nataf joint-distribution model, which is related with the Gaussian copula, combined with Gaussian periodic autoregressive processes. In order to obtain the target stochastic structure, we have also developed a computationally simple and efficient algorithm, based on a hybrid Monte-Carlo procedure that is used to approximate the required equivalent correlation coefficients. Theoretical and practical benefits of the proposed method, contrasted to outcomes from widely used stochastic models, are demonstrated by means of real-world as well as hypothetical monthly simulation examples involving both univariate and multivariate time series.
Additional material:
Other works that reference this work (this list might be obsolete):
1. | Papalexiou, S. M., Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency, Advances in Water Resources, 115, 234-252, doi:10.1016/j.advwatres.2018.02.013, 2018. |
2. | Brunner, M. I., A. Bárdossy, and R. Furrer, Technical note: Stochastic simulation of streamflow time series using phase randomization, Hydrology and Earth System Sciences, 23, 3175-3187, doi:10.5194/hess-23-3175-2019, 2019. |
3. | Marković, D., S. Ilić, D. Pavlović, J. Plavšić, and N. Ilich, Multivariate and multi-scale generator based on non-parametric stochastic algorithms, Journal of Hydroinformatics, 21(6), 1102-1117, doi:10.2166/hydro.2019.071, 2019. |
4. | #Elsayed, H., S. Djordjević, and D. Savić, The Nile water, food and energy nexus – A system dynamics model, 7th International Computing & Control for the Water Industry Conference, Exeter, United Kingdom, 2019. |
5. | Nazemi, A., M. Zaerpour, and E. Hassanzadeh, Uncertainty in bottom-up vulnerability assessments of water supply systems due to regional streamflow generation under changing conditions, Journal of Water Resources Planning and Management, 146(2), doi:10.1061/(ASCE)WR.1943-5452.0001149, 2020. |
6. | Barber, C., J. R. Lamontagne, and R. M. Vogel, Improved estimators of correlation and R2 for skewed hydrologic data, Hydrological Sciences Journal, 65(1), 87-101, doi:10.1080/02626667.2019.1686639, 2020. |
7. | Dutta, R., and R. Maity, Temporal networks based approach for non‐stationary hydroclimatic modelling and its demonstration with streamflow prediction, Water Resources Research, 56(8), e2020WR027086, doi:10.1029/2020WR027086, 2020. |
8. | Demetriou, E., G. Mallouppas, and C.Hadjistassou, Embracing carbon neutral electricity and transportation sectors in Cyprus, Energy, 229, 120625, doi:10.1016/j.energy.2021.120625, 2021. |
9. | Pouliasis, G., G. A. Torres-Alves, and O. Morales-Napoles, Stochastic modeling of hydroclimatic processes using vine copulas, Water, 13(16), 2156, doi:10.3390/w13162156, 2021. |
10. | Zang, N., J. Zhu, X. Wang, Y. Liao, G. Cao, C. Li, Q. Liu, and Z. Yang, Eutrophication risk assessment considering joint effects of water quality and water quantity for a receiving reservoir in the South-to-North Water Transfer Project, China, Journal of Cleaner Production, 331, 129966, doi:10.1016/j.jclepro.2021.129966, 2021. |
11. | Vanem, E., Analysing multivariate extreme conditions using environmental contours and accounting for serial dependence, Renewable Energy, 202, 470-482, doi:10.1016/j.renene.2022.11.033, 2023. |
12. | Chadwick, C., F. Babonneau, T. Homem-de-Mello, and A. Letelier, Synthetic simulation of spatially-correlated streamflows: Weighted-modified Fractional Gaussian Noise, Water Resources Research, 60(2), e2023WR035371, doi:10.1029/2023WR035371, 2024. |
N. Malamos, I. L. Tsirogiannis, A. Tegos, A. Efstratiadis, and D. Koutsoyiannis, Spatial interpolation of potential evapotranspiration for precision irrigation purposes, European Water, 59, 303–309, 2017.
Precision irrigation constitutes a breakthrough for agricultural water management since it provides means to optimal water use. In recent years several applications of precision irrigation are implemented based on spatial data from different origins, i.e. meteorological stations networks, remote sensing data and in situ measurements. One of the factors affecting optimal irrigation system design and management is the daily potential evapotranspiration (PET). A commonly used approach is to estimate the daily PET for the representative day of each month during the irrigation period. In the present study, the implementation of the recently introduced non-parametric bilinear surface smoothing (BSS) methodology for spatial interpolation of daily PET is presented. The study area was the plain of Arta which is located at the Region of Epirus at the North West Greece. Daily PET was estimated according to the FAO Penman-Monteith methodology with data collected from a network of six agrometeorological stations, installed in early 2015 in selected locations throughout the study area. For exploration purposes, we produced PET maps for the Julian dates: 105, 135, 162, 199, 229 and 259, thus covering the entire irrigation period of 2015. Also, comparison and cross validation against the calculated FAO Penman-Monteith PET for each station, were performed between BSS and a commonly used interpolation method, i.e. inverse distance weighted (IDW). During the leave-one-out cross validation procedure, BSS yielded very good results, outperforming IDW. Given the simplicity of the BSS, its overall performance is satisfactory, providing maps that represent the spatial and temporal variation of daily PET.
Full text: http://www.itia.ntua.gr/en/getfile/1776/1/documents/EW_2017_59_41_2HOxTxv.pdf (4259 KB)
See also: http://ewra.net/ew/pdf/EW_2017_59_41.pdf
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | Ndiaye, P. M., A. Bodian, L. Diop, A. Deme, A. Dezetter, K. Djaman, and A. Ogilvie, Trend and sensitivity analysis of reference evapotranspiration in the Senegal river basin using NASA meteorological data, Water, 12(7), 1957, doi:10.3390/w12071957, 2020. |
2. | Ndiaye, P. M., A. Bodian, L. Diop, A. Dezetter, E. Guilpart, A. Deme, and A. Ogilvie, Future trend and sensitivity analysis of evapotranspiration in the Senegal River Basin, Journal of Hydrology: Regional Studies, 35, 100820, doi:10.1016/j.ejrh.2021.100820, 2021. |
3. | Dimitriadou S., and K. G. Nikolakopoulos, Reference evapotranspiration (ETo) methods implemented as ArcMap models with remote-sensed and ground-based inputs, examined along with MODIS ET, for Peloponnese, Greece, ISPRS International Journal of Geo-Information, 10(6), 390, doi:10.3390/ijgi10060390, 2021. |
4. | #Dimitriadou, S., and K. G. Nikolakopoulos, Development of GIS models via optical programming and python scripts to implement four empirical methods of reference and actual evapotranspiration (ETo, ETa) incorporating MODIS LST inputs, Proc. SPIE 11856, Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIII, 118560K, doi:10.1117/12.2597724, 2021. |
5. | Dimitriadou, S., and K. G. Nikolakopoulos, Evapotranspiration trends and interactions in light of the anthropogenic footprint and the climate crisis: A review, Hydrology, 8(4), 163, doi:10.3390/hydrology8040163, 2021. |
6. | Dimitriadou, S., and K. G. Nikolakopoulos, Artificial neural networks for the prediction of the reference evapotranspiration of the Peloponnese Peninsula, Greece, Water, 14(13), 2027, doi:10.3390/w14132027, 2022. |
7. | Fotia, K., G. Nanos, N. Malamos, M. Giannelos, P. Mpeza, and I. Tsirogiannis, Water footprint and performance assessment of a table olive cultivar (Olea europaea L. “Konservolea”) under various irrigation strategies, Acta Horticulturae, 1373, 57-64, doi:10.17660/ActaHortic.2023.1373.9, 2023. |
8. | Kaplan, C. H., M. Büyükyıldız, and C. Köyceğiz, Comparison of interpolation methods in the spatial distribution of monthly precipitation data in Konya closed basin, Konya Journal of Engineering Sciences, 12(4), 920-940, doi:10.36306/konjes.1537038, 2024. |
K. Risva, D. Nikolopoulos, A. Efstratiadis, and I. Nalbantis, A simple model for low flow forecasting in Mediterranean streams, European Water, 57, 337–343, 2017.
Low flows commonly occur in rivers during dry seasons within each year. They often concur with increased water demand which creates numerous water resources management problems. This paper seeks for simple yet efficient tools for low-flow forecasting, which are easy to implement, based on the adoption of an exponential decay model for the flow recession curve. A statistical attribute of flows preceding the start of the dry period is used as the starting flow. On the other hand, the decay rate (recession parameter) is assumed as a linear function of the starting flow. The two parameters of that function are time-invariant, and they are optimized over a reference time series representing the low flow component of the observed hydrographs. The methodology is tested in the basins of Achelous, Greece, Xeros and Peristerona, Cyprus, and Salso, Italy. Raw data are filtered by signal processing techniques which remove the effect of flood events occurring in dry periods, thus allow-ing the preservation of the decaying form of the flow recession curve. Results indicate that satisfac-tory low flow forecasts are possible for Mediterranean basins of different hydrological behaviour.
Remarks:
Conference paper published in Special Issue of European Water: "10th Word Congress on Water Resources and Environment".
Full text: http://www.itia.ntua.gr/en/getfile/1753/1/documents/EW_2017_57_47.pdf (859 KB)
A. Tegos, N. Malamos, A. Efstratiadis, I. Tsoukalas, A. Karanasios, and D. Koutsoyiannis, Parametric modelling of potential evapotranspiration: a global survey, Water, 9 (10), 795, doi:10.3390/w9100795, 2017.
We present and validate a global parametric model of potential evapotranspiration (PET) with two parameters which are estimated through calibration, using as explanatory variables temperature and extraterrestrial radiation. The model and the parameters estimation approach were tested over the globe, using the FAO CLIMWAT database that provides monthly averaged values of meteorological inputs at 4300 locations worldwide. A preliminary analysis of these data allowed explaining the major drivers of PET over the globe and across seasons. Next, we developed an automatic optimization software tool to calibrate the model and provide point PET estimations against the given Penman-Monteith values. We also employed extended analysis of model inputs and outputs, including the production of global maps of optimized model parameters and associated performance metrics. Also, we employed interpolated values of the optimized parameters to validate the predictive capacity of our model against monthly meteorological time series, at several stations worldwide. The results were very encouraging, since even with the use of abstract climatic information for model calibration and the use of interpolated parameters as local predictors, the model generally ensures reliable PET estimations. In few cases the model performs poorly in estimating the reference PET, due to irregular interactions between temperature and extraterrestrial radiation, as well as because the associated processes are influenced by additional drivers, e.g. relative humidity and wind speed. However, the analysis of the residuals showed that the model is consistent in terms of parameters estimation and model validation. The provided parameters maps allow the direct use of the parametric model wherever in the world, providing PET estimates in case of missing data, that can be further improved even with a short term acquisition of meteorological data.
Full text: http://www.itia.ntua.gr/en/getfile/1738/2/documents/water-09-00795.pdf (6428 KB)
Additional material:
See also: http://www.mdpi.com/2073-4441/9/10/795
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | Elferchichi, A., G. A. Giorgio, N. Lamaddalena, M. Ragosta, and V. Telesca, Variability of temperature and its impact on reference evapotranspiration: the test case of the Apulia region (Southern Italy), Sustainability, 9(12), 2337, doi:10.3390/su9122337, 2017. |
2. | Li, M., R. Chu, S. Shen, and A. R. T. Islam, Quantifying climatic impact on reference evapotranspiration trends in the Huai River Basin of Eastern China, Water, 10(2), 144, doi:10.3390/w10020144, 2018. |
3. | Yan, N., F. Tian, B. Wu, W. Zhu, and M. Yu, Spatiotemporal analysis of actual evapotranspiration and its causes in the Hai basin, Remote Sensing, 10(2), 332; doi:10.3390/rs10020332, 2018. |
4. | Li, M., R. Chu, A.R.M.T. Islam, and S. Shen, Reference evapotranspiration variation analysis and its approaches evaluation of 13 empirical models in sub-humid and humid regions: A case study of the Huai River Basin, Eastern China, Water, 10(4), 493, doi:10.3390/w10040493, 2018. |
5. | Hao, X., S. Zhang, W. Li, W. Duan, G. Fang, Y. Zhang , and B. Guo, The uncertainty of Penman-Monteith method and the energy balance closure problem, Journal of Geophysical Research – Atmospheres, 123(14), 7433-7443, doi:10.1029/2018JD028371, 2018. |
6. | Giménez, P. O., and S. G. García-Galiano, Assessing Regional Climate Models (RCMs) ensemble-driven reference evapotranspiration over Spain, Water, 10(9), 1181, doi:10.3390/w10091181, 2018. |
7. | Storm, M. E., R. Gouws, and L. J. Grobler, Novel measurement and verification of irrigation pumping energy conservation under incentive-based programmes, Journal of Energy in Southern Africa, 29(3), 10–21, doi:10.17159/2413-3051/2018/v29i3a3058, 2018. |
8. | Tam, B. Y., K. Szeto, B. Bonsal, G. Flato, A. J. Cannon, and R. Rong, CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index, Canadian Water Resources Journal, 44(1), 90-107, doi:10.1080/07011784.2018.1537812, 2019. |
9. | Dalezios, N. R., N. Dercas, A. Blanta, and I. N. Faraslis, Remote sensing in water balance modelling for evapotranspiration at a rural watershed in Central Greece, International Journal of Sustainable Agricultural Management and Informatics, 4(3-4), 306-337, doi:10.1504/IJSAMI.2018.099219, 2019. |
10. | Gan, G., Y. Liu, X. Pan, X. Zhao, M. Li, and S. Wang, Testing the symmetric assumption of complementary relationship: A comparison between the linear and nonlinear advection-aridity models in a large ephemeral lake, Water, 11(8), 1574, doi:10.3390/w11081574, 2019. |
11. | Zhang, T., Y. Chen, and K. Tha Paw U, Quantifying the impact of climate variables on reference evapotranspiration in Pearl River Basin, China, Hydrological Sciences Journal, 64(16), 1944-1956, doi:10.1080/02626667.2019.1662021, 2019. |
12. | Hua, D., X. Hao, Y. Zhang, and J. Qin, Uncertainty assessment of potential evapotranspiration in arid areas, as estimated by the Penman-Monteith method, Journal of Arid Land, 12, 166–180, doi:10.1007/s40333-020-0093-7, 2020. |
13. | Shirmohammadi-Aliakbarkhani, Z., and S. F. Saberali, Evaluating of eight evapotranspiration estimation methods in arid regions of Iran, Agricultural Water Management, 239, 106243, doi:10.1016/j.agwat.2020.106243, 2020. |
14. | Kim, C.-G., J. Lee, J. E. Lee, and H. Kim, Evaluation of improvement effect on the spatial-temporal correction of several reference evapotranspiration methods, Journal of Korea Water Resources Association, 53(9), 701-715, doi:10.3741/JKWRA.2020.53.9.701, 2020. |
15. | Gui, Y., Q. Wang, Y. Zhao, Y. Dong, H. Li, S. Jiang, X. He, and K. Liu, Attribution analyses of reference evapotranspiration changes in China incorporating surface resistance change response to elevated CO2, Journal of Hydrology, 599, 126387, doi:10.1016/j.jhydrol.2021.126387, 2021. |
16. | Mohanasundaram, S., M. M. Mekonnen, E. Haacker, C. Ray, S. Lim, and S. Shrestha, An application of GRACE mission datasets for streamflow and baseflow estimation in the Conterminous United States basins, Journal of Hydrology, 601, 126622, doi:10.1016/j.jhydrol.2021.126622, 2021. |
17. | Gentilucci, M., M. Bufalini, M. Materazzi, M. Barbieri, D. Aringoli, P. Farabollini, and G. Pambianchi, Calculation of potential evapotranspiration and calibration of the Hargreaves equation using geostatistical methods over the last 10 years in Central Italy, Geosciences, 11(8), 348, doi:10.3390/geosciences11080348, 2021. |
18. | Dos Santos, A. A., J. L. M. de Souza, and S. L. K. Rosa, Evapotranspiration with the Moretti-Jerszurki-Silva model for the Brazilian subtropical climate, Hydrological Sciences Journal, 66(16), 2267-2279, doi:10.1080/02626667.2021.1988610, 2021. |
19. | Stefanidis, S., and V. Alexandridis, Precipitation and potential evapotranspiration temporal variability and their relationship in two forest ecosystems in Greece, Hydrology, 8(4), 160, doi:10.3390/hydrology8040160, 2021. |
20. | Chu, R.-H., M. Li, X.-S. Sha, F. Ni, P.-F. Xie, Y.-I. Jiang, and S.-H. Shen, Applicability evaluation of 13 typical reference crop evapotranspiration estimation models in Anhui Province, Water Saving Irrigation, 9, 61-70, 2021. |
21. | Kim, C.-G., J. Lee, J. E. Lee, and H. Kim, Long-term forecasting reference evapotranspiration using statistically predicted temperature information, Journal of Korea Water Resources Association, 54(12), 1243-1254, doi:10.3741/JKWRA.2021.54.12.1243, 2021. |
22. | Zhao, Z., M. Zhou, L. Zhang, S. Gu, and J. Li, Calculating daily reference evapotranspiration in Erhai irrigated district with the evaporation paradox in consideration, Journal of Irrigation and Drainage, 40(2), 125-135, doi:10.13522/j.cnki.ggps.2020306, 2021. |
23. | Saggi, M. K., and S. A. Jain, Survey towards decision support system on smart irrigation scheduling using machine learning approaches, Archives of Computational Methods in Engineering, 29, 4455-4478, doi:10.1007/s11831-022-09746-3, 2022. |
24. | Urban, G., L. Kuchar, M. Kępińska-Kasprzak, and E. Z. Łaszyca, A climatic water balance variability during the growing season in Poland in the context of modern climate change, Meteorologische Zeitschrift, 31(5), 349-365, doi:10.1127/metz/2022/1128, 2022. |
25. | Hajek, O. L., and A. K. Knapp, Shifting seasonal patterns of water availability: ecosystem responses to an unappreciated dimension of climate change, New Phytologist, 233(1), 119-125, doi:10.1111/nph.17728, 2022. |
26. | Al-Asadi, K., A. A. Abbas, A. S. Dawood, and J. G. Duan, Calibration and modification of the Hargreaves–Samani equation for estimating daily reference evapotranspiration in Iraq, Journal of Hydrologic Engineering, 28(5), doi:10.1061/JHYEFF.HEENG-5877, 2023. |
27. | Islam, S., and A. K. M. R. Alam, Quantifying spatiotemporal variation of reference evapotranspiration and its contributing climatic factors in Bangladesh during 1981–2018, Russian Meteorology and Hydrology, 48(3), 253-266, doi:10.3103/S1068373923030081, 2023. |
28. | Stefanidis, S., A. Tegos, and V. Alexandridis, How has aridity changed at a fir (Abies Borisii-Regis) forest site in Central Greece during the past six decades? Environmental Sciences Proceedings, 26(1), 121, doi:10.3390/environsciproc2023026121, 2023. |
29. | Maas, E. D.v.L., and R. A. Lal, A case study of the RothC soil carbon model with potential evapotranspiration and remote sensing model inputs, Remote Sensing Applications: Society and Environment, 29, 100876, doi:10.1016/j.rsase.2022.100876, 2023. |
30. | Ruiz-Ortega, F. J., E. Clemente, A. Martínez-Rebollar, and J. J. Flores-Prieto, An evolutionary parsimonious approach to estimate daily reference evapotranspiration, Scientific Reports, 14, 6736, doi:10.1038/s41598-024-56770-3, 2024. |
31. | Tegos, A., A Monte Carlo model for WWTP effluent flow treatment through enhanced willow evapotranspiration, Hydrology, 11(9), 134, doi:10.3390/hydrology11090134, 2024. |
32. | Cutting, N. G., S. Kaur, M. C. Singh, N. Sharma, and A. Mishra, Estimating crop evapotranspiration in data-scare regions: a comparative analysis of eddy covariance, empirical and remote-sensing approaches, Water Conservation Science and Engineering, 9, 65, doi:10.1007/s41101-024-00299-z, 2024. |
33. | Hanselmann, N., M. Osuch, T. Wawrzyniak, and A. B. Alphonse, Evaluating potential evapotranspiration methods in a rapidly warming Arctic region, SW Spitsbergen (1983–2023), Journal of Hydrology: Regional Studies, 56, 101979, doi:10.1016/j.ejrh.2024.101979, 2024. |
K. Papoulakos, G. Pollakis, Y. Moustakis, A. Markopoulos, T. Iliopoulou, P. Dimitriadis, D. Koutsoyiannis, and A. Efstratiadis, Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability, Energy Procedia, 125, 405–414, doi:10.1016/j.egypro.2017.08.078, 2017.
We present a stochastic approach accounting for input uncertainties within water-energy simulations. The stochastic paradigm, which allows for quantifying the inherent uncertainty of hydrometeorological processes, becomes even more crucial in case of missing or inadequate information. Our scheme uses simplified conceptual models which are subject to significant uncertainties, to generate the inputs of the overall simulation problem. The methodology is tested in a hypothetical hybrid renewable energy system across the small Aegean island of Astypalaia, comprising a pumped-storage reservoir serving multiple water uses, where both inflows and demands are regarded as random variables as result of stochastic inputs and parameters.
Related works:
Full text: http://www.itia.ntua.gr/en/getfile/1732/1/documents/energy_proc_paper.pdf (2324 KB)
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | Pouliasis, G., G. A. Torres-Alves, and O. Morales-Napoles, Stochastic modeling of hydroclimatic processes using vine copulas, Water, 13(16), 2156, doi:10.3390/w13162156, 2021. |
2. | Louloudis, G., E. Louloudis, C. Roumpos, E. Mertiri, G. Kasfikis, and K. Chatzopoulos, Forecasting development of mine pit lake water surface levels based on time series analysis and neural networks, Mine Water and the Environment, 41, 458–474, doi:10.1007/s10230-021-00844-5, 2022. |
P. Dimitriadis, A. Tegos, A. Oikonomou, V. Pagana, A. Koukouvinos, N. Mamassis, D. Koutsoyiannis, and A. Efstratiadis, Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping, Journal of Hydrology, 534, 478–492, doi:10.1016/j.jhydrol.2016.01.020, 2016.
One-dimensional and quasi-two-dimensional hydraulic freeware models (HEC-RAS, LISFLOOD-FP and FLO-2d) are widely used for flood inundation mapping. These models are tested on a benchmark test with a mixed rectangular-triangular channel cross section. Using a Monte-Carlo approach, we employ extended sensitivity analysis by simultaneously varying the input discharge, longitudinal and lateral gradients and roughness coefficients, as well as the grid cell size. Based on statistical analysis of three output variables of interest, i.e. water depths at the inflow and outflow locations and total flood volume, we investigate the uncertainty enclosed in different model configurations and flow conditions, without the influence of errors and other assumptions on topography, channel geometry and boundary conditions. Moreover, we estimate the uncertainty associated to each input variable and we compare it to the overall one. The outcomes of the benchmark analysis are further highlighted by applying the three models to real-world flood propagation problems, in the context of two challenging case studies in Greece.
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | Apel, H., O. Martínez Trepat, N. N. Hung, D. T. Chinh, B. Merz, and N. V. Dung, Combined fluvial and pluvial urban flood hazard analysis: concept development and application to Can Tho city, Mekong Delta, Vietnam, Natural Hazards and Earth System Sciences, 16, 941-961, doi:10.5194/nhess-16-941-2016, 2016. |
2. | Papaioannou , G., A. Loukas, L. Vasiliades, and G. T. Aronica, Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach, Natural Hazards, 83, 117-132, doi:10.1007/s11069-016-2382-1, 2016. |
3. | #Santillan, J. R., A. M. Amora, M. Makinano-Santillan, J. T. Marqueso, L. C. Cutamora, J. L. Serviano, and R. M. Makinano, Assessing the impacts of flooding caused by extreme rainfall events through a combined geospatial and numerical modeling approach, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLI-B8, 2016, XXIII ISPRS Congress, Prague, doi:10.5194/isprs-archives-XLI-B8-1271-2016, 2016. |
4. | Cheviron, B. and R. Moussa, Determinants of modelling choices for 1-D free-surface flow and morphodynamics in hydrology and hydraulics: a review, Hydrology and Earth System Sciences, 20, 3799-3830, doi:10.5194/hess-20-3799-2016, 2016. |
5. | Anees, M.T., K. Abdullah, M.N.M. Nawawi, N. N. N. Ab Rahman, A. R. Mt. Piah, N. A. Zakaria, M.I. Syakir, and A.K. Mohd. Omar, Numerical modeling techniques for flood analysis, Journal of African Earth Sciences, 124, 478–486, doi:10.1016/j.jafrearsci.2016.10.001, 2016. |
6. | Skublics, D., G. Blöschl, and P. Rutschmann, Effect of river training on flood retention of the Bavarian Danube, Journal of Hydrology and Hydromechanics, 64(4), 349-356, doi:10.1515/johh-2016-0035, 2016. |
7. | Doong, D.-J., W. Lo, Z. Vojinovic, W.-L. Lee, and S.-P. Lee, Development of a new generation of flood inundation maps—A case study of the coastal City of Tainan, Taiwan, Water, 8(11), 521, doi:10.3390/w8110521, 2016. |
8. | #Cartaya, S., and R. Mantuano-Eduarte, Identificación de zonas en riesgo de inundación mediante la simulación hidráulica en un segmento del Río Pescadillo, Manabí, Ecuador, Revista de Investigación, 40(89), 158-170, 2016. |
9. | Javadnejad, F., B. Waldron, and A. Hill, LITE Flood: Simple GIS-based mapping approach for real-time redelineation of multifrequency floods, Natural Hazards Review, 18(3), doi:10.1061/(ASCE)NH.1527-6996.0000238, 2017. |
10. | Shrestha, A., M. S. Babel, S. Weesakul, and Z. Vojinovic, Developing intensity–duration–frequency (IDF) curves under climate change uncertainty: The case of Bangkok, Thailand, Water, 9(2), 145, doi:10.3390/w9020145, 2017. |
11. | Roushangar, K., M. T. Alami, V. Nourani, and A. Nouri, A cost model with several hydraulic constraints for optimizing in practice a trapezoidal cross section, Journal of Hydroinformatics, 19(3), 456-468, doi:10.2166/hydro.2017.081, 2017. |
12. | Papaioannou, G., L. Vasiliades, A. Loukas, and G. T. Aronica, Probabilistic flood inundation mapping at ungauged streams due to roughness coefficient uncertainty in hydraulic modelling, Advances in Geosciences, 44, 23-34, doi:10.5194/adgeo-44-23-2017, 2017. |
13. | Anees, M. T., K. Abdullah, M. N. M. Nawawi, N. N. N. Ab Rahman, A. R. Mt. Piah, M. I. Syakir, A. K. M. Omar, and K. Hossain, Applications of remote sensing, hydrology and geophysics for flood analysis, Indian Journal of Science and Technology, 10(17), doi:10.17485/ijst/2017/v10i17/111541, 2017. |
14. | Fuentes-Andino, D., K. Beven, S. Halldin, C.-Y. Xu, J. E. Reynolds, and G. Di Baldassarre, Reproducing an extreme flood with uncertain post-event information, Hydrology and Earth System Sciences, 21, 3597-3618, doi:10.5194/hess-21-3597-2017, 2017. |
15. | #Anees, M. T., K. Abdullah, M. N. M. Nordin, N. N. N. Ab Rahman, M. I. Syakir, and M. O. A. Kadir, One- and two-dimensional hydrological modelling and their uncertainties, Flood Risk Management, T. Hromadka and P. Rao (editors), Chapter 11, doi:10.5772/intechopen.68924, 2017. |
16. | #Papaioannou, G., A. Loukas, L. Vasiliades, and G. T. Aronica, Sensitivity analysis of a probabilistic flood inundation mapping framework for ungauged catchments, Proceedings of the 10th World Congress of EWRA “Panta Rhei”, European Water Resources Association, Athens, 2017. |
17. | Bangira, T., S. M. Alfieri , M. Menenti, A. van Niekerk, and Z. Vekerdy, A spectral unmixing method with ensemble estimation of endmembers: Application to flood mapping in the Caprivi floodplain, Remote Sensing, 9, 1013, doi:10.3390/rs9101013, 2017. |
18. | Carisi, F., A. Domeneghetti, M. G. Gaeta, and A. Castellarin, Is anthropogenic land subsidence a possible driver of riverine flood-hazard dynamics? A case study in Ravenna, Italy, Hydrological Sciences Journal, 62(15), 2440-2455, doi:10.1080/02626667.2017.1390315, 2017. |
19. | Podhoranyi, M., P. Veteska, D. Szturcova, L. Vojacek, and A. Portero, A web-based modelling and monitoring system based on coupling environmental models and hydrological-related data, Journal of Communications, 12(6), 340-346, doi:10.12720/jcm.12.6.340-346, 2017. |
20. | Bhuyian, N. M., A. Kalyanapu, and F. Hossain, Evaluating conveyance-based DEM correction technique on NED and SRTM DEMs for flood impact assessment of the 2010 Cumberland river flood, Geosciences, 7(4), 132; doi:10.3390/geosciences7040132, 2017. |
21. | Zin, W., A. Kawasaki, W. Takeuchi, Z. M. L. T. San, K. Z. Htun, T. H. Aye, and S. Win, Flood hazard assessment of Bago river basin, Myanmar, Journal of Disaster Research, 13(1), 14-21, doi:10.20965/jdr.2018.p0014, 2018. |
22. | #Siregar, R. I., Hydraulic modeling of flow impact on bridge structures: a case study on Citarum bridge, IOP Conference Series: Materials Science and Engineering, 309, 012015, doi:10.1088/1757-899X/309/1/012015, 2018. |
23. | Miranda, D., R. F. Camacho, S. Lousada, and R. A. Castanho, Hydraulic studies and their influence for regional urban planning: a practical approach to Funchal’s rivers, Revista Brasiliera de Planejamento e Desenvolvimento, 7(1), 145-164, doi:10.3895/rbpd.v7n1.7179, 2018. |
24. | Liu, W., and H. Liu, Integrating Monte Carlo and the hydrodynamic model for predicting extreme water levels in river systems, Preprints 2018, 2018030088, doi:10.20944/preprints201803.0088.v1, 2018. |
25. | #Indrawan, I., and R. I. Siregar, Analysis of flood vulnerability in urban area: a case study in Deli watershed, Journal of Physics Conference Series, 978(1), 012036, doi:10.1088/1742-6596/978/1/012036, 2018. |
26. | #Siregar, R. I., Land cover change impact on urban flood modeling (case study: Upper Citarum watershed), IOP Conference Series: Earth and Environmental Science, 126(1), 012027, doi:10.1088/1755-1315/126/1/012027, 2018. |
27. | #Ng, Z. F.., J. I. Gisen, and A. Akbari, Flood inundation modelling in the Kuantan river basin using 1D-2D flood modeller coupled with ASTER-GDEM, IOP Conference Series: Materials Science and Engineering, 318(1), 012024, doi:10.1088/1757-899X/318/1/012024, 2018. |
28. | Chang, M.-J., H.-K. Chang, Y.-C. Chen, G.-F. Lin, P.-A. Chen, J.-S. Lai, and Y.-C. Tan, A support vector machine forecasting model for typhoon flood inundation mapping and early flood warning systems, Water, 10, 1734, doi:10.3390/w10121734, 2018. |
29. | Dysarz, T., Application of Python scripting techniques for control and automation of HEC-RAS simulations, Water, 10(10):1382, doi:10.3390/w10101382, 2018. |
30. | Hdeib, R., C. Abdallah, F. Colin, L. Brocca, and R. Moussa, Constraining coupled hydrological-hydraulic flood model by past storm events and post-event measurements in data-sparse regions, Journal of Hydrology, 565, 160-175, doi:10.1016/j.jhydrol.2018.08.008, 2018. |
31. | Tan, F. J., E. J. R. Rarugal, and F. A. A. Uy, One-dimensional (1D) river analysis of a river basin in Southern Luzon Island in the Philippines using Lidar Digital Elevation Model, International Journal of Engineering & Technology, 7(3.7), 29-33, doi:10.14419/ijet.v7i3.7.16200, 2018. |
32. | Luo, P., D. Mu, H. Xue, T. Ngo-Duc, K. Dang-Dinh, K. Takara, D. Nover, and G. Schladow, Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions, Scientific Reports, 8, 12623, doi:10.1038/s41598-018-30024-5, 2018. |
33. | Indrawan, I., and R. I. Siregar, Pemodelan Penerapan Terowongan Air (Tunnel) dalam Mengatasi Banjir Akibat Luapan Sungai Deli, Jurnal Teknik Sipil, 25(2), 113-120, doi:10.5614/jts.2018.25.2.4, 2018. |
34. | Petroselli, A., M. Vojtek, and J. Vojteková, Flood mapping in small ungauged basins: A comparison of different approaches for two case studies in Slovakia, Hydrology Research, 50(1), 379-392, doi:10.2166/nh.2018.040, 2018. |
35. | Agudelo-Otálora, L. M., W. D. Moscoso-Barrera, L. A. Paipa-Galeano, and C. Mesa-Sciarrotta, Comparison of physical models and artificial intelligence for prediction of flood levels, Water Technology and Sciences, 9(4), 209-236, doi:10.24850/j-tyca-2018-04-09, 2018. |
36. | Kaya, C. M., G. Tayfur, and O. Gungor, Predicting flood plain inundation for natural channels having no upstream gauged stations, Journal of Water and Climate Change, 10(2), 360-372, doi:10.2166/wcc.2017.307, 2019. |
37. | Liu, Z., V. Merwade, and K. Jafarzadegan, Investigating the role of model structure and surface roughness in generating flood inundation extents using 1D and 2D hydraulic models, Journal of Flood Risk Management, 12(1), e12347, doi:10.1111/jfr3.12347, 2019. |
38. | Tscheikner-Gratl, F., V. Bellos, A. Schellart, A. Moreno-Rodenas, M. Muthusamy, J. Langeveld, F. Clemens, L. Benedetti, M.A. Rico-Ramirez, R. Fernandes de Carvalho, L. Breuer, J. Shucksmith, G.B.M. Heuvelink, and S. Tait, Recent insights on uncertainties present in integrated catchment water quality modelling, Water Research, 150, 368-379, doi:10.1016/j.watres.2018.11.079, 2019. |
39. | Zeleňáková, M., R. Fijko, S. Labant, E. Weiss, G. Markovič, and R. Weiss, Flood risk modelling of the Slatvinec stream in Kružlov village, Slovakia, Journal of Cleaner Production, 212, 109-118, doi:10.1016/j.jclepro.2018.12.008, 2019. |
40. | Wang, P., G. Zhang, and H. Leung, Improving super-resolution flood inundation mapping for multispectral remote sensing image by supplying more spectral information, IEEE Geoscience and Remote Sensing Letters, 16(5), 771-775, doi:10.1109/LGRS.2018.2882516, 2019. |
41. | Tehrany, M. S., S. Jones, and F. Shabani, Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques, Catena, 175, 174-192, doi:10.1016/j.catena.2018.12.011, 2019. |
42. | Škarpich, V., T. Galia, S. Ruman, and Z. Máčka, Variations in bar material grain-size and hydraulic conditions of managed and re-naturalized reaches of the gravel-bed Bečva River (Czech Republic), Science of The Total Environment, 649, 672-685, doi:10.1016/j.scitotenv.2018.08.329, 2019. |
43. | Yang, Z., K. Yang, L. Su, and H. Hu, The multi-objective operation for cascade reservoirs using MMOSFLA with emphasis on power generation and ecological benefit, Journal of Hydroinformatics, 21(2), 257-278, doi:10.2166/hydro.2019.064, 2019. |
44. | Dysarz, T., J. Wicher-Dysarz, M. Sojka, and J. Jaskuła, Analysis of extreme flow uncertainty impact on size of flood hazard zones for the Wronki gauge station in the Warta river, Acta Geophysica, 67(2), 661-676, doi:10.1007/s11600-019-00264-8, 2019. |
45. | Fleischmann, A., R. Paiva, and W. Collischonn, Can regional to continental river hydrodynamic models be locally relevant? A cross-scale comparison, Journal of Hydrology X, 3, 100027, doi:10.1016/j.hydroa.2019.100027, 2019. |
46. | Gyasi-Agyei, Y., Propagation of uncertainties in interpolated rain fields to runoff errors, Hydrological Sciences Journal, 64(5), 587-606, doi:10.1080/02626667.2019.1593989. 2019. |
47. | Langat, P. K., L. Kumar, and R. Koech, Identification of the most suitable probability distribution models for maximum, minimum, and mean streamflow, Water, 11, 734, doi:10.3390/w11040734, 2019. |
48. | Papaioannou, G., A. Loukas, and L. Vasiliades, Flood risk management methodology for lakes and adjacent areas: The lake Pamvotida paradigm, Proceedings, 7, 21, doi:10.3390/ECWS-3-05825, 2019. |
49. | Hosseini, D., M. Torabi, and M. A. Moghadam, Preference assessment of energy and momentum equations over 2D-SKM method in compound channels, Journal of Water Resource Engineering and Management, 6(1), 24-34, 2019. |
50. | Oubennaceur, K., K. Chokmani, M. Nastev, Y. Gauthier, J. Poulin, M. Tanguy, S. Raymond, and R. Lhissou, New sensitivity indices of a 2D flood inundation model using Gauss quadrature sampling, Geosciences, 9(5), 220, doi:10.3390/geosciences9050220, 2019. |
51. | Pinho, J. L. S., L. Vieira, J. M. P. Vieira, S. Venâncio, N. E. Simões, J. A. Sá Marques, and F. S. Santos, Assessing causes and associated water levels for an urban flood using hydroinformatic tools, Journal of Hydroinformatics, jh2019019, doi:10.2166/hydro.2019.019, 2019. |
52. | Saksena, S., V. Merwade, and P. J. Singhofen, Flood inundation modeling and mapping by integrating surface and subsurface hydrology with river hydrodynamics, Journal of Hydrology, 575, 1155-1177, doi:10.1016/j.jhydrol.2019.06.024, 2019. |
53. | #Fijko, R., and M., Zelenakova, Verification of the hydrodynamic model of the Slatvinec River in Kružlov, Air and Water Components of the Environment Conference Proceedings, 91-98, Cluj-Napoca, Romania, doi:10.24193/AWC2019_09, 2019. |
54. | Luppichini, M., M. Favalli, I. Isola, L. Nannipieri, R. Giannecchini, and M. Bini, Influence of topographic resolution and accuracy on hydraulic channel flow simulations: Case study of the Versilia River (Italy), Remote Sensing, 11(13), 1630, doi:10.3390/rs11131630, 2019. |
55. | Liu, Z., and V. Merwade, Separation and prioritization of uncertainty sources in a raster based flood inundation model using hierarchical Bayesian model averaging, Journal of Hydrology, 578, 124100, doi:10.1016/j.jhydrol.2019.124100, 2019. |
56. | #Huțanu, E., A. Urzică, L. E. Paveluc, C. C. Stoleriu, and A. Grozavu, The role of hydro-technical works in diminishing flooded areas. Case study: the June 1985 flood on the Miletin River, 16th International Conference on Environmental Science and Technology, Rhodes, 2019. |
57. | Chen, Y.-M., C.-H. Liu, H.-J. Shih, C.-H. Chang, W.-B. Chen, Y.-C. Yu, W.-R. Su, and L.-Y. Lin, An operational forecasting system for flash floods in mountainous areas in Taiwan, Water, 11, 2100, doi:10.3390/w11102100, 2019. |
58. | Shustikova, I., A. Domeneghetti, J. C. Neal, P. Bates, and A. Castellarin, Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography, Hydrological Sciences Journal, 64(14), 1769-1782, doi:10.1080/02626667.2019.1671982, 2019. |
59. | Papaioannou, G., G. Varlas, G. Terti, A. Papadopoulos, A. Loukas, Y. Panagopoulos, and E. Dimitriou, Flood inundation mapping at ungauged basins using coupled hydrometeorological-hydraulic modelling: The catastrophic case of the 2006 flash flood in Volos City, Greece, Water, 11, 2328, doi:10.3390/w11112328, 2019. |
60. | Liu, W.-C., and H.-M. Liu, Integrating hydrodynamic model and Monte Carlo simulation for predicting extreme water levels in a river system, Terrestrial, Atmospheric & Oceanic Sciences, 30(4), 589-604, doi:10.3319/TAO.2019.01.18.01, 2019. |
61. | Costabile, P., C. Costanzo, G. De Lorenzo, and F. Macchione, Is local flood hazard assessment in urban areas significantly influenced by the physical complexity of the hydrodynamic inundation model?, Journal of Hydrology, 580, 124231, doi:10.1016/j.jhydrol.2019.124231, 2020. |
62. | Stephens, T. A., and B. P. Bledsoe, Probabilistic mapping of flood hazards: depicting uncertainty in streamflow, land use, and geomorphic adjustment, Anthropocene, 29, 100231, doi:10.1016/j.ancene.2019.100231, 2020. |
63. | Papaioannou, G., C. Papadaki, and E. Dimitriou, Sensitivity of habitat hydraulic model outputs to DTM and computational mesh resolution, Ecohydrology, 13(2), e2182, doi:10.1002/eco.2182, 2020. |
64. | Saksena, S., S. Dey, V. Merwade, and P. J. Singhofen, A computationally efficient and physically based approach for urban flood modeling using a flexible spatiotemporal structure, Water Resources Research, 56(1), e2019WR025769, doi:10.1029/2019WR025769, 2020. |
65. | Annis, A., F. Nardi, E. Volpi, and A. Fiori, Quantifying the relative impact of hydrological and hydraulic modelling parameterizations on uncertainty of inundation maps, Hydrological Sciences Journal, 65(4), 507-523, doi:10.1080/02626667.2019.1709640, 2020. |
66. | Syafri, R. R., M. P. Hadi, and S. Suprayogi, Hydrodynamic modelling of Juwana river flooding using HEC-RAS 2D, IOP Conference Series Earth and Environmental Science, 412, 012028, doi:10.1088/1755-1315/412/1/012028, 2020. |
67. | Gergeľová, M. B., Ž. Kuzevičová, S. Labant, J. Gašinec, S. Kuzevič, J. Unucka, and P. Liptai, Evaluation of selected sub-elements of spatial data quality on 3D flood event modeling: Case study of Prešov City, Slovakia, Applied Sciences, 10(3), 820, doi:10.3390/app10030820, 2020. |
68. | Shaw, J., G. Kesserwani, and P. Pettersson, Probabilistic Godunov-type hydrodynamic modelling under multiple uncertainties: robust wavelet-based formulations, Advances in Water Resources, 137, 103526, doi:10.1016/j.advwatres.2020.103526, 2020. |
69. | Li, X., C. Huang, Y. Zhang, J. Pang, and Y. Ma, Hydrological reconstruction of extreme palaeoflood events 9000–8500 a BP in the Danjiang River Valley, tributary of the Danjiangkou Reservoir, China, Arabian Journal of Geosciences, 13, 137, doi:10.1007/s12517-020-5132-3, 2020. |
70. | Lousada, S., and L. Loures, Modelling torrential rain flows in urban territories: floods - natural channels (the case study of Madeira island), American Journal of Water Science and Engineering, 6(1), 17-30, doi:10.11648/j.ajwse.20200601.13, 2020. |
71. | Pariartha, G., A. Goonetilleke, P. Egodawatta, and H. Mirfenderesk, The prediction of flood damage in coastal urban areas, IOP Conference Series Earth and Environmental Science, 419, 012136, doi:10.1088/1755-1315/419/1/012136, 2020. |
72. | Lousada, S., Estudos hidráulicos e a sua influência no planeamento urbano regional: Aplicação prática às Ribeiras do Funchal – Portugal, Revista Americana de Empreendedorismo e Inovação, 2(2), 7-21, 2020. |
73. | Gan, B.-R., X.-G. Yang, H.-M. Liao, and J.-W. Zhou, Flood routing process and high dam interception of natural discharge from the 2018 Baige landslide-dammed lake, Water, 12(2), 605, doi:10.3390/w12020605, 2020. |
74. | Bellos, V., I. Papageorgaki, I. Kourtis, H. Vangelis, and G. Tsakiris, Reconstruction of a flash flood event using a 2D hydrodynamic model under spatial and temporal variability of storm, Natural Hazards, 101, 711-726, doi:10.1007/s11069-020-03891-3, 2020. |
75. | Yalcin, E., Assessing the impact of topography and land cover data resolutions on two-dimensional HEC-RAS hydrodynamic model simulations for urban flood hazard analysis, Natural Hazards, 101, 995-1017, doi:10.1007/s11069-020-03906-z, 2020. |
76. | Mateo-Lázaro, J., J. Castillo-Mateo, A. García-Gil, J. A. Sánchez-Navarro, V. Fuertes-Rodríguez, V. Edo-Romero, Comparative hydrodynamic analysis by using two−dimensional models and application to a new bridge, Water, 12(4), 997; doi:10.3390/w12040997, 2020. |
77. | Albu, L.-M., A. Enea, M. Iosub, and I.-G. Breabăn, Dam breach size comparison for flood simulations. A HEC-RAS based, GIS approach for Drăcșani lake, Sitna river, Romania, Water, 12(4), 1090, doi:10.3390/w12041090, 2020. |
78. | Pal, S., S. Talukdar, and R. Ghosh, Damming effect on habitat quality of riparian corridor, Ecological Indicators, 114, 106300, doi:10.1016/j.ecolind.2020.106300, 2020. |
79. | Sarchani, S. K. Seiradakis, P. Coulibaly, and I. Tsanis, Flood inundation mapping in an ungauged basin, Water, 12(6), 1532, doi:10.3390/w12061532, 2020. |
80. | Huţanu, E., A. Mihu-Pintilie, A. Urzica, L. E. Paveluc, C. C. Stoleriu, and A. Grozavu, Using 1D HEC-RAS modeling and LiDAR data to improve flood hazard maps’ accuracy: A case study from Jijia floodplain (NE Romania), Water, 12(6), 1624, doi:10.3390/w12061624, 2020. |
81. | Fleischmann, A. S., R. C. D. Paiva, W. Collischonn, V. A. Siqueira, A. Paris, D. M. Moreira, F. Papa, A. A. Bitar, M. Parrens, F. Aires, and P. A. Garambois, Trade‐offs between 1D and 2D regional river hydrodynamic models, Water Resources Research, 56(8), e2019WR026812, doi:10.1029/2019WR026812, 2020. |
82. | Gralepois, M., What can we learn from planning instruments in flood prevention? Comparative illustration to highlight the challenges of governance in Europe, Water, 12(6), 1841, doi:10.3390/w12061841, 2020. |
83. | Rampinelli, C. G., I. Knack, and T. Smith, Flood mapping uncertainty from a restoration perspective: a practical case study, Water, 12(7), 1948, doi:10.3390/w12071948, 2020. |
84. | Kalinina, A., M. Spada, D. F. Vetsch, S. Marelli, C. Whealton, P. Burgherr, and B. Sudret, Metamodeling for uncertainty quantification of a flood wave model for concrete dam breaks, Energies, 13(14), 3685, doi:10.3390/en13143685, 2020. |
85. | Kitsikoudis, V., B. P. J., Becker, Y. Huismans, P. Archambeau, S. Erpicum, M. Pirotton, and B. Dewals, Discrepancies in flood modelling approaches in transboundary river systems: Legacy of the past or well-grounded choices?, Water Resources Management, 34, 3465-3478, doi:10.1007/s11269-020-02621-5, 2020. |
86. | Piacentini, T., C. Carabella, F. Boccabella, S. Ferrante, C. Gregori, V. Mancinelli, A. Pacione, T. Pagliani, and E. Miccadei, Geomorphology-based analysis of flood critical areas in small hilly catchments for civil protection purposes and early warning systems: The case of the Feltrino stream and the Lanciano urban area (Abruzzo, Central Italy), Water, 12(8), 2228, doi:10.3390/w12082228, 2020. |
87. | Arseni, M., A. Rosu, M. Calmuc, V. A. Calmuc, C. Iticescu, and L. P. Georgescu, Development of flood risk and hazard maps for the lower course of the Siret river, Romania, Sustainability, 12(16), 6588, doi:10.3390/su12166588, 2020. |
88. | Ahmed, M. I., A. Elshorbagy, and A. Pietroniro, A novel model for storage dynamics simulation and inundation mapping in the Prairies, Environmental Modelling & Software, 133, 104850, doi:10.1016/j.envsoft.2020.104850, 2020. |
89. | Bellos, V., V. K. Tsakiris, G. Kopsiaftis, and G. Tsakiris, Propagating dam breach parametric uncertainty in a river reach using the HEC-RAS software, Hydrology, 7(4), 72, doi:10.3390/hydrology7040072, 2020. |
90. | Demir, V., and A. Ü. Keskin, Obtaining the Manning roughness with terrestrial-remote sensing technique and flood modeling using FLO-2D: A case study Samsun from Turkey, Geofizika, 37, 131-156, doi:10.15233/gfz.2020.37.9, 2020. |
91. | Petroselli, A., J. Florek, D. Młyński, L. Książek, and A. Wałęga, New insights on flood mapping procedure: Two case studies in Poland, Sustainability, 12(20), 8454, doi:10.3390/su12208454, 2020. |
92. | Beden, N., and A. Ulke Keskin, Flood map production and evaluation of flood risks in situations of insufficient flow data, Natural Hazards, 105, 2381-2408, doi:10.1007/s11069-020-04404-y, 2020. |
93. | #Malakeel G. S., K. U. Abdu Rahiman, and S. Vishnudas, Flood risk assessment methods – A review, in: Thomas J., Jayalekshmi B., Nagarajan P. (eds), Current Trends in Civil Engineering. Lecture Notes in Civil Engineering, Vol. 104, Springer, Singapore, doi:10.1007/978-981-15-8151-9_19, 2021. |
94. | Musiyam, M., J. Jumadi, Y. A. Wibowo, W. Widiyatmoko, and S. H. Nur Hafida, Analysis of flood-affected areas due to extreme weather in Pacitan, Indonesia, International Journal of GEOMATE, 19(75), 27-34, doi:10.21660/2020.75.25688, 2020. |
95. | Ghimire, E., S. Sharma, and N. Lamichhane, Evaluation of one-dimensional and two-dimensional HEC-RAS models to predict flood travel time and inundation area for flood warning system, ISH Journal of Hydraulic Engineering, doi:10.1080/09715010.2020.1824621, 2020. |
96. | Lin, X., G. Huang, J. M. Piwowar, X. Zhou, and Y. Zhai, Risk of hydrological failure under the compound effects of instant flow and precipitation peaks under climate change: a case study of Mountain Island Dam, North Carolina, Journal of Cleaner Production, 284, 125305, doi:10.1016/j.jclepro.2020.125305, 2021. |
97. | Daksiya, V., P. V. Mandapaka, and E. Y. M. Lo, Effect of climate change and urbanisation on flood protection decision‐making, Journal of Flood Risk Management, 14(1), e12681, doi:10.1111/jfr3.12681, 2021. |
98. | Urzică, A., A. Mihu-Pintilie, C. C. Stoleriu, C. I. Cîmpianu, E. Huţanu, C. I. Pricop, and A. Grozavu, Using 2D HEC-RAS modeling and embankment dam break scenario for assessing the flood control capacity of a multi-reservoir system (NE Romania), Water, 13(1), 57, doi:10.3390/w13010057, 2021. |
99. | Elhag, M., and N. Yilmaz, Insights of remote sensing data to surmount rainfall/runoff data limitations of the downstream catchment of Pineios River, Greece, Environmental Earth Sciences, 80, 35, doi:10.1007/s12665-020-09289-5, 2021. |
100. | Hdeib, R., R. Moussa, F. Colin, and C. Abdallah, A new cost-performance grid to compare different flood modelling approaches, Hydrological Sciences Journal, 66(3), 434-449, doi:10.1080/02626667.2021.1873346, 2021. |
101. | Sharma, V. C., and S. K. Regonda, Two-dimensional flood inundation modeling in the Godavari river basin, India – Insights on model output uncertainty, Water, 13(2), 191, doi:10.3390/w13020191, 2021. |
102. | Santos, E. D. S., H. S. K. Pinheiro, and H. G. Junior, Height above the nearest drainage to predict flooding areas in São Luiz do Paraitinga, São Paulo, Floresta e Ambiente, 28(2), doi:10.1590/2179-8087-floram-2020-0070, 2021. |
103. | Chang, T.-Y., H. Chen, H.-S. Fu, W.-B. Chen, Y.-C. Yu, W.-R. Su, and L.-Y. Lin, An operational high-performance forecasting system for city-scale pluvial flash floods in the southwestern plain areas of Taiwan, Water, 13(4), 405, doi:10.3390/w13040405, 2021. |
104. | Naeem, B., M. Azmat, H. Tao, S. Ahmad, M. U. Khattak, S. Haider, S. Ahmad, Z. Khero, and C. R. Goodell, Flood hazard assessment for the Tori levee breach of the Indus river basin, Pakistan, Water; 13(5), 604, doi:10.3390/w13050604, 2021. |
105. | Zhu, Y., X. Niu, C. Gu, B. Dai, and L. Huang, A fuzzy clustering logic life loss risk evaluation model for dam-break floods, Complexity, 2021, 7093256, doi:10.1155/2021/7093256, 2021. |
106. | #Malakeel, G. S., K. U.Abdu Rahiman, and S. Vishnudas, Flood risk assessment methods—A review, In: Thomas J., Jayalekshmi B., Nagarajan P. (eds), Current Trends in Civil Engineering, Lecture Notes in Civil Engineering, Vol. 104. Springer, Singapore, doi:10.1007/978-981-15-8151-9_19, 2021, 2021. |
107. | Liu, W.-C., T.-H. Hsieh, and H.-M. Liu, Flood risk assessment in urban areas of southern Taiwan, Sustainability, 13(6), 3180, doi:10.3390/su13063180, 2021. |
108. | Kumar, S., A. Agarwal, V. G. K. Villuri, S. Pasupuleti, D. Kumar, D. R. Kaushal, A. K. Gosain, A. Bronstert, and B. Sivakumar, Constructed wetland management in urban catchments for mitigating floods, Stochastic Environmental Research and Risk Assessment, 35, 2105-2124, doi:10.1007/s00477-021-02004-1, 2021. |
109. | Mourato, S., P. Fernandez, F. Marques, A. Rocha, and L. Pereira, An interactive Web-GIS fluvial flood forecast and alert system in operation in Portugal, International Journal of Disaster Risk Reduction, 58, 102201, doi:10.1016/j.ijdrr.2021.102201, 2021. |
110. | Dubey, A. K., P. Kumar, V. Chembolu, S. Dutta, R. P. Singh, and A. S. Rajawata, Flood modeling of a large transboundary river using WRF-Hydro and microwave remote sensing, Journal of Hydrology, 598, 126391, doi:10.1016/j.jhydrol.2021.126391, 2021. |
111. | de Arruda Gomes, M. M., L. F. de Melo Verçosa, and J. A. Cirilo, Hydrologic models coupled with 2D hydrodynamic model for high-resolution urban flood simulation, Natural Hazards, 108, 3121-3157, doi:10.1007/s11069-021-04817-3, 2021. |
112. | Gao, P., W. Gao, and N. Ke, Assessing the impact of flood inundation dynamics on an urban environment, Natural Hazards, 109, 1047-1072, doi:10.1007/s11069-021-04868-6, 2021. |
113. | Zhang, X., T. Wang, and B. Duan, Study on the effect of morphological changes of bridge piers on water movement properties, Water Practice and Technology, 16(4), 1421-1433, doi:10.2166/wpt.2021.08, 2021. |
114. | Fadilah, S., Istiarto, and D. Legono, Investigation and modelling of the flood control system in the Aerotropolis of Yogyakarta International Airport, IOP Conference Series Materials Science and Engineering, 1173(1), 012015, doi:10.1088/1757-899X/1173/1/012015, 2021. |
115. | Baran-Zgłobicka, B., D. Godziszewska, and W. Zgłobicki, The flash floods risk in the local spatial planning (case study: Lublin Upland, E. Poland), Resources, 10(2), 14, doi:10.3390/resources10020014, 2021. |
116. | Liang, C.-Y., Y.-H. Wang, G. J.-Y. You, P.-C. Chen, and E. Lo, Evaluating the cost of failure risk: A case study of the Kang-Wei-Kou stream diversion project, Water, 13(20), 2881, doi:10.3390/w13202881, 2021. |
117. | Uciechowska-Grakowicz, A., and O. Herrera-Granados, Riverbed mapping with the usage of deterministic and geo-statistical interpolation methods: The Odra River case study, Remote Sensing, 13(21), 4236, doi:10.3390/rs13214236, 2021. |
118. | Viquez, S. G., Mesurer le risque d’inondation en ville: Une modélisation sous contraintes, Terrains & Travaux, 38(1), 47-70, doi:10.3917/tt.038.0047, 2021. |
119. | Singh G., V. B. S. Chandel, and S. Kahlon, Flood hazard modelling in Upper Mandakini Basin of Uttarakhand, Current World Environment, 16(3), 880-889, doi:10.12944/CWE.16.3.18, 2021. |
120. | Liu, J., J. Wang, J. Xiong, W. Cheng, Y. Li, Y. Cao, Y. He, Y. Duan, W. He, and G. Yang, Assessment of flood susceptibility mapping using support vector machine, logistic regression and their ensemble techniques in the Belt and Road region, Geocarto International, doi:10.1080/10106049.2022.2025918, 2022. |
121. | Yang, S. Y., C. H. Chang, C. T. Hsu, and S. J. Wu, Variation of uncertainty of drainage density in flood hazard mapping assessment with coupled 1D–2D hydrodynamics model, Natural Hazards, 111, 2297-2315, doi:10.1007/s11069-021-05138-1, 2022. |
122. | Yoshida, K., S. Pan, J. Taniguchi, S. Nishiyama, T. Kojima, and T. Islam, Airborne LiDAR-assisted deep learning methodology for riparian land cover classification using aerial photographs and its application for flood modelling, Journal of Hydroinformatics, 24(1), 179-201, doi:10.2166/hydro.2022.134, 2022. |
123. | Kasprak, A., P. R. Jackson, E. M. Lindroth, J. W. Lund, and J. R. Ziegeweid, The role of hydraulic and geomorphic complexity in predicting invasive carp spawning potential: St. Croix River, Minnesota and Wisconsin, United States, PLoS ONE, 17(2), e026305, doi:10.1371/journal.pone.0263052, 2022. |
124. | Worley, L. C., K. L. Underwood, N. L. V. Vartanian, M. M. Dewoolkar, J. E. Matt, and D. M. Rizzo, Semi‐automated hydraulic model wrapper to support stakeholder evaluation: A floodplain reconnection study using 2D hydrologic engineering center's river analysis system, River Research and Applications, 38(4), 799-809, doi:10.1002/rra.3946, 2022. |
125. | Jiang, W., and J. Yu, Impact of rainstorm patterns on the urban flood process superimposed by flash floods and urban waterlogging based on a coupled hydrologic–hydraulic model: a case study in a coastal mountainous river basin within southeastern China, Natural Hazards, 112, 301-326, doi:10.1007/s11069-021-05182-x, 2022. |
126. | Mattos, T. S., P. T. S. Oliveira, L. de Souza Bruno, G. A. Carvalho, R. B. Pereira, L. L. Crivellaro, M. C. Lucas, and T. Roy, Towards reducing flood risk disasters in a tropical urban basin by the development of flood alert web application, Environmental Modelling & Software, 151, 105367, doi:10.1016/j.envsoft.2022.105367, 2022. |
127. | Papaioannou, G., V. Markogianni, A. Loukas, and E. Dimitriou, Remote sensing methodology for roughness estimation in ungauged streams for different hydraulic/hydrodynamic modeling approaches, Water, 14(7), 1076, doi:10.3390/w14071076, 2022. |
128. | Mishra, A., S. Mukherjee, B. Merz, V. P. Singh, D. B. Wright, G. Villarini, S. Paul, D. N. Kumar, C. P. Khedun, D. Niyogi, G. Schumann, and J. R. Stedinger, An overview of flood concepts, challenges, and future directions, Journal of Hydrologic Engineering, 27(6), doi:10.1061/(ASCE)HE.1943-5584.0002164, 2022. |
129. | Cea, L., and P. Costabile, Flood risk in urban areas: modelling, management and adaptation to climate change. A review, Hydrology, 9(3), 50, doi:10.3390/hydrology9030050, 2022. |
130. | #Karmakar, S., M. A. Sherly, and M. Mohanty, Urban flood risk mapping: A state-of-the-art review on quantification, current practices, and future challenges, Advances in Urban Design and Engineering. Design Science and Innovation, Banerji, P., Jana, A. (eds.), 125-156, Springer, Singapore, doi:10.1007/978-981-19-0412-7_5, 2022. |
131. | Kadir, M. A. A., M. R. R. M. A. Zainol, P. Luo, M. Kaamin, and S. N. H. S. Yahya, Advance flood inundation model toward flood nowcasting: A review, International Journal of Nanoelectronics and Materials, 15, 81-100, 2022. |
132. | Tegos, A., A. Ziogas, V. Bellos, and A. Tzimas, Forensic hydrology: a complete reconstruction of an extreme flood event in data-scarce area, Hydrology, 9(5), 93, doi:10.3390/hydrology9050093, 2022. |
133. | Stephens, T., and B. Bledsoe, Simplified uncertainty bounding: an approach for estimating flood hazard uncertainty, Water, 14(10), 1618, doi:10.3390/w14101618, 2022. |
134. | Iroume, J.Y.-A., R. Onguéné, F. Djanna Koffi, A. Colmet-Daage, T. Stieglitz, W. Essoh Sone, S. Bogning, J. M. Olinga Olinga, R. Ntchantcho, J.-C. Ntonga, J.-J. Braun, J.-P. Briquet, and J. Etame, The 21st August 2020 flood in Douala (Cameroon): A major urban flood investigated with 2D HEC-RAS modeling, Water, 14(11), 1768, doi:10.3390/w14111768, 2022. |
135. | Jiang, W., J. Yu, Q. Wang, and Q. Yue, Understanding the effects of digital elevation model resolution and building treatment for urban flood modelling, Journal of Hydrology: Regional Studies, 42, 101122, doi:10.1016/j.ejrh.2022.101122, 2022. |
136. | Singh, G., V. B. S. Chandel, and S. Kahlon, Flood hazard modelling in Upper Mandakini Basin of Uttarakhand, Current World Environment, 16(3), 880-889, doi:10.12944/CWE.16.3.18, 2022. |
137. | Li, Y., D. B. Wright, and Y. Liu, Flood-induced geomorphic change of floodplain extent and depth: A case study of Hurricane Maria in Puerto Rico, Journal of Hydrologic Engineering, 27(10), doi:10.1061/(ASCE)HE.1943-5584.0002199, 2022. |
138. | Iroume, J. Y.-A., R. Onguéné, F. Djanna Koffi, A. Colmet-Daage, T. Stieglitz, W. Essoh Sone, S. Bogning, J. M. Olinga Olinga, R. Ntchantcho, J.-C. Ntonga, J.-J. Braun, J.-P. Briquet, and J. Etame, The 21st August 2020 flood in Douala (Cameroon): A major urban flood investigated with 2D HEC-RAS modeling, Water, 14(11), 1768, doi:10.3390/w14111768, 2022. |
139. | Ahmad, N. S., and N. A. Ahmad, Propose design of new cross section by using one dimensional HEC-RAS at Maran River, Pahang, Journal of Advancement in Environmental Solution and Resource Recovery, 2(1), 51-59, 2022. |
140. | de Sousa, M. M., A. K. Beleño de Oliveira, O. M. Rezende, P. M. Canedo de Magalhães, A. C. Pitzer Jacob, P. C. de Magalhães, and M. G. Miguez, Highlighting the role of the model user and physical interpretation in urban flooding simulation, Journal of Hydroinformatics, 24(5), 976-991, doi:10.2166/hydro.2022.174, 2022. |
141. | Kaya, Ç. M., Taşkın Duyarlılık Haritalarının Oluşturulmasında Kullanılan Yöntemler, Turkish Journal of Remote Sensing and GIS, 3(2), 191-209, doi:10.48123/rsgis.1129606, 2022. |
142. | Li, Y., D. B. Wright, and Y. Liu, Flood-induced geomorphic change of floodplain extent and depth: a case study of hurricane Maria in Puerto Rico, Journal of Hydrologic Engineering, 27(10), doi:10.1061/(ASCE)HE.1943-5584.0002199, 2022. |
143. | Wibowo, Y. A., M. A. Marfai, M. P. Hadi, H. Fatchurohman, L. Ronggowulan and D. A. Arif, Geospatial technology for flood hazard analysis in Comal Watershed, Central Java, Indonesia, IOP Conference Series: Earth and Environmental Science, 1039, 012027, 2022. |
144. | Godwin, E., I. Kabenge, A. Gidudu, Y. Bamutaze, and A. Egeru, Differentiated spatial-temporal flood vulnerability and risk assessment in lowland plains in Eastern Uganda, Hydrology, 9(11), 201, doi:10.3390/hydrology9110201, 2022. |
145. | Zhou, Y., Z. Wu, H. Xu, and H. Wang, Prediction and early warning method of inundation process at waterlogging points based on Bayesian model average and data-driven, Journal of Hydrology: Regional Studies, 44, 101248, doi:10.1016/j.ejrh.2022.101248, 2022. |
146. | de Sousa, M. M., Ο. Μ. Rezende, A. C. P. Jacob, L. B. de França Ribeiro, P. M. C. de Magalhães, G. Maquera, and M. G. Miguez, Flood risk assessment index for urban mobility with the aid of quasi-2D flood model applied to an industrial park in São Paulo, Brazil, Infrastructures, 7(11), 158, doi:10.3390/infrastructures7110158, 2022. |
147. | Otmani, A., A. Hazzab, M. Atallah, C. Apollonio, and A. Petroselli, Using volunteered geographic information data for flood mapping – Wadi Deffa El Bayadh Algeria, Journal of Applied Water Engineering and Research, doi:10.1080/23249676.2022.2155716, 2022. |
148. | PhamVan, C., and H. Le, Estimation of the daily flow in river basins using the data-driven model and traditional approaches: an application in the Hieu river basin, Vietnam, Water Practice and Technology, 18(1), 215-230, doi:10.2166/wpt.2022.166, 2023. |
149. | Worley, L. C., K. L. Underwood, R. M. Diehl, J. E. Matt, K.S. Lawson, R. M. Seigel, and D. M. Rizzo, Balancing multiple stakeholder objectives for floodplain reconnection and wetland restoration, Journal of Environmental Management, 326(A), 116648, doi:10.1016/j.jenvman.2022.116648, 2023. |
150. | Xu, K., C. Wang, and L. Bin, Compound flood models in coastal areas: a review of methods and uncertainty analysis, Natural Hazards, 116, 469-496, doi:10.1007/s11069-022-05683-3, 2023. |
151. | Daniel, W. B., C. Roth, X. Li, C. Rakowski, T. McPherson, and D. Judi, Extremely rapid, Lagrangian modeling of 2D flooding: A rivulet-based approach, Environmental Modelling & Software, 161, 105630, doi:10.1016/j.envsoft.2023.105630, 2023. |
152. | Guirro, M. O., and G. P. Michel, Hydrological and hydrodynamic reconstruction of a flood event in a poorly monitored basin: a case study in the Rolante River, Brazil, Natural Hazards, doi:10.1007/s11069-023-05879-1, 2023. |
153. | Kohanpur, A. H., S. Saksena, S. Dey, J. M. Johnson, M. S. Riasi, L. Yeghiazarian, and A. M. Tartakovsky, Urban flood modeling: Uncertainty quantification and physics-informed Gaussian processes regression forecasting, Water Resources Research, 59(3), e2022WR033939, doi:10.1029/2022WR033939, 2023. |
154. | Rodas, M., L. Timbe, and L. Campozano, Sensibilidad del coeficiente de Manning en la estimación de los niveles de crecida para el mapeo de inundaciones en un río de la región interandina de Ecuador, Cuadernos de Geografía Revista Colombiana de Geografía, 32(1), doi:10.15446/rcdg.v32n1.94764, 2023. |
155. | Wu, S., and Y. Lei, Multiscale flood disaster risk assessment in the Lancang-Mekong river basin: A focus on watershed and community levels, Atmosphere, 14(4), 657, doi:10.3390/atmos14040657, 2023. |
156. | Viseh, H., and D. N. Bristow, Residential flood risk in metro Vancouver due to climate change using probability boxes, International Journal of River Basin Management, doi:10.1080/15715124.2023.2200006, 2023. |
157. | Moghim, S., M. A. Gharehtoragh, and A. Safaie, Performance of the flood models in different topographies, Journal of Hydrology, 620(A), 129446, doi:10.1016/j.jhydrol.2023.129446, 2023. |
158. | Makris, C., Z. Mallios, Y. Androulidakis, and Y. Krestenitis, CoastFLOOD: A high-resolution model for the simulation of coastal inundation due to storm surges, Hydrology, 10(5), 103, doi:10.3390/hydrology10050103, 2023. |
159. | Tarpanelli, A., B. Bonaccorsi, M. Sinagra, A. Domeneghetti, L. Brocca, and S. Barbetta, Flooding in the digital twin Earth: The case study of the Enza River levee breach in December 2017, Water, 15(9), 1644, doi:10.3390/w15091644, 2023. |
160. | Xafoulis, N., Y. Kontos, E. Farsirotou, S. Kotsopoulos, K. Perifanos, N. Alamanis, D. Dedousis, and K. Katsifarakis, Evaluation of various resolution DEMs in flood risk assessment and practical rules for flood mapping in data-scarce geospatial areas: A case study in Thessaly, Greece, Hydrology, 10(4), 91, doi:10.3390/hydrology10040091, 2023. |
161. | da Silva, A. A. C. L., and J. C. Eleutério, Identifying and testing the probability distribution of earthfill dam breach parameters for probabilistic dam breach modeling, Journal of Flood Risk Management, 16(3), e12900, doi:10.1111/jfr3.12900, 2023. |
162. | Hajihassanpour, M., G. Kesserwani, P. Pettersson, and V. Bellos, Sampling-based methods for uncertainty propagation in flood modeling under multiple uncertain inputs: Finding out the most efficient choice, Water Resources Research, 59(7), e2022WR034011, doi:10.1029/2022WR034011, 2023. |
163. | Biswal, S., B. Sahoo, M. K. Jha, and M. K. Bhuyan, A hybrid machine learning-based multi-dem ensemble model of river cross-section extraction: Implications on streamflow routing, Journal of Hydrology, 625(A), 129951, doi:10.1016/j.jhydrol.2023.129951, 2023. |
164. | Wienhold, K. J., D. Li, W. Li, and Z. N. Fang, Flood inundation and depth mapping using unmanned aerial vehicles combined with high-resolution multispectral imagery, Hydrology, 10(8), 158, doi:10.3390/hydrology10080158, 2023. |
165. | Aryal, A., and A. Kalra, Application of NEXRAD precipitation data for assessing the implications of low development practices in an ungauged basin, River, doi:10.1002/rvr2.55, 2023. |
166. | Bryant, S., H. Kreibich, and B. Merz, Bias in flood hazard grid aggregation, Water Resources Research, 59(9), e2023WR035100, doi:10.1029/2023WR035100, 2023. |
167. | Wang, W., G. Sang, Q. Zhao, and L. Lu, Water level prediction of pumping station pre-station based on machine learning methods, Water Supply, 23(10), 4092-4111, doi:10.2166/ws.2023.242, 2023. |
168. | Moraru, A., N. Rüther, and O. Bruland, Investigating optimal 2D hydrodynamic modeling of a recent flash flood in a steep Norwegian river using high-performance computing, Journal of Hydroinformatics, 25(5), 1690-1712, doi:10.2166/hydro.2023.012, 2023. |
169. | Dasari, I., and V. K. Vema, Assessment of the structural uncertainty of hydrological models and its impact on flood inundation mapping, Hydrological Sciences Journal, 68(16), 2404-2421, doi:10.1080/02626667.2023.2271456, 2023. |
170. | Rojpratak, S., and S. Supharatid, Regional-scale flood impacts on a small mountainous catchment in Thailand under a changing climate, Journal of Water and Climate Change, jwc2023527, doi:10.2166/wcc.2023.527, 2023. |
171. | Abbas, Z., M. Akhtar, S. Akram, S. Hafeez, and S. R. Ahmad, Flood inundation modeling and damage assessment in Lahore using remote sensing, International Journal of Innovations in Science & Technology, 5(4), 638-647, 2023. |
172. | Almeida, I. M., H. A. Santos, O. de Vasconcelos Costa, and V. B. Graciano, Uncertainty reduction in flood areas by probabilistic analyses of land use/cover in models of two-dimensional hydrodynamic model of dam-break, Stochastic Environmental Research and Risk Assessment, 38, 1335-1350, doi:10.1007/s00477-023-02635-6, 2024. |
173. | Stavi, I., S. Eldad, C. Xu, Z. Xu, Y. Gusarov, M. Haiman, and E. Argaman, Ancient agricultural terrace walls control floods and regulate the distribution of Asphodelus ramosus geophytes in the Israeli arid Negev, Catena, 234, 107588, doi:10.1016/j.catena.2023.107588, 2024. |
174. | Tilav, E. S., and S. Gülbaz, Investigation of flooding due to dam failure: A case study of Darlık dam, Journal of Natural Hazards and Environment, 10(1), 49-67, doi:10.21324/dacd.1327805, 2024. |
175. | Tunio, I. A., L. Kumar, S. A. Memon, A. A. Mahessar, A. W. Kandhir, Sediment transport dynamics during a super flood: A case study of the 2010 super flood at the Guddu Barrage on the Indus River, International Journal of Sediment Research, doi:10.1016/j.ijsrc.2024.03.002, 2024. |
176. | Sajjad, A., J. Lu, X. Chen, S. Yousaf, N. Mazhar, and S. Shuja, Flood hazard assessment in Chenab River basin using hydraulic simulation modeling and remote sensing, Natural Hazards, 120, 7679-7700, doi:10.1007/s11069-024-06513-4, 2024. |
177. | Ullah, A., S. Haider, and R. Farooq, Sensitivity analysis of a 2D flood inundation model. A case study of Tous Dam, Environmental Earth Sciences, 83, 213. doi:10.1007/s12665-024-11500-w, 2024. |
178. | #Ojasanya, K. A., and B. O. George-Kayode, A simplistic approach for evaluating urban flood risk through the integration of HEC-RAS 2D and GIS, World Environmental and Water Resources Congress 2024, 544-565, doi:10.1061/9780784485477.050, 2024. |
179. | Bănăduc, D., A. Curtean-Bănăduc, S. Barinova, V. L. Lozano, S. Afanasyev, T. Leite, P. Branco, D. F. Gomez Isaza, J. Geist, A. Tegos, H. Olosutean, and K. Cianfanglione, Multi-interacting natural and anthropogenic stressors on freshwater ecosystems: Their current status and future prospects for 21st century, Water, 16(11), 1483, doi:10.3390/w16111483, 2024. |
180. | Khatun, A., M.N. Nisha, S. Chatterjee, and V. Sridhar, A novel insight on input variable and time lag selection in daily streamflow forecasting using deep learning models, Environmental Modelling & Software, 179, 106126, doi:10.1016/j.envsoft.2024.106126, 2024. |
181. | Banupriy, R., N. M. Indumathi, A. Devendhiran, and C. Navamani, Mapping of high level remote sensing image features with pixel distribution and threshold computation, African Journal of Biological Sciences, 6(7), 703-711, doi:10.48047/AFJBS.6.7.2024.703-711, 2024. |
182. | Ma, J., J. Chen, and C. Xu, Hydraulic reconstruction of giant paleolandslide‐dammed lake outburst floods in high‐mountain region, eastern Tibetan Plateau: A case study of the Upper Minjiang River valley, Transactions in GIS, 28(6), 1793-1825, doi:10.1111/tgis.13218, 2024. |
183. | Yadav, A., R. M., Singh, M. K. Pandey, S. P. Maurya, and S. K. Singh, Hydrodynamic modelling of river training works for protection of group of villages on the left bank of Ramganga River: a case study, Natural Hazards, doi:10.1007/s11069-024-06888-4, 2024. |
184. | Sccoti, A. A. V., C. V. M. Bateira, L. E. S. Robaina, S. Pereira, R. Trentin, Definition of flood-prone areas in Estrela and Lajeado/rs using IBER 2D model, Finisterra, 59(127), e35402, 2024. |
185. | #Abbaszadeh, P., K. Gavahi, and H. Moradkhani, Towards a robust hydrologic data assimilation system for hurricane-induced river flow forecasting, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2024-209, 2024. |
186. | Subbulakshmi, M., and S. Nanda, Assessing future flood vulnerabilities in lower Vellar basin: a remote sensing approach for sustainable flood management, Journal of Building Pathology and Rehabilitation,10, 25, doi:10.1007/s41024-024-00537-w, 2025. |
187. | Kaya, Y. Z., and F. Üneş, Comparison of three different satellite data on 2D flood modeling using HEC-RAS (5.0.7) software and investigating the improvement ability of the RAS Mapper tool, Journal of Flood Risk Management, 18(1), e13046, doi:10.1111/jfr3.13046, 2025. |
I. Tsoukalas, P. Kossieris, A. Efstratiadis, and C. Makropoulos, Surrogate-enhanced evolutionary annealing simplex algorithm for effective and efficient optimization of water resources problems on a budget, Environmental Modelling and Software, 77, 122–142, doi:10.1016/j.envsoft.2015.12.008, 2016.
In water resources optimization problems, the objective function usually presumes to first run a simulation model and then evaluate its outputs. However, long simulation times may pose significant barriers to the procedure. Often, to obtain a solution within a reasonable time, the user has to substantially restrict the allowable number of function evaluations, thus terminating the search much earlier than required. A promising strategy to address these shortcomings is the use of surrogate modeling techniques. Here we introduce the Surrogate-Enhanced Evolutionary Annealing-Simplex (SEEAS) algorithm that couples the strengths of surrogate modeling with the effectiveness and efficiency of the evolutionary annealing-simplex method. SEEAS combines three different optimization approaches (evolutionary search, simulated annealing, downhill simplex). Its performance is benchmarked against other surrogate-assisted algorithms in several test functions and two water resources applications (model calibration, reservoir management). Results reveal the significant potential of using SEEAS in challenging optimization problems on a budget.
Related works:
Full text: http://www.itia.ntua.gr/en/getfile/1587/2/documents/SEEAS_paper.pdf (4310 KB)
Additional material:
Other works that reference this work (this list might be obsolete):
1. | Dariane , A. B., and M. M. Javadianzadeh, Towards an efficient rainfall–runoff model through partitioning scheme, Water, 8, 63, doi:10.3390/w8020063, 2016. |
2. | Yaseen, Z. M., O. Jaafar, R. C. Deo, O. Kisi, J. Adamowski, J. Quilty, and A. El-Shafie, Boost stream-flow forecasting model with extreme learning machine data-driven: A case study in a semi-arid region in Iraq, Journal of Hydrology, 542, 603-614, doi:10.1016/j.jhydrol.2016.09.035, 2016. |
3. | Müller, R., and N. Schütze, Multi-objective optimization of multi-purpose multi-reservoir systems under high reliability constraints, Environmental Earth Sciences, 75:1278, doi:10.1007/s12665-016-6076-5, 2016. |
4. | #Christelis, V., V. Bellos, and G. Tsakiris, Employing surrogate modelling for the calibration of a 2D flood simulation model, Sustainable Hydraulics in the Era of Global Change: Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016), A. S. Erpicum, M. Pirotton, B. Dewals, P. Archambeau (editors), CRC Press, 2016. |
5. | Salazar, J. Z., P. M. Reed, J. D. Quinn, M. Giuliani, and A. Castelletti, Balancing exploration, uncertainty and computational demands in many objective reservoir optimization, Advances in Water Resources, 109, 196-210, doi:10.1016/j.advwatres.2017.09.014, 2017. |
6. | Christelis, V., and A. Mantoglou, Physics-based and data-driven surrogate models for pumping optimization of coastal aquifers, European Water, 57, 481–488, 2017. |
7. | #Thandayutham, K., E. Avital, N. Venkatesan, and A. Samad, Design and analysis of a marine current turbine, Proceedings of ASME 2017 Gas Turbine India Conference and Exhibition, GTINDIA2017-4912, V001T02A014, Bangalore, India, doi:10.1115/GTINDIA2017-4912, 2017. |
8. | Christelis, V., R. G. Regis, and A. Mantoglou, Surrogate-based pumping optimization of coastal aquifers under limited computational budgets, Journal of Hydroinformatics, 20(1), 164-176, doi:10.2166/hydro.2017.063, 2018. |
9. | Christelis, V., and A. G. Hughes, Metamodel-assisted analysis of an integrated model composition: an example using linked surface water – groundwater models, Environmental Modelling and Software, 107, 298-306, doi:10.1016/j.envsoft.2018.05.004, 2018. |
10. | Zischg, A. P., G. Felder, M. Mosimann, V. Röthlisberger, and R. Weingartner, Extending coupled hydrological-hydraulic model chains with a surrogate model for the estimation of flood losses, Environmental Modelling and Software, 108, 174-185, doi:10.1016/j.envsoft.2018.08.009, 2018. |
11. | Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers using seawater intrusion models of variable-fidelity and evolutionary algorithms, Water Resources Management, 33(2), 555-558, doi:10.1007/s11269-018-2116-0, 2019. |
12. | Thandayutham, K., L. K. Mishra, and A. Samad, Optimal design of a marine current turbine using CFD and FEA, Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018), K. Murali, V. Sriram, A. Samad, N. Saha (editors), Lecture Notes in Civil Engineering, 23, 675-690, doi:10.1007/978-981-13-3134-3, 2019. |
13. | Christelis, V., G. Kopsiaftis, and A. Mantoglou, Performance comparison of multiple and single surrogate models for pumping optimization of coastal aquifers, Hydrological Sciences Journal, 64(3), 336-349, doi:10.1080/02626667.2019.1584400, 2019. |
14. | Cai, X., L. Gao, X. Li, and H-. Qiu, Surrogate-guided differential evolution algorithm for high dimensional expensive problems, Swarm and Evolutionary Computation, 48, 288-311, doi:10.1016/j.swevo.2019.04.009, 2019. |
15. | Huot, P.-L., A. Poulin, C. Audet, and S. Alarie, A hybrid optimization approach for efficient calibration of computationally intensive hydrological models, Hydrological Sciences Journal, 64(9), 1204-1222, doi:10.1080/02626667.2019.1624922, 2019. |
16. | Jahandideh-Tehrani, M., O. Bozorg-Haddad, and H. A. Loáiciga, Application of non-animal–inspired evolutionary algorithms to reservoir operation: an overview, Environmental Monitoring and Assessment, 191:439, doi:10.1007/s10661-019-7581-2, 2019. |
17. | Sandoval, S., and J.-L. Bertrand-Krajewski, From marginal to conditional probability functions of parameters in a conceptual rainfall-runoff model: an event-based approach, Hydrological Sciences Journal, 64(11), 1340-1350, doi:10.1080/02626667.2019.1635696, 2019. |
18. | Zhao, C. S., T. L. Pan, J. Xi, S. T. Yang, J. Zhao, X. J. Gan, L. P. Hou, and S. Y. Ding, Streamflow calculation for medium-to-small rivers in data scarce inland areas, Science of The Total Environment, 693, 133571, doi:10.1016/j.scitotenv.2019.07.377, 2019. |
19. | Monteil, C., F. Zaoui, N. Le Moine, and F. Hendrickx, Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules – the caRamel algorithm, Hydrology and Earth System Sciences, 24, 3189-3209, 10.5194/hess-24-3189-2020, 2020. |
20. | Muhammed, K. A., and R. Farmani, Energy optimization using a pump scheduling tool in water distribution systems, ARO – The Scientific Journal of Koya University, 8(1), 112-123, doi:10.14500/aro.10635, 2020. |
21. | #Castro-Gama M., C. Agudelo-Vera, and D. Bouziotas, A bird’s-eye view of data validation in the drinking water industry of the Netherlands, The Handbook of Environmental Chemistry, Springer, Berlin, Heidelberg, doi:10.1007/698_2020_609, 2020. |
22. | Xai, W., C. Shoemaker, T. Akhtar, and M.-T. Nguyen, Efficient parallel surrogate optimization algorithm and framework with application to parameter calibration of computationally expensive three-dimensional hydrodynamic lake PDE models, Environmental Modelling and Software, 135, 104910, doi:10.1016/j.envsoft.2020.104910, 2021. |
23. | Saadatpour, M., S. Javaheri, A. Afshar, and S. S. Solis, Optimization of selective withdrawal systems in hydropower reservoir considering water quality and quantity aspects, Expert Systems with Applications, 184, 115474, doi:10.1016/j.eswa.2021.115474, 2021. |
24. | Zhao, T., and B. Minsker, Efficient metamodel approach to handling constraints in nonlinear optimization for drought management, Journal of Water Resources Planning and Management, 147(12), doi:10.1061/(ASCE)WR.1943-5452.0001476, 2021. |
25. | Anahideh, H., J. Rosenberger, and V. Chen, High-dimensional black-box optimization under uncertainty, Computers & Operations Research, 137, 105444, doi:10.1016/j.cor.2021.105444, 2022. |
26. | Pang, M., E. Du, C. A. Shoemaker, and C. Zheng, Efficient, parallelized global optimization of groundwater pumping in a regional aquifer with land subsidence constraints, Journal of Environmental Management, 310, 114753, doi:10.1016/j.jenvman.2022.114753, 2022. |
27. | Lu, W., W. Xia, and C. A. Shoemaker, Surrogate global optimization for identifying cost-effective green infrastructure for urban flood control with a computationally expensive inundation model, Water Resources Research, 58(4), e2021WR030928, doi:10.1029/2021WR030928, 2022. |
28. | Kopsiaftis, G., M. Kaselimi, E. Protopapadakis, A. Voulodimos, A. Doulamis, N. Doulamis, and A. Mantoglou, Performance comparison of physics-based and machine learning assisted multi-fidelity methods for the management of coastal aquifer systems, Frontiers in Water, 5, 1195029, doi:10.3389/frwa.2023.1195029, 2023. |
29. | Christelis, V., G. Kopsiaftis. R. G. Regis, and A. Mantoglou, An adaptive multi-fidelity optimization framework based on co-Kriging surrogate models and stochastic sampling with application to coastal aquifer management, Advances in Water Resources, 180, 104537, doi:10.1016/j.advwatres.2023.104537, 2023. |
30. | Costabile, P., C. Costanzo, J. Kalogiros, and V. Bellos, Toward street‐level nowcasting of flash floods impacts based on HPC hydrodynamic modeling at the watershed scale and high‐resolution weather radar data, Water Resources Research, 59(10), e2023WR034599, doi:10.1029/2023WR034599, 2023. |
31. | Wang, N., J. Yin, C. Lu, and F. T.-C. Tsai, Adaptive machine learning surrogate based multiobjective optimization for scavenging residual saltwater behind subsurface dams, Journal of Hydrology, 131714, doi:10.1016/j.jhydrol.2024.131714, 2024. |
32. | #Tsiami, L., C. Makropoulos, and D. Savic, A review on staged design of water distribution networks, 2nd International Join Conference on Water Distribution System Analysis (WDSA) & Computing and Control in the Water Industry (CCWI), Editorial Universitat Politècnica de València, doi:10.4995/WDSA-CCWI2022.2022.14516, 2024. |
A. Tegos, A. Efstratiadis, N. Malamos, N. Mamassis, and D. Koutsoyiannis, Evaluation of a parametric approach for estimating potential evapotranspiration across different climates, Agriculture and Agricultural Science Procedia, 4, 2–9, doi:10.1016/j.aaspro.2015.03.002, 2015.
Potential evapotranspiration (PET) is key input in water resources, agricultural and environmental modelling. For many decades, numerous approaches have been proposed for the consistent estimation of PET at several time scales of interest. The most recognized is the Penman-Monteith formula, which is yet difficult to apply in data-scarce areas, since it requires simultaneous observations of four meteorological variables (temperature, sunshine duration, humidity, wind velocity). For this reason, parsimonious models with minimum input data requirements are strongly preferred. Typically, these have been developed and tested for specific hydroclimatic conditions, but when they are applied in different regimes they provide much less reliable (and in some cases misleading) estimates. Therefore, it is essential to develop generic methods that remain parsimonious, in terms of input data and parameterization, yet they also allow for some kind of local adjustment of their parameters, through calibration. In this study we present a recent parametric formula, based on a simplified formulation of the original Penman-Monteith expression, which only requires mean daily or monthly temperature data. The method is evaluated using meteorological records from different areas worldwide, at both the daily and monthly time scales. The outcomes of this extended analysis are very encouraging, as indicated by the substantially high validation scores of the proposed approach across all examined data sets. In general, the parametric model outperforms well-established methods of the everyday practice, since it ensures optimal approximation of potential evapotranspiration.
Full text: http://www.itia.ntua.gr/en/getfile/1549/1/documents/IRLA_paper.pdf (560 KB)
See also: http://dx.doi.org/10.1016/j.aaspro.2015.03.002
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | Stan, F.I., G. Neculau, L. Zaharia, G. Ioana-Toroimac, and S. Mihalache, Study on the evaporation and evapotranspiration measured on the Căldăruşani Lake (Romania), Procedia Environmental Sciences, 32, 281–289, doi:10.1016/j.proenv.2016.03.033, 2016. |
2. | Esquivel-Hernández, G., R. Sánchez-Murillo, C. Birkel, S. P. Good, and J. Boll, Hydro-climatic and ecohydrological resistance/resilience conditions across tropical biomes of Costa Rica, Ecohydrology, 10(6), e1860, doi:10.1002/eco.1860, 2017. |
3. | Hodam, S., S. Sarkar, A.G.R. Marak, A. Bandyopadhyay, and A. Bhadra, Spatial interpolation of reference evapotranspiration in India: Comparison of IDW and Kriging methods, Journal of The Institution of Engineers (India): Series A, 98(4), 551-524, doi:10.1007/s40030-017-0241-z, 2017. |
4. | Deng, H., and J. Shao, Evapotranspiration and humidity variations in response to land cover conversions in the Three Gorges Reservoir Region, Journal of Mountain Science, 15(3), 590-605, doi:10.1007/s11629-016-4272-0, 2018. |
5. | Nadyozhina, E. D., I. M. Shkolnik, A. V. Sternzat, B. N. Egorov, and A. A. Pikaleva, Evaporation from irrigated lands in arid regions as inferred from the regional climate model and atmospheric boundary layer model simulations, Russian Meteorology and Hydrology, 43(6), 404-411, doi:10.3103/S1068373918060080, 2018. |
6. | Bashir, R., F. Ahmad, and R. Beddoe, Effect of climate change on a monolithic desulphurized tailings cover, Water, 2(9), 2645, doi:10.3390/w12092645, 2020. |
7. | Dimitriadou, S., and K. G. Nikolakopoulos, Evapotranspiration trends and interactions in light of the anthropogenic footprint and the climate crisis: A review, Hydrology, 8(4), 163, doi:10.3390/hydrology8040163, 2021. |
8. | Dimitriadou, S., and K. G. Nikolakopoulos, Artificial neural networks for the prediction of the reference evapotranspiration of the Peloponnese Peninsula, Greece, Water, 14(13), 2027, doi:10.3390/w14132027, 2022. |
9. | Yu, Z., H. Wang, B. Weng, S. Zhang, T. Qin, and D. Yan, Optimized pan evaporation by potential evapotranspiration for water inflow estimation in ungauged inland plain lake, China, Polish Journal of Environmental Studies, 31(6), 5427-5442, doi:10.15244/pjoes/151110, 2022. |
10. | Kaissi, O., S. Belaqziz, M. H. Kharrou, S. Erraki, C. El Hachimi, A. Amazirh, and A. Chehbouni, Advanced learning models for estimating the spatio-temporal variability of reference evapotranspiration using in-situ and ERA5-Land reanalysis data, 10, 1915-1939, Modeling Earth Systems and Environment, 10, 1915-1939, doi:10.1007/s40808-023-01872-62023, 2024. |
11. | Latrech, B., T. Hermassi, S. Yacoubi, A. Slatni, F. Jarray, L. Pouget, and M. A. Ben Abdallah, Comparative analysis of climate change impacts on climatic variables and reference evapotranspiration in Tunisian semi-arid region, Agriculture, 14(1), 160, doi:10.3390/agriculture14010160, 2024. |
12. | Baber, S., and K. Ullah, Short-term forecasting of daily reference crop evapotranspiration based on calibrated Hargreaves–Samani equation at regional scale, Earth Systems and Environment, doi:10.1007/s41748-024-00373-5, 2024. |
13. | Hajani, E., Patterns of indicators of climate change for three different decades in Australia, Arabian Journal of Geosciences, 17, 242, doi:10.1007/s12517-024-12043-x, 2024. |
A. Efstratiadis, I. Nalbantis, and D. Koutsoyiannis, Hydrological modelling of temporally-varying catchments: Facets of change and the value of information, Hydrological Sciences Journal, 60 (7-8), 1438–1461, doi:10.1080/02626667.2014.982123, 2015.
River basins are by definition temporally varying systems: changes are apparent at every temporal scale, in terms of changing meteorological inputs and catchment characteristics, respectively due to inherently uncertain natural processes and anthropogenic interventions. In an operational context, the ultimate goal of hydrological modelling is predicting responses of the basin under conditions that are similar or different from those observed in the past. Since water management studies require that anthropogenic effects are considered known and a long hypothetical period is simulated, the combined use of stochastic models, for generating the inputs, and deterministic models that also represent the human interventions in modified basins, is found to be a powerful approach for providing realistic and statistically consistent simulations (in terms of product moments and correlations, at multiple time scales, and long-term persistence). The proposed framework is investigated on the Ferson Creek basin (USA) that exhibits significantly growing urbanization during the last 30 years. Alternative deterministic modelling options include a lumped water balance model with one time-varying parameter and a semi-distributed scheme based on the concept of hydrological response units. Model inputs and errors are respectively represented through linear and non-linear stochastic models. The resulting nonlinear stochastic framework maximizes the exploitation of the existing information, by taking advantage of the calibration protocol used in this issue.
Additional material:
See also: http://dx.doi.org/10.1080/02626667.2014.982123
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | Thirel, G., V. Andréassian, and C. Perrin, On the need to test hydrological models under changing conditions, Hydrological Sciences Journal, 60(7-8), 1165-1173, doi:10.1080/02626667.2015.1050027, 2015. |
2. | Biao, I. E., S. Gaba, A. E. Alamou, and A. Afouda, Influence of the uncertainties related to the random component of rainfall inflow in the Ouémé River Basin (Benin, West Africa), International Journal of Current Engineering and Technology, 5(3), 1618-1629, 2015. |
3. | #Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers using radial basis function metamodels, Proceedings of 9th World Congress EWRA “Water Resources Management in a Changing World: Challenges and Opportunities”, Istanbul, 2015. |
4. | Christelis, V., and A. Mantoglou, Coastal aquifer management based on the joint use of density-dependent and sharp interface models, Water Resources Management, 30(2), 861-876, doi:10.1007/s11269-015-1195-4, 2016. |
5. | McMillan, H., A. Montanari, C. Cudennec, H. Savenjie, H. Kreibich, T. Krüger, J. Liu, A. Meija, A. van Loon, H. Aksoy, G. Di Baldassarre, Y. Huang, D. Mazvimavi, M. Rogger, S. Bellie, T. Bibikova, A. Castellarin, Y. Chen, D. Finger, A. Gelfan, D. Hannah, A. Hoekstra, H. Li, S. Maskey, T. Mathevet, A. Mijic, A. Pedrozo Acuña, M. J. Polo, V. Rosales, P. Smith, A. Viglione, V. Srinivasan, E. Toth, R. van Nooyen, and J. Xia, Panta Rhei 2013-2015: Global perspectives on hydrology, society and change, Hydrological Sciences Journal, 61(7), 1174-1191, doi:10.1080/02626667.2016.1159308, 2016. |
6. | Biao, I. E., A. E. Alamou, and A. Afouda, Improving rainfall–runoff modelling through the control of uncertainties under increasing climate variability in the Ouémé River basin (Benin, West Africa), Hydrological Sciences Journal, 61(16), 2902-2915, doi:10.1080/02626667.2016.1164315, 2016. |
7. | Pathiraja, S., L. Marshall, A. Sharma, and H. Moradkhani, Detecting non-stationary hydrologic model parameters in a paired catchment system using data assimilation, Advances in Water Resources, 94, 103–119, doi:10.1016/j.advwatres.2016.04.021, 2016. |
8. | Christelis, V., and A. Mantoglou, Pumping optimization of coastal aquifers assisted by adaptive metamodelling methods and radial basis functions, Water Resources Management, 30(15), 5845–5859, doi:10.1007/s11269-016-1337-3, 2016. |
9. | Seibert, J., and I. van Meerveld, Hydrological change modeling: Challenges and opportunities, Hydrological Processes, 30(26), 4966–4971, doi:10.1002/hyp.10999, 2016. |
10. | Ceola, S., A. Montanari, T. Krueger, F. Dyer, H. Kreibich, I. Westerberg, G. Carr, C. Cudennec, A. Elshorbagy, H. Savenije, P. van der Zaag, D. Rosbjerg, H. Aksoy, F. Viola, G. Petrucci, K. MacLeod, B. Croke, D. Ganora, L. Hermans, M. J. Polo, Z. Xu, M. Borga, J. Helmschrot, E. Toth, R., A. Castellarin, A. Hurford, M. Brilly, A. Viglione, G. Blöschl, M. Sivapalan, A. Domeneghetti, A. Marinelli, and G. Di Baldassarre, Adaptation of water resources systems to changing society and environment: a statement by the International Association of Hydrological Sciences, Hydrological Sciences Journal, 61(16), 2803-2817, doi:10.1080/02626667.2016.1230674, 2016. |
11. | #Christelis, V., V. Bellos, and G. Tsakiris, Employing surrogate modelling for the calibration of a 2D flood simulation model, Sustainable Hydraulics in the Era of Global Change: Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016), A. S. Erpicum, M. Pirotton, B. Dewals, P. Archambeau (editors), CRC Press, 2016. |
12. | Nauditt, A., C. Birkel, C. Soulsby, and L. Ribbe, Conceptual modelling to assess the influence of hydroclimatic variability on runoff processes in data scarce semi-arid Andean catchments, Hydrological Sciences Journal, 62(4), 515-532, doi:10.1080/02626667.2016.1240870, 2017. |
13. | Sophocleous C., and I. Nalbantis, Effect of land use change on flood extent in the inflow stream of lake Paralimni, Cyprus, European Water, 60, 147-153, 2017. |
14. | Tegos, M., I. Nalbantis, and A. Tegos, Environmental flow assessment through integrated approaches, European Water, 60, 167-173, 2017. |
15. | Pathiraja, S., D. Anghileri, P. Burlando, A. Sharma, L. Marshall, and H. Moradkhani, Insights on the impact of systematic model errors on data assimilation performance in changing catchments, Advances in Water Resources, 113, 202-222, doi:10.1016/j.advwatres.2017.12.006, 2018. |
16. | Salas, J. D., J. Obeysekera, and R. M. Vogel, Techniques for assessing water infrastructure for nonstationary extreme events: a review, Hydrological Sciences Journal, 63(3), 325-352, doi:10.1080/02626667.2018.1426858, 2018. |
17. | Pathiraja, S., D. Anghileri, P. Burlando, A. Sharma, L. Marshall, and H. Moradkhani, Time varying parameter models for catchments with land use change: the importance of model structure, Hydrology and Earth System Sciences, 22, 2903-2919, doi:10.5194/hess-2017-382, 2018. |
18. | Varouchakis, E. A., K. Yetilmezsoy, and G. P. Karatzas, A decision-making framework for sustainable management of groundwater resources under uncertainty: combination of Bayesian risk approach and statistical tools, Water Policy, 21(3), 602-622, doi:10.2166/wp.2019.128, 2019. |
19. | Sadegh, M., A. AghaKouchak, A. Flores, I. Mallakpour, and M. R. Nikoo, A multi-model nonstationary rainfall-runoff modeling framework: analysis and toolbox, Water Resources Management, 33(9), 3011-3024, doi:10.1007/s11269-019-02283-y, 2019. |
20. | Zhao, B., J. Mao, Q. Dai, D. Han, H. Daiand, and G. Rong, Exploration on hydrological model calibration by considering the hydro-meteorological variability, Hydrology Research, 51(1), 30-46, doi:10.2166/nh.2019.047, 2020. |
21. | Nicolle, P., V. Andréassian, P. Royer-Gaspard, C. Perrin, G. Thirel, L. Coron, and L. Santos, Technical Note – RAT: a Robustness Assessment Test for calibrated and uncalibrated hydrological models, Hydrology and Earth System Sciences, 25, 5013–5027, doi:10.5194/hess-25-5013-2021, 2021. |
22. | Li, H., Q. Xu, Y. He, X. Fan, H. Yang, and S. Li, Temporal detection of sharp landslide deformation with ensemble-based LSTM-RNNs and Hurst exponent, Geomatics, Natural Hazards and Risk, 12(1), 3089-3113, doi:10.1080/19475705.2021.1994474, 2021. |
23. | Louloudis, G., E. Louloudis, C. Roumpos, E. Mertiri, G. Kasfikis, and K. Chatzopoulos, Forecasting development of mine pit lake water surface levels based on time series analysis and neural networks, Mine Water and the Environment, 41, 458–474, doi:10.1007/s10230-021-00844-5, 2022. |
24. | Ejaz, F., A. Guthke, T. Wöhling, and W. Nowak, Comprehensive uncertainty analysis for surface water and groundwater projections under climate change based on a lumped geo-hydrological model, Journal of Hydrology, 626(B), 130323, doi:10.1016/j.jhydrol.2023.130323, 2023. |
25. | Saadi, M., and C. Furusho-Percot, Which range of streamflow data is most informative in the calibration of an hourly hydrological model? Hydrological Sciences Journal, 69(1), 1-20, doi:10.1080/02626667.2023.2277835, 2024. |
A. Efstratiadis, Y. Dialynas, S. Kozanis, and D. Koutsoyiannis, A multivariate stochastic model for the generation of synthetic time series at multiple time scales reproducing long-term persistence, Environmental Modelling and Software, 62, 139–152, doi:10.1016/j.envsoft.2014.08.017, 2014.
A time series generator is presented, employing a robust three-level multivariate scheme for stochastic simulation of correlated processes. It preserves the essential statistical characteristics of historical data at three time scales (annual, monthly, daily), using a disaggregation approach. It also reproduces key properties of hydrometeorological and geophysical processes, namely the long-term persistence (Hurst-Kolmogorov behaviour), the periodicity and intermittency. Its efficiency is illustrated through two case studies in Greece. The first aims to generate monthly runoff and rainfall data at three reservoirs of the hydrosystem of Athens. The second involves the generation of daily rainfall for flood simulation at five rain gauges. In the first emphasis is given to long-term persistence – a dominant characteristic in the management of large-scale hydrosystems, comprising reservoirs with carry-over storage capacity. In the second we highlight to the consistent representation of intermittency and asymmetry of daily rainfall, and the distribution of annual daily maxima.
Additional material:
See also: http://dx.doi.org/10.1016/j.envsoft.2014.08.017
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | Huo, S.-C., S.-L. Lo, C.-H. Chiu, P.-T. Chiueh, and C.-S. Yang, Assessing a fuzzy model and HSPF to supplement rainfall data for nonpoint source water quality in the Feitsui reservoir watershed, Environmental Modelling and Software, 72, 110-116, doi:10.1016/j.envsoft.2015.07.002, 2015. |
2. | Read, L., and R. M. Vogel, Reliability, return periods, and risk under nonstationarity, Water Resources Research, 51(8), 6381–6398, doi:10.1002/2015WR017089, 2015. |
3. | Steidl, J., J. Schuler, U. Schubert, O. Dietrich, and P. Zander, Expansion of an existing water management model for the analysis of opportunities and impacts of agricultural irrigation under climate change conditions, Water, 7, 6351-6377, doi:10.3390/w7116351, 2015. |
4. | Hao, Z., and V. P. Singh, Review of dependence modeling in hydrology and water resources, Progress in Physical Geography, 40(4), 549-578, doi:10.1177/0309133316632460, 2016. |
5. | Srivastav, R., K. Srinivasan, and S. P. Sudheer, Simulation-optimization framework for multi-site multi-season hybrid stochastic streamflow modeling, Journal of Hydrology, 542, 506-531, doi:10.1016/j.jhydrol.2016.09.025, 2016. |
6. | Dialynas, Y. G., S. Bastola, R. L. Bras, E. Marin-Spiotta, W. L. Silver, E. Arnone, and L. V. Noto, Impact of hydrologically driven hillslope erosion and landslide occurrence on soil organic carbon dynamics in tropical watersheds, Water Resources Research, 52(11), 8895–8919, doi:10.1002/2016WR018925, 2016. |
7. | Stojković, M., S. Kostić, J. Plavšić, and S. Prohaska, A joint stochastic-deterministic approach for long-term and short-term modelling of monthly flow rates, Journal of Hydrology, 544, 555–566, doi:10.1016/j.jhydrol.2016.11.025, 2017. |
8. | Bardsley, E., A finite mixture approach to univariate data simulation with moment matching, Environmental Modelling & Software, 90, 27-33, doi:10.1016/j.envsoft.2016.11.019, 2017. |
9. | Dialynas, Y. D., R. L. Bras, and D. deB. Richter, Hydro-geomorphic perturbations on the soil-atmosphere CO2 exchange: How (un)certain are our balances?, Water Resources Research, 53(2), 1664–1682, doi:10.1002/2016WR019411, 2017. |
10. | Feng , M., P. Liu, S. Guo, Z. Gui, X. Zhang, W. Zhang, and L. Xiong, Identifying changing patterns of reservoir operating rules under various inflow alteration scenarios, Advances in Water Resources, 104, 23-26, doi:10.1016/j.advwatres.2017.03.003, 2017. |
11. | Stojković, M., J. Plavšić, and S. Prohaska, Annual and seasonal discharge prediction in the middle Danube River basin based on a modified TIPS (Tendency, Intermittency, Periodicity, Stochasticity) methodology, Journal of Hydrology and Hydromechanics, 65(2), doi:10.1515/johh-2017-0012, 2017. |
12. | Hanel, M., R. Kožín, M. Heřmanovský, and R. Roub, An R package for assessment of statistical downscaling methods for hydrological climate change impact studies, Environmental Modelling & Software, 95, 22–28, doi:10.1016/j.envsoft.2017.03.036, 2017. |
13. | Vogel, M., Stochastic watershed models for hydrologic risk management, Water Security, 1, 28-35, doi:10.1016/j.wasec.2017.06.001, 2017. |
14. | #McLachlan, S., K. Dube, T. Gallagher, B. Daley, and J. Walonoski, The ATEN Framework for creating the realistic synthetic electronic health record, 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018), Madeira, Portugal, 2018. |
15. | Salas, J. D., J. Obeysekera, and R. M. Vogel, Techniques for assessing water infrastructure for nonstationary extreme events: a review, Hydrological Sciences Journal, 63(3), 325-352, doi:10.1080/02626667.2018.1426858, 2018. |
16. | #Hnilica, J., M. Hanel, and V. Puš, Technical note: Changes of cross- and auto-dependence structures in climate projections of daily precipitation and their sensitivity to outliers, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2018-7, 2018. |
17. | Hua, Y., and B. Cui, Environmental flows and its satisfaction degree forecasting in the Yellow River, Ecological Indicators, 92, 207-220, doi:10.1016/j.ecolind.2017.02.017, 2018. |
18. | Ilich, N., A. Gharib, and E. G. R. Davies, Kernel distributed residual function in a revised multiple order autoregressive model and its applications in hydrology, Hydrological Sciences Journal, 63(12), 1745-1758, doi:10.1080/02626667.2018.1541090, 2018. |
19. | Henao, F., Y. Rodriguez, J. P. Viteri, and I. Dyner, Optimising the insertion of renewables in the Colombian power sector, Renewable Energy, 132, 81-92, doi:10.1016/j.renene.2018.07.099, 2019. |
20. | Park, J., C. Onof, and D. Kim, A hybrid stochastic rainfall model that reproduces some important rainfall characteristics at hourly to yearly timescales, Hydrology and Earth System Sciences, 23, 989-1014, doi:10.5194/hess-23-989-2019, 2019. |
21. | Ferreira, D. M., C. V. S. Fernandes, E. Kaviski, and D. Fontane, Water quality modelling under unsteady state analysis: Strategies for planning and management, Journal of Environmental Management, 239, 150-158, doi:10.1016/j.jenvman.2019.03.047, 2019. |
22. | Seo, S. B., Y.-O. Kim, and S.-U. Kang, Time-varying discrete hedging rules for drought contingency plan considering long-range dependency in streamflow, Water Resources Management, 33(8), 2791-2807, doi:10.1007/s11269-019-02244-5, 2019. |
23. | #McLachlan, S., K. Dube, T. Gallagher, J. A. Simmonds, and N. E. Fenton, The ATEN Framework for creating the realistic synthetic electronic health record, Biomedical Engineering Systems and Technologies, BIOSTEC 2018, Communications in Computer and Information Science, Vol. 1024, Springer, Cham, doi:10.1007/978-3-030-29196-9_25, 2019. |
24. | Yu, Z., S. Miller, F. Montalto, and U. Lall, Development of a non-parametric stationary synthetic rainfall generator for use in hourly water resource simulations, Water, 11, 1728, doi:10.3390/w11081728, 2019. |
25. | Bermúdez, M., L. Cea, and J. Sopelana, Quantifying the role of individual flood drivers and their correlations in flooding of coastal river reaches, Stochastic Environmental Research and Risk Assessment, 33(10), 1851-1861, doi:10.1007/s00477-019-01733-8, 2019. |
26. | Henao, F., and I. Dyner, Renewables in the optimal expansion of Colombian power considering the Hidroituango crisis, Renewable Energy, 158, 612-627, doi:10.1016/j.renene.2020.05.055, 2020. |
27. | Peng, Y., X. Yu, H. Yan, and J. Zhang, Stochastic simulation of daily suspended sediment concentration using multivariate copulas, Water Resources Management, 34, 3913-3932, doi:10.1007/s11269-020-02652-y, 2020. |
28. | Sobhaniyeh, Z., M. H. Niksokhan, and B. Omidvar, Investigation of uncertainties in a rainfall-runoff conceptual model for simulation of basin using Bayesian method, Iranian Journal of Ecohydrology, 7(1), 223-236, doi:10.22059/ije.2020.294740.1264, 2020. |
29. | Wang, Q., J. Zhou, K. Huang, L. Dai, B. Jia, L. Chen, and H. Qin, A procedure for combining improved correlated sampling methods and a resampling strategy to generate a multi-site conditioned streamflow process, Water Resources Management, 35, 1011-1027, doi:10.1007/s11269-021-02769-8, 2021. |
30. | Brunner, M. I., L. Slater, L. M. Tallaksen, and M. Clark, Challenges in modeling and predicting floods and droughts: A review, Wiley Interdisciplinary Reviews: Water, 8(3), e1520, doi:10.1002/wat2.1520, 2021. |
31. | Wang, Q., J. Zhou, L. Dai, K. Huang, and G. Zha, Risk assessment of multireservoir joint flood control system under multiple uncertainties, Journal of Flood Risk Management, e12740, doi:10.1111/jfr3.12740, 2021. |
32. | Bahrpeyma, F., M. Roantree, P. Cappellari, M. Scriney, and A. McCarren, A methodology for validating diversity in synthetic time series generation, MethodsX, 101459, doi:10.1016/j.mex.2021.101459, 2021. |
33. | Pouliasis, G., G. A. Torres-Alves, and O. Morales-Napoles, Stochastic modeling of hydroclimatic processes using vine copulas, Water, 13(16), 2156, doi:10.3390/w13162156, 2021. |
34. | Santana, R. F., and A. B. Celeste, Stochastic reservoir operation with data-driven modeling and inflow forecasting, Journal of Applied Water Engineering and Research, doi:10.1080/23249676.2021.1964389, 2021. |
35. | Araújo, J. E. S., J. Í. P. Siqueira, and A. B. Celeste, Incorporação de estocasticidade em ferramenta computacional para dimensionamento de reservatórios, Scientia cum Industria, 9(2), 36-40, doi:10.18226/23185279.v9iss2p36, 2021. |
36. | Bekri, E. S., P. Economou, P. C. Yannopoulos, and A. C. Demetracopoulos, Reassessing existing reservoir supply capacity and management resilience under climate change and sediment deposition, Water, 13(13), 1819, doi:10.3390/w13131819, 2021. |
37. | Salcedo-Sanz, S., D. Casillas-Pérez, J. Del Ser, C. Casanova-Mateo, L. Cuadra, M. Piles, G. Camps-Valls, Persistence in complex systems, Physics Reports, 957, 1-73, doi:10.1016/j.physrep.2022.02.002, 2022. |
38. | Bărbulescu, A., Monthly precipitation field generation at Sulina (Romania), IOP Conference Series: Materials Science and Engineering, 1242, 012004, doi:10.1088/1757-899X/1242/1/01200, 2022. |
39. | Haktanir, T., M. Bircan Kara, and N. Acanal, A multiseries stochastic model for synthetic monthly flows, Hydrological Sciences Journal, 67(5), 741-758, doi:10.1080/02626667.2022.2039662, 2022. |
40. | Kämper, A., R. Delorme, L. Leenders, and A. Bardow, Boosting operational optimization of multi-energy systems by artificial neural nets, Computers & Chemical Engineering, 173, 108208, doi:10.1016/j.compchemeng.2023.108208, 2023. |
41. | Ang, C. Y. S., Y. S. Chiew, X. Wang, E. H. Ooi, M. B. M. Nor, M. E. Cove, and J. G. Chase, Virtual patient with temporal evolution for mechanical ventilation trial studies: A stochastic model approach, Computer Methods and Programs in Biomedicine, 240, 107728, doi:10.1016/j.cmpb.2023.107728, 2023. |
42. | Hu, C., Z. Sun, C. Li, Y. Zhang, and C. Xing, Survey of time series data generation in IoT, Sensors, 23(15), 6976, doi:10.3390/s23156976, 2023. |
43. | Zaniolo, M., S. Fletcher, and M. Mauter, FIND: A synthetic weather generator to control drought frequency, intensity, and duration, Environmental Modelling & Software, 172, 105927, doi:10.1016/j.envsoft.2023.105927, 2024. |
44. | Swagatika, S., J. C. Paul, B. B. Sahoo, S. K. Gupta, and P. K. Singh, Improving the forecasting accuracy of monthly runoff time series of the Brahmani River in India using a hybrid deep learning model, Journal of Water and Climate Change, 15(1), 139-156, doi:10.2166/wcc.2023.487, 2024. |
45. | Sri Ranga, K. M., and S. S. Prasad, Disaggregation of daily rainfall data into hourly rainfall data using statistical methods for stormwater management in urban areas, Current Science, 126(8), 951, doi:10.18520/cs/v126/i8/951-958, 2024. |
46. | Chandra, S., P. K. S. Prakash, S. Samanta, and S. Chilukuri, ClinicalGAN: Powering patient monitoring in clinical trials with patient digital twins, Scientific Reports, 14, 12236, doi:10.1038/s41598-024-62567-1, 2024. |
47. | Tegos, A., A Monte Carlo model for WWTP effluent flow treatment through enhanced willow evapotranspiration, Hydrology, 11(9), 134, doi:10.3390/hydrology11090134, 2024. |
48. | Aloni, O., G. Perelman, and B. Fishbain, Synthetic random environmental time series generation with similarity control, preserving original signal’s statistical characteristics, Environmental Modelling & Software, 106283, doi:10.1016/j.envsoft.2024.106283, 2024. |
A. Efstratiadis, A. D. Koussis, D. Koutsoyiannis, and N. Mamassis, Flood design recipes vs. reality: can predictions for ungauged basins be trusted?, Natural Hazards and Earth System Sciences, 14, 1417–1428, doi:10.5194/nhess-14-1417-2014, 2014.
Despite the great scientific and technological advances in flood hydrology, everyday engineering practices still follow simplistic approaches that are easy to formally implement in ungauged areas. In general, these "recipes" have been developed many decades ago, based on field data from typically few experimental catchments. However, many of them have been neither updated nor validated across all hydroclimatic and geomorphological conditions. This has an obvious impact on the quality and reliability of hydrological studies, and, consequently, on the safety and cost of the related flood protection works. Preliminary results, based on historical flood data from Cyprus and Greece, indicate that a substantial revision of many aspects of flood engineering procedures is required, including the regionalization formulas as well as the modelling concepts themselves. In order to provide a consistent design framework and to ensure realistic predictions of the flood risk (a key issue of the 2007/60/EU Directive) in ungauged basins, it is necessary to rethink the current engineering practices. In this vein, the collection of reliable hydrological data would be essential for re-evaluating the existing "recipes", taking into account local peculiarities, and for updating the modelling methodologies as needed.
Full text: http://www.itia.ntua.gr/en/getfile/1413/7/documents/nhess-14-1417-2014.pdf (207 KB)
Additional material:
See also: http://www.nat-hazards-earth-syst-sci.net/14/1417/2014/
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | van Emmerik, T. H. M., G. Mulder, D. Eilander, M. Piet, and H. Savenije, Predicting the ungauged basin: Model validation and realism assessment, Frontiers in Earth Sciences, 3:62, doi:10.3389/feart.2015.00062, 2015. |
2. | Biondi, D., and L. Da Luca, Process-based design flood estimation in ungauged basins by conditioning model parameters on regional hydrological signatures, Natural Hazards, 79(2), 1015-1038, doi:10.1007/s11069-015-1889-1, 2015. |
3. | Yannopoulos, S., E. Eleftheriadou, S. Mpouri, and I. Giannopoulou, Implementing the requirements of the European Flood Directive: the case of ungauged and poorly gauged watersheds, Environmental Processes, 2(1), 191-207, doi:10.1007/s40710-015-0094-2, 2015. |
4. | Wałęga, A., and A. Rutkowska, Usefulness of the modified NRCS-CN method for the assessment of direct runoff in a mountain catchment, Acta Geophysica, 63(5), 1423–1446, doi:10.1515/acgeo-2015-0043, 2015. |
5. | Walega, A., B. Michalec, A. Cupak, and M. Grzebinoga, Comparison of SCS-CN determination methodologies in a heterogeneous catchment, Journal of Mountain Science, 12(5), 1084-1094, doi:10.1007/s11629-015-3592-9, 2015. |
6. | Awadallah, A.G., H. Saad, A. Elmoustafa, and A. Hassan, Reliability assessment of water structures subject to data scarcity using the SCS-CN model, Hydrological Sciences Journal, 61(4), 696-710, doi:10.1080/02626667.2015.1027709, 2016. |
7. | Merheb, M., R. Moussa, C. Abdallah, F. Colin, C. Perrin, and N. Baghdadi, Hydrological response characteristics of Mediterranean catchments at different time scales: a meta-analysis, Hydrological Sciences Journal, 61(14), 2520-2539, doi:10.1080/02626667.2016.1140174, 2016. |
8. | Kjeldsen, T., H. Kim, C. Jang, and H. Lee, Evidence and implications of nonlinear flood response in a small mountainous watershed, Journal of Hydrologic Engineering, 21(8), 04016024, doi:10.1061/(ASCE)HE.1943-5584.0001343, 2016. |
9. | Taghvaye Salimi, E., A. Nohegar, A. Malekian, M. Hoseini, and A. Holisaz, Estimating time of concentration in large watersheds, Paddy and Water Environment, 15(1), 123-132, doi:10.1007/s10333-016-0534-2, 2017. |
10. | Biondi, D., and D. L. De Luca, Rainfall-runoff model parameter conditioning on regional hydrological signatures: application to ungauged basins in southern Italy, Hydrology Research, 48(3) 714-725, doi:10.2166/nh.2016.097, 2017. |
11. | Attakora-Amaniampong, E., E. Owusu-Sekyere, and D. Aboagye, Urban floods and residential rental values nexus in Kumasi, Ghana, Ghana Journal of Development Studies, 13(2), 176-194, 2016. |
12. | #Destro, E., E. I. Nikolopoulos, J. D. Creutin, and M. Borga, Floods, Environmental Hazards Methodologies for Risk Assessment and Management, Dalezios, N. R. (editor), Chapter 4, IWA Publishing, 2017. |
13. | van Noordwijk, M., L. Tanika, L., and B. Lusiana, Flood risk reduction and flow buffering as ecosystem services – Part 1: Theory on flow persistence, flashiness and base flow, Hydrology and Earth System Sciences, 21, 2321-2340, doi:10.5194/hess-21-2321-2017, 2017. |
14. | Verma, S., R. K. Verma, S. K. Mishra, A. Singh, and G. K. Jayaraj, A revisit of NRCS-CN inspired models coupled with RS and GIS for runoff estimation, Hydrological Sciences Journal, 62(12), 1891-1930, doi:10.1080/02626667.2017.1334166, 2017. |
15. | De Luca, D. L., and D. Biondi, Bivariate return period for design hyetograph and relationship with T-year design flood peak, Water, 9, 673, doi:10.3390/w9090673, 2017. |
16. | #Danııl E., S. Michas, and G. Aerakis, Hydrologic issues in demarcation studies of watercourses in Greece, 15th International Conference on Environmental Science and Technology, CEST2017_00869, Rhodes, 2017. |
17. | Wałęga, A., A. Cupak, D. M. Amatya, and E. Drożdżal, Comparison of direct outflow calculated by modified SCS-CN methods for mountainous and highland catchments in Upper Vistula basin, Poland and Lowland catchment in South Carolina, U.S.A., Acta Sci. Pol. Formatio Circumiectus, 16(1), 187–207, doi:10.15576/ASP.FC/2017.16.1.187, 2017. |
18. | #Walker, N. J., K. N. Iipinge, J. D. S. Cullis, D. Scott, J. Mfune, P. Wolski, and C. Jack, Integrating climate change information into long term planning and design for critical water related infrastructure in Windhoek and other African cities, 18th WaterNet/WARFSA/GWP-SA Symposium, Swakopmund, Namibia, 2017. |
19. | Garrote, J., A. Díez-Herrero, J. M. Bodoque, M. A. Perucha, P. L. Mayer, and M. Génova, Flood hazard management in public mountain recreation areas vs. ungauged fluvial basins: Case study of the Caldera de Taburiente National Park, Canary Islands (Spain), Geosciences, 8(1), 6, doi:10.3390/geosciences8010006, 2018. |
20. | Petroselli, A., and S. Grimaldi, Design hydrograph estimation in small and fully ungauged basins: a preliminary assessment of the EBA4SUB framework, Journal of Flood Risk Management, 11(51), S197–S210, doi:10.1111/jfr3.12193, 2018. |
21. | Zin, W., A. Kawasaki, W. Takeuchi, Z. M. L. T. San, K. Z. Htun, T. H. Aye, and S. Win, Flood hazard assessment of Bago river basin, Myanmar, Journal of Disaster Research, 13(1), 14-21, doi:10.20965/jdr.2018.p0014, 2018. |
22. | Alipour, M. H., and K. M. Kibler, A framework for streamflow prediction in the world’s most severely data-limited regions: test of applicability and performance in a poorly-gauged region of China, Journal of Hydrology, 557, 41-54, doi:10.1016/j.jhydrol.2017.12.019, 2018. |
23. | Hdeib, R., C. Abdallah, F. Colin, L. Brocca, and R. Moussa, Constraining coupled hydrological-hydraulic flood model by past storm events and post-event measurements in data-sparse regions, Journal of Hydrology, 565, 160-175, doi:10.1016/j.jhydrol.2018.08.008, 2018. |
24. | Petroselli, A., M. Vojtek, and J. Vojteková, Flood mapping in small ungauged basins: A comparison of different approaches for two case studies in Slovakia, Hydrology Research, 50(1), 379-392, doi:10.2166/nh.2018.040, 2018. |
25. | Gericke, O. J., Catchment response time and design rainfall: the key input parameters for design flood estimation in ungauged catchments, Journal of the South African Institution of Civil Engineering, 60(4), 51-67, doi:10.17159/2309-8775/2018/v60n4a6, 2018. |
26. | #Trifonova, T. A., D. V. Trifonov, S. I. Abrakhin, V. N. Koneshov, A. V. Nikolaev, and S. M. Arakelian, New verification of the groundwater and tectonic processes possible impact on a series of recent catastrophic floods and debris flows (2011-2017), Debris Flows: Disasters, Risk, Forecast, Protection – Proceedings of the 5th International Conference, S. S. Chernomorets and G. V. Gavardashvili (editors), 606-618, Tbilisi, Georgia, 2018. |
27. | Papaioannou, G., A. Loukas, and L. Vasiliades, Flood risk management methodology for lakes and adjacent areas: The lake Pamvotida paradigm, Proceedings, 7, 21, doi:10.3390/ECWS-3-05825, 2019. |
28. | Jiang, X., L., Yang, and H. Tatano, Assessing spatial flood risk from multiple flood sources in a small river basin: A method based on multivariate design rainfall, Water, 11(5), 1031, doi:10.3390/w11051031, 2019. |
29. | Sarchani, S., and I. Tsanis, Analysis of a flash flood in a small basin in Crete, Water, 11(11), 2253, doi:10.3390/w11112253, 2019. |
30. | Walega, A., and T. Salata, Influence of land cover data sources on estimation of direct runoff according to SCS-CN and modified SME methods, Catena, 172, 232-242, doi:10.1016/j.catena.2018.08.032, 2019. |
31. | Pinho, J. L. S., L. Vieira, J. M. P. Vieira, S. Venâncio, N. E. Simões, J. A. Sá Marques, and F. S. Santos, Assessing causes and associated water levels for an urban flood using hydroinformatic tools, Journal of Hydroinformatics, 22(1), 61-76, doi:10.2166/hydro.2019.019, 2020. |
32. | Wanniarachchi, S. S., and N. T. S. Wijesekera, Challenges in field approximations of regional scale hydrology, Journal of Hydrology: Regional Studies, 27, 100647, doi:10.1016/j.ejrh.2019.100647, 2020. |
33. | Fortesa, J., J. Latron, J. García-Comendador, M. Tomàs-Burguera, J. Company, A. Calsamiglia, and J. Estrany, Multiple temporal scales assessment in the hydrological response of small Mediterranean-climate catchments, Water, 12(1), 299, doi:10.3390/w12010299, 2020. |
34. | Trifonova, T., D. Trifonov, D. Bukharov, S. Abrakhin, M. Arakelian, and S. Arakelian, Global and regional aspects for genesis of catastrophic floods: The problems of forecasting and estimation for mass and water balance (surface water and groundwater contribution), IntechOpen, doi:10.5772/intechopen.91623, 2020. |
35. | Kastridis, A., C. Kirkenidis, and M. Sapountzis, An integrated approach of flash flood analysis in ungauged Mediterranean watersheds using post‐flood surveys and Unmanned Aerial Vehicles (UAVs), Hydrological Processes, 34(25), 4920-4939, doi:10.1002/hyp.13913, 2020. |
36. | Bertini, C., L. Buonora, E. Ridolfi, F. Russo, and F. Napolitano, On the use of satellite rainfall data to design a dam in an ungauged site, Water, 12(11), 3028, doi:10.3390/w12113028, 2020. |
37. | Ramadan, A. N. A., D. Nurmayadi, A. Sadili, R. R. Solihin, and Z. Sumardi, Pataruman watershed Curve Number determination study based on Indonesia land map unit, Media Komunikasi Teknik Sipil, 26(2), 258-266, doi:10.14710/mkts.v26i2.26563, 2020. |
38. | Bournas, A., and E. Baltas, Comparative analysis of rain gauge and radar precipitation estimates towards rainfall-runoff modelling in a peri-urban basin in Attica, Greece, Hydrology, 8(1), 29, doi:10.3390/hydrology8010029, 2021. |
39. | Devkota, N., and N. M. Shakya, Development of rainfall-runoff model for extreme storm events in the Bagmati River Basin, Nepal, Journal of Engineering Issues and Solutions, 1(1), 158-173, doi:10.3126/joeis.v1i1.36835, 2021. |
40. | Almedeij, J., Modified NRCS abstraction method for flood hydrograph generation, Journal of Irrigation and Drainage Engineering, 47(10), 04021042-1, doi:10.1061/(ASCE)IR.1943-4774.0001609, 2021. |
41. | Zahraei, A., R. Baghbani, and A. Linhoss, Applying a graphical method in evaluation of empirical methods for estimating time of concentration in an arid region, Water, 13(19), 2624, doi:10.3390/w13192624, 2021. |
42. | Salazar-Galán, S., R. García-Bartual, J. L. Salinas, and F. Francés, A process-based flood frequency analysis within a trivariate statistical framework. Application to a semi-arid Mediterranean case study, Journal of Hydrology, 603, Part C, 127081, doi:10.1016/j.jhydrol.2021.127081, 2021. |
43. | Kastridis, A., G. Theodosiou, and G. Fotiadis, Investigation of flood management and mitigation measures in ungauged NATURA protected watersheds, Hydrology, 8(4), 170, doi:10.3390/hydrology8040170, 2021. |
44. | Coser, M. C., M. S. Mendes, J. A. T. Reis, and A. S. F. Mendonça, Periodic autoregressive models in flow regulating reservoirs design, Journal of Applied Water Engineering and Research, 10(4), 278-295, doi:10.1080/23249676.2021.1980124, 2022. |
45. | Lapides, D., A. Sytsma, G. O'Neil, D. Djokic, M. Nichols, and S. Thompson, Arc Hydro hillslope and Critical Duration: New tools for hillslope-scale runoff analysis, Environmental Modelling & Software, 153, 105408, doi:10.1016/j.envsoft.2022.105408, 2022. |
46. | Tegos, A., A. Ziogas, V. Bellos, and A. Tzimas, Forensic hydrology: a complete reconstruction of an extreme flood event in data-scarce area, Hydrology, 9(5), 93, doi:10.3390/hydrology9050093, 2022. |
47. | Singh, N., and T. Devi, Regionalization methods in ungauged catchments for flow prediction: review and its recent developments, Arabian Journal of Geosciences, 15(11), 1019, doi:10.1007/s12517-022-10287-z, 2022. |
48. | Liu, Y., and D. B. Wright, A storm-centered multivariate modeling of extreme precipitation frequency based on atmospheric water balance, Hydrology and Earth System Sciences, 26, 5241-5267, doi:10.5194/hess-26-5241-2022, 2022. |
49. | Al-Amri, N. S., H. A. Ewea, and M. M. Elfeki, Stochastic rational method for estimation of flood peak uncertainty in arid basins: Comparison between Monte Carlo and first order second moment methods with a case study in southwest Saudi Arabia, Sustainability, 15(6), 4719, doi:10.3390/su15064719, 2023. |
50. | Acuña, P., and A. Pizarro, Can continuous simulation be used as an alternative for flood regionalisation? A large sample example from Chile, Journal of Hydrology, 626(A), 130118, doi:10.1016/j.jhydrol.2023.130118, 2023. |
51. | Evangelista, J., R. Woods, and P. Claps, Dimensional analysis of literature formulas to estimate the characteristic flood response time in ungauged basins: a velocity-based approach, Journal of Hydrology, 627(B), 130409, doi:10.1016/j.jhydrol.2023.130409, 2023. |
52. | Moccia, B., L. Buonora, and C. Bertini, On the influence of sample size and recentness for the definition of design rainfall, AIP Conference Proceedings, 3094(1), 500047, doi:10.1063/5.0210571, 2024. |
A. Efstratiadis, A. Tegos, A. Varveris, and D. Koutsoyiannis, Assessment of environmental flows under limited data availability – Case study of the Acheloos River, Greece, Hydrological Sciences Journal, 59 (3-4), 731–750, doi:10.1080/02626667.2013.804625, 2014.
The lower course of Acheloos River is an important hydrosystem of Greece, heavily modified by a cascade of four hydropower dams, which is now being extended by two more dams in the upper course. The design of the dams and hydropower facilities that are in operation has not considered any environmental criteria. However, in the last fifty years, numerous methodologies have been proposed to assess the negative impacts of such projects to both the abiotic and biotic environment, and to provide decision support towards establishing appropriate constraints on their operation, typically in terms of minimum flow requirements. In this study, seeking for a more environmental-friendly operation of the hydrosystem, we investigate the outflow policy from the most downstream dam, examining alternative environmental flow approaches. Accounting for data limitations, we recommend the Basic Flow Method, which is parsimonious and suitable for Mediterranean rivers, whose flows exhibit strong variability across seasons. We also show that the wetted perimeter – discharge method, which is an elementary hydraulic approach, provides consistent results, even without using any flow data. Finally, we examine the adaptation of the proposed flow policy (including artificial flooding) to the real-time hydropower generation schedule, and the management of the resulting conflicts.
Additional material:
See also: http://dx.doi.org/10.1080/02626667.2013.804625
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | Acreman, M. C., I. C. Overton, J. King, P. Wood, I. G. Cowx, M. J. Dunbar, E. Kendy, and W. Young, The changing role of ecohydrological science in guiding environmental flows, Hydrological Sciences Journal, 59(3–4), 1–18, 2014. |
2. | #Egüen, M., M. J. Polo, Z. Gulliver, E. Contreras, C. Aguilar, and M. A. Losada, Flood risk trends in coastal watersheds in South Spain: direct and indirect impact of river regulation, Changes in Flood Risk and Perception in Catchments and Cities, Proc. IAHS, 370, 51-56, doi:10.5194/piahs-370-51-2015, 2015. |
3. | Aguilar, C., and M. J. Polo, Assessing minimum environmental flows in nonpermanent rivers: The choice of thresholds, Environmental Modelling and Software, 79, 120-134, doi:10.1016/j.envsoft.2016.02.003, 2016. |
4. | Nerantzaki, S. D., G. V. Giannakis, N. P. Nikolaidis, I. Zacharias, G. P. Karatzas, and I. A. Sibetheros, Assessing the impact of climate change on sediment loads in a large Mediterranean watershed, Soil Science, 181(7), 306-314, 2016. |
5. | Poncelet, C., V. Andréassian, L. Oudin, and C. Perrin, The Quantile Solidarity approach for the parsimonious regionalization of flow duration curves, Hydrological Sciences Journal, 62(9), 1364-1380, doi:10.1080/02626667.2017.1335399, 2017. |
6. | Tegos, M., I. Nalbantis, and A. Tegos, Environmental flow assessment through integrated approaches, European Water, 60, 167-173, 2017. |
7. | Gemitzi, A., and V. Lakshmi, Evaluating renewable groundwater stress with GRACE data in Greece, Groundwater, 56(3), 501-514, doi:10.1111/gwat.12591, 2018. |
8. | Theodoropoulos, C., N. Skoulikidis, P. Rutschmann, and A. Stamou, Ecosystem-based environmental flow assessment in a Greek regulated river with the use of 2D hydrodynamic habitat modelling, River Research and Applications, 34(6), 538-547, doi:10.1002/rra.3284, 2018. |
9. | Zhao, C., S. Yang, J. Liu, C. Liu, F. Hao, Z. Wang, H. Zhang, J. Song, S. M. Mitrovic, and R. P. Lim, Linking fish tolerance to water quality criteria for the assessment of environmental flows: A practical method for streamflow regulation and pollution control, Water Research, 141, 96-108, doi:10.1016/j.watres.2018.05.025, 2018. |
10. | Operacz, A., A. Wałęga, A. Cupak, and B. Tomaszewska, The comparison of environmental flow assessment - The barrier for investment in Poland or river protection? Journal of Cleaner Production, 193, 575-592, doi:10.1016/j.jclepro.2018.05.098, 2018. |
11. | Książek, L., A. Woś, J. Florek, M. Wyrębek, D. Młyński, and A. Wałęga, Combined use of the hydraulic and hydrological methods to calculate the environmental flow: Wisloka river, Poland: case study, Environmental Monitoring and Assessment, 191:254, doi:10.1007/s10661-019-7402-7, 2019. |
12. | Shinozaki, Y., and N. Shirakawa, Current state of environmental flow methodologies: objectives, methods and their approaches, Journal of Japan Society of Civil Engineers – Ser. B1 (Hydraulic Engineering), 75(1), 15-30, doi:10.2208/jscejhe.75.15, 2019. |
13. | Kan, H., F. Hedenus, and L. Reichenberg, The cost of a future low-carbon electricity system without nuclear power – The case of Sweden, Energy, 195, 117015, doi:10.1016/j.energy.2020.117015, 2020. |
14. | Aryal, S. K., Y. Zhang, and F. Chiew, Enhanced low flow prediction for water and environmental management, Journal of Hydrology, 584, 124658, doi:10.1016/j.jhydrol.2020.124658, 2020. |
15. | #Ivanova, E., and D. Myronidis, Spatial interpolation approach for environmental flow assessment in Bulgarian-Greek Rhodope mountain range, Proceeding of the 9th International Conference on Information and Communication Technologies in Agriculture, Food & Environment (HAICTA 2020), 274-285, Thessaloniki, 2020. |
16. | Moccia, D., L. Salvadori, S. Ferrari, A. Carucci, and A. Pusceddu, Implementation of the EU ecological flow policy in Italy with a focus on Sardinia, Advances in Oceanography and Limnology, 11(1), doi:10.4081/aiol.2020.8781, 2020. |
17. | Koskinas, A., Stochastics and ecohydrology: A study in optimal reservoir design, Dams and Reservoirs, 30(2), 53-59, doi:10.1680/jdare.20.00009, 2020. |
18. | Dash, S. S., D. R. Sena, U. Mandal, A. Kumar, G. Kumar, P. K. Mishra, and M. Rawat, A hydrological modelling-based approach for vulnerable area identification under changing climate scenarios, Journal of Water and Climate Change, 12(2), 433-452, doi:10.2166/wcc.2020.202, 2021. |
19. | Senent-Aparicio, J., C. George, and R. Srinivasan, Introducing a new post-processing tool for the SWAT+ model to evaluate environmental flows, Environmental Modelling and Software, 136, 104944, doi:10.1016/j.envsoft.2020.104944, 2021. |
20. | Operacz, A, Possibility of hydropower development: a simple-to-use index, Energies, 14(10), 2764, doi:10.3390/en14102764, 2021. |
21. | Kan, X., L. Reichenberg, and F. Hedenus, The impacts of the electricity demand pattern on electricity system cost and the electricity supply mix: a comprehensive modeling analysis for Europe, Energy, 235, 121329, doi:10.1016/j.energy.2021.121329, 2021. |
22. | Greco, M., F. Arbia, and R. Giampietro, Definition of ecological flow Using IHA and IARI as an operative procedure for water management, Environments, 8(8), 77, doi:10.3390/environments8080077, 2021. |
23. | #Soulis, K., Hydrological data sources and analysis for the determination of environmental water requirements in mountainous areas, Environmental Water Requirements in Mountainous Areas, E. Dimitriou and C. Papadaki (editors), Chapter 2, 51-98, Elsevier, doi: 10.1016/B978-0-12-819342-6.00007-5, 2021. |
24. | #Muñoz-Mas, R., and P. Vezza, Quantification of environmental water requirements; how far can we go?, Environmental Water Requirements in Mountainous Areas, E. Dimitriou and C. Papadaki (editors), Chapter 6, 235-280, Elsevier, doi:10.1016/B978-0-12-819342-6.00001-4, 2021. |
25. | Zhang, X.-R., D.-R. Zhang, and Y. Ding, An environmental flow method applied in small and medium-sized mountainous rivers, Water Science and Engineering, 14(4), 323-329, doi:10.1016/j.wse.2021.10.003, 2021. |
26. | Owusu, A., M. Mul, M. Strauch, P. van der Zaag, M. Volk, and J. Slinger, The clam and the dam: A Bayesian belief network approach to environmental flow assessment in a data scarce region, Science of The Total Environment, 810, 151315, doi:10.1016/j.scitotenv.2021.151315, 2022. |
27. | Hoque, M. M., A. Islam, and S. Ghosh, Environmental flow in the context of dams and development with special reference to the Damodar Valley Project, India: a review, Sustainable Water Resources Management, 8, 62, doi:10.1007/s40899-022-00646-9, 2022. |
28. | Kan, X., F. Hedenus, L. Reichenberg, and O. Hohmeye, Into a cooler future with electricity generated from solar photovoltaic, iScience, 25(5), 104208, doi:10.1016/j.isci.2022.104208, 2022. |
29. | Colombera, L., and N. P. Mountney, Scale dependency in quantifications of the avulsion frequency of coastal rivers, Earth-Science Reviews, 230, 104043, doi:10.1016/j.earscirev.2022.104043, 2022. |
30. | #Sharma, M., C. Prakasam, R. Saravanan, S. C. Attri, V. S. Kanwar, and M. K. Sharma, A review of environmental flow evaluation methodologies – Limitations and validations, Proceedings of International Conference on Innovative Technologies for Clean and Sustainable Development (ICITCSD – 2021), Kanwar, V.S., Sharma, S.K., Prakasam, C. (eds.), Springer, Cham, doi:10.1007/978-3-030-93936-6_63, 2022. |
31. | Ivanova, E., and D. Myronidis, Application of an integrated methodology for spatial classification of the environmental flow in the Bulgarian-Greek Rhodope Mountain Range, International Journal of Sustainable Agricultural Management and Informatics, 8(1), 184-103, doi:10.1504/IJSAMI.2022.123045, 2022. |
32. | Prakasam, C., and R. Saravanan, Ecological flow assessment using hydrological method and validation through GIS application, Groundwater for Sustainable Development, 19, 100841, doi:10.1016/j.gsd.2022.100841, 2022. |
33. | Liu, S., Q. Zhang, Y. Xie, P. Xu, and H. Du, Evaluation of minimum and suitable ecological flows of an inland basin in China considering hydrological variation, Water, 15(4), 649, doi:10.3390/w15040649, 2023. |
34. | Verma, R. K., A. Pandey, S. K. Mishra, and V. P. Singh, A procedure for assessment of environmental flows incorporating inter- and intra-annual variability in dam-regulated watersheds, Water Resources Management, 37, 3259-3297, doi:10.1007/s11269-023-03502-3, 2023. |
35. | Chen, H., and Q. Li, Testing and applying baseflow approaches to environmental flow needs, Ecological Indicators, 152, 110363, doi:10.1016/j.ecolind.2023.110363, 2023. |
36. | Leone, M., F. Gentile, A. Lo Porto, G. F. Ricci, and A. M. De Girolamo, Ecological flow in southern Europe: Status and trends in non-perennial rivers, Journal of Environmental Management, 342, 118097, doi:10.1016/j.jenvman.2023.118097, 2023. |
37. | Castellanos-Osorio, G., A. López-Ballesteros, J. Pérez-Sánchez, and J. Senent-Aparicio, Disaggregated monthly SWAT+ model versus daily SWAT+ model for estimating environmental flows in Peninsular Spain, Journal of Hydrology, 129837, doi:10.1016/j.jhydrol.2023.129837, 2023. |
38. | Aszódi, A., B. Biró, L. Adorján, A. C. Dobos, G. Illés, N. K. Tóth, D. Zagyi, and Z. T. Zsiborás, The effect of the future of nuclear energy on the decarbonization pathways and continuous supply of electricity in the European Union, Nuclear Engineering and Design, 415, 112688, doi:10.1016/j.nucengdes.2023.112688, 2023. |
39. | Bianucci, P., A. Sordo-Ward, B. Lama-Pedrosa, and L. Garrote, How do environmental flows impact on water availability under climate change scenarios in European basins?, Science of The Total Environment, 911, 168566, doi:10.1016/j.scitotenv.2023.168566, 2024. |
40. | Manikas, K. S. Skroufouta, and E. Baltas, Simulation and evaluation of pumped hydropower storage (PHPS) system at Kastraki reservoir, Renewable Energy, 222, 119888, doi:10.1016/j.renene.2023.119888, 2024. |
41. | Sedghi-Asl, M., and S. J. Poursalehan, Modified ideal point method for estimating minimum environmental flow of rivers, Acta Geophysica, 72, 3581-3594, doi:10.1007/s11600-023-01264-5, 2024. |
42. | Asadi, S., S. J. Mousavi, A. López-Ballesteros, and J. Senent-Aparicio, Analyzing hydrological alteration and environmental flows in a highly anthropized agricultural river basin system using SWAT+, WEAP and IAHRIS, Journal of Hydrology: Regional Studies, 52, 101738, doi:10.1016/j.ejrh.2024.101738, 2024. |
43. | Bănăduc, D., A. Curtean-Bănăduc, S. Barinova, V. L. Lozano, S. Afanasyev, T. Leite, P. Branco, D. F. Gomez Isaza, J. Geist, A. Tegos, H. Olosutean, and K. Cianfanglione, Multi-interacting natural and anthropogenic stressors on freshwater ecosystems: Their current status and future prospects for 21st century, Water, 16(11), 1483, doi:10.3390/w16111483, 2024. |
44. | Zhang, X., J. Yu, L. Wang, and R. Zhang, Determination of river ecological flow thresholds and development of early warning programs based on coupled multiple hydrological methods, Water, 16(14), 1986, doi:10.3390/w16141986, 2024. |
45. | Dimkić, D., and Z. Simić, WEI + as an indicator of water scarcity and ecological demand issue, Water Resources Management, doi:10.1007/s11269-024-03933-6, 2024. |
46. | Kumre, S. K., S. Swain, K. Amrit, S. K. Mishra, and A. Pandey, Linking curve number with environmental flows: a novel approach, Environmental Science and Pollution Research, doi:10.1007/s11356-024-35303-5, 2024. |
47. | Karamanoli, E., and C. Skoulikaris, Environmental flow assessment in transboundary rivers: challenges and opportunities using big data - A Greek case study, E3S Web of Conferences, 585, 03005, doi:10.1051/e3sconf/202458503005585, 2024. |
M. Rianna, A. Efstratiadis, F. Russo, F. Napolitano, and D. Koutsoyiannis, A stochastic index method for calculating annual flow duration curves in intermittent rivers, Irrigation and Drainage, 62 (S2), 41–49, doi:10.1002/ird.1803, 2013.
Flow duration curves are useful tools to estimate available surface water resources, at the basin scale. These represent the percentage of time during which discharge values are exceeded, irrespective of their temporal sequence. Annual flow duration curves are useful tools for evaluating all flow quantiles of a river and their confidence intervals, by removing the effects of variability from year to year. However, these tools fail to represent the hydrological regime of ephemeral rivers, since they cannot account for zero flows. In this work we propose a technique for calculating annual flow duration curves and their standard deviation in the case of intermittent rivers. In particular, we propose a generalization of the stochastic index method, in which we use the concept of total probability and order statistics. The method is proposed to determine the conditional distribution of positive flows, for given probability dry, and is implemented on three catchments in Italy and Greece, with low (<5%) and high (>40%) frequency of zero flows, respectively.
See also: http://dx.doi.org/10.1002/ird.1803
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | Ubertini, L., and F. R. Miralles-Wilhelm, New frontiers of hydrology: Soil, water, and vegetation monitoring and modelling, Irrigation and Drainage, 62(S2), iii-iv, 2013. |
2. | Müller, M. F., D. N. Dralle, and S. E. Thompson, Analytical model for flow duration curves in seasonally dry climates, Water Resources Research, 50(7), 5510-5531, 2014. |
3. | Atieh, M., B. Gharabaghi, and R. Rudra, Entropy-based neural networks model for flow duration curves at ungauged sites, Journal of Hydrology, 529(3), 1007–1020, doi:10.1016/j.jhydrol.2015.08.068, 2015 |
4. | Varouchakis, E. A., K. Spanoudaki, D. Hristopulos, G. P. Karatzas, and G. A. Corzo Perez, Stochastic modeling of aquifer level temporal fluctuations based on the conceptual basis of the soil-water balance equation, Soil Science, 181(6), 224–231, doi:10.1097/SS.0000000000000157, 2016. |
5. | #Rianna, M., F. Lombardo, B. Boccanera, and M. Giglioni, On the evaluation of FDC by the use of spot measurements, AIP Conference Proceedings, 1738, 430005, Rhodes, 2016. |
6. | Ridolfi, E., M. Rianna, G. Trani, L. Alfonso, G. Di Baldassarre, F. Napolitano, and F. Russo, A new methodology to define homogeneous regions through an entropy based clustering method, Advances in Water Resources, 96, 237-250, doi:10.1016/j.advwatres.2016.07.007, 2016. |
7. | #Rianna, M., E. Ridolfi, and F. Napolitano, Comparison of different hydrological similarity measures to estimate flow quantiles, AIP Conference Proceedings, 1863(1), 470002, doi:10.1063/1.4992633, 2017. |
8. | Ridolfi, E., H. Kumar, and A. Bárdossy, A methodology to estimate flow duration curves at partially ungauged basins, Hydrology and Earth System Sciences, 24, 2043–2060, doi:10.5194/hess-24-2043-2020, 2020. |
9. | Tramblay, Y., N. Rouché, J.-E. Paturel, G. Mahé, J.-F. Boyer, E. Amoussou, A. Bodian, H. Dacosta, H. Dakhlaoui, A. Dezetter, D. Hughes, L. Hanich, C. Peugeot, R. Tshimanga, and P. Lachassagne, ADHI: the African Database of Hydrometric Indices (1950–2018), Earth System Science Data, 13, 1547-1560, doi:10.5194/essd-13-1547-2021, 2021. |
10. | Burgan, H. I., and H. Aksoy, Daily flow duration curve model for ungauged intermittent subbasins of gauged rivers, Journal of Hydrology, 604, 127249, doi:10.1016/j.jhydrol.2021.127249, 2022. |
11. | Ma, L., D. Liu, Q. Huang, F. Guo, X. Zheng, J. Zhao, J. Luan, J. Fan, and G. Ming, Identification of a function to fit the flow duration curve and parameterization of a semi-arid region in North China, Atmosphere, 14(1), 116, doi:10.3390/atmos14010116, 2023. |
12. | Asikoglu, O. L., and T. Narin, Advancing low-flow quantile estimation: the role of areal scale factor (ASF) and annual flow–duration curves, Hydrology Research, 55(2), 128-143, doi:10.2166/nh.2024.077, 2024. |
13. | Alakbar, T., and H. I. Burgan, Regional power duration curve model for ungauged intermittent river basins, Journal of Water and Climate Change, jwc2024207, doi:10.2166/wcc.2024.207, 2024. |
J. A. P. Pollacco, B. P. Mohanty, and A. Efstratiadis, Weighted objective function selector algorithm for parameter estimation of SVAT models with remote sensing data, Water Resources Research, 49 (10), 6959–6978, doi:10.1002/wrcr.20554, 2013.
The objective function of the inverse problem in Soil Vegetation Atmosphere Transfer (SVAT) models can be expressed as the aggregation of two criteria, accounting for the uncertainties of surface soil moisture (θ) and evapotranspiration (ET), retrieved from remote sensing (RS). In this context, we formulate a Weighted Objective Function (WOF) with respect to model effective soil hydraulic parameters, comprising of two components for θ and ET, respectively, and a dimensionless coefficient w. Given that the sensitivity of θ is increased by omitting the periods when soil moisture decoupling occurs, we also introduce within the WOF a threshold, θd, which outlines the decoupling of the surface and root-zone moisture. The optimal values of w and θd are determined by using a novel framework, Weighted Objective Function Selector Algorithm (WOFSA). This performs numerical experiments, assuming known reference conditions. In particular, it solves the inverse problem for different sets of θ and ET, considering the uncertainties of retrieving them from RS, and then runs the hydrological model to obtain the simulated water fluxes and their residuals, ΔWF, against the reference responses. It estimates the two unknown variables, w and θd, by maximizing the linear correlation between the WOF and maximum ΔWF. The framework is tested using a modified Soil-Water-Atmosphere-Plant (SWAP) model, under 22 contrasting hydroclimatic scenarios. It is shown that for each texture class, w can be expressed as function of the average θ and ET-fraction, while that for all scenarios θd can be modeled as function of the average θ, average ET and standard deviation of ET. Based on the outcomes of this study, we also provide recommendations on the most suitable time period for soil moisture measurements for capturing its dynamics and thresholds. Finally, we propose the implementation of WOFSA within multiobjective calibration, as a generalized tool for recognizing robust solutions from the Pareto front.
Full text: http://www.itia.ntua.gr/en/getfile/1383/2/documents/WRR_paper.pdf (2717 KB)
Additional material:
See also: http://dx.doi.org/10.1002/wrcr.20554
Other works that reference this work (this list might be obsolete):
1. | Mohanty, B. P., Soil hydraulic property estimation using remote sensing: a review, Vadose Zone Journal, 12(4), 1-9, doi:10.2136/vzj2013.06.0100, 2013. |
2. | Wöhling, T., S. Gayler, E. Priesack, J. Ingwersen, H.-D. Wizemann, P. Högy, M. Cuntz, S. Attinger, V. Wulfmeyer, and T. Streck, Multiresponse, multiobjective calibration as a diagnostic tool to compare accuracy and structural limitations of five coupled soil-plant models and CLM3.5, Water Resources Research, 49(12), 8200–8221, doi:10.1002/2013WR014536, 2013. |
3. | #Gupta, M., N. K. Garg, P. K Srivastava, and T. Islam, Integration of TRMM rainfall in numerical model for pesticide prediction in subtropical climate, Proceedings of 11th International Conference on Hydroinformatics (HIC 2014), New York City, 2014. |
4. | Gong, W., Q. Duan, J. Li, C. Wang, Z. Di, Y. Dai, A. Ye, and C. Miao, Multi-objective parameter optimization of common land model using adaptive surrogate modelling, Hydrology and Earth System Sciences, 19, 2409–2425, doi:10.5194/hess-19-2409-2015, 2015. |
5. | Garg, N. K., and M. Gupta, Assessment of improved soil hydraulic parameters for soil water content simulation and irrigation scheduling, Irrigation Science, 33(4), 247-264, doi:10.1007/s00271-015-0463-7, 2015. |
6. | Larsen, M. A. D., J. C. Refsgaard, K. H. Jensen, M. B. Butts, S. Stisen, and M. Mollerup, Calibration of a distributed hydrology and land surface model using energy flux measurements, Agricultural and Forest Meteorology, 217, 74–88, doi:10.1016/j.agrformet.2015.11.012, 2016. |
7. | #Gupta, M., P. K Srivastava, and T. Islam, Integrative use of near-surface satellite soil moisture and precipitation for estimation of improved irrigation scheduling parameters, Satellite Soil Moisture Retrieval: Techniques and Applications , P. K. Srivastava, G. Petropoulos, and Y. H. Kerr (editors), 271-288, doi:10.1016/B978-0-12-803388-3.00014-0, 2016. |
8. | Maurya, S., P. K. Srivastava, M. Gupta, T. Islam, and D. Han, Integrating soil hydraulic parameter and microwave precipitation with morphometric analysis for watershed prioritization, Water Resources Management, 30(14), 5385–5405, doi:10.1007/s11269-016-1494-4, 2016. |
9. | Fernández-Gálvez, J., J. A. P. Pollacco, L. Lilburne, S. McNeill, S. Carrick, L. Lassabatere, and R. Angulo-Jaramillo, Deriving physical and unique bimodal soil Kosugi hydraulic parameters from inverse modelling, Advances in Water Resources, 153, 103933, doi:10.1016/j.advwatres.2021.103933, 2021. |
10. | Bonneau, J., G. L. Kouyi, L. Lassabatere, and T. D. Fletcher, Field validation of a physically-based model for bioretention systems, Journal of Cleaner Production, 312, 127636, doi:10.1016/j.jclepro.2021.127636, 2021. |
11. | Pollacco, J. A. P., J. Fernández-Gálvez, P. Ackerer, B. Belfort, L. Lassabatere, R. Angulo-Jaramillo, C. Rajanayaka, L. Lilburne, S. Carrick, and D. A. Peltzer, HyPix: 1D physically based hydrological model with novel adaptive time-stepping management and smoothing dynamic criterion for controlling Newton-Raphson step, Environmental Modelling & Software, 153, 105386, doi:10.1016/j.envsoft.2022.105386, 2022. |
12. | Pollacco, J. A. P., J. Fernández-Gálvez, C. Rajanayaka, S. C. Zammit, P. Ackerer, B. Belfort, L. Lassabatere, R. Angulo-Jaramillo, L. Lilburne, S. Carrick, and D. A. Peltzer, Multistep optimization of HyPix model for flexible vertical scaling of soil hydraulic parameters, Environmental Modelling & Software, 156, 105472, doi:10.1016/j.envsoft.2022.105472, 2022. |
13. | #Xu, C., G. Zhu, Y. Zhang, and K. Zhang, Comparing the impacts of single- and multi-objective optimization on the parameter estimation and performance of a land surface model, Hydrology and Earth System Science Discussions, doi:10.5194/hess-2024-121, 2024. |
N. Mamassis, A. Efstratiadis, and E. Apostolidou, Topography-adjusted solar radiation indices and their importance in hydrology, Hydrological Sciences Journal, 57 (4), 756–775, doi:10.1080/02626667.2012.670703, 2012.
Solar radiation, direct and diffuse, is affected by surface characteristics, such as slope, aspect, altitude and shading. The paper examines the effects of topography on radiation, at multiple spatiotemporal scales, using suitable geometrical methods for the direct and diffuse components. Two indices are introduced for comparing the direct radiation received by areas at the same and different latitudes, respectively. To investigate the profile of direct radiation through the Greek territory, these are evaluated from hourly to annual basis, via GIS techniques. Moreover, different approaches are examined for estimating the actual global radiation at operational spatial scales (sub-basin and terrain), according to the available meteorological data. The study indicates that the errors of typical hydrometeorological modelling formulas, ignoring the topographic effects and the seasonal allocation of direct and diffuse radiation, depend on the spatial scale and they are non-uniformly distributed in time. In all cases, the estimations are improved by applying the proposed adjusting approaches. In particular, the adjustment of the measured global radiation ensures up to 10% increase of efficiency, while the modified Angström formula achieves slight (i.e. 2-4%) increase of efficiency and notable reduction of bias.
See also: http://dx.doi.org/10.1080/02626667.2012.670703
Other works that reference this work (this list might be obsolete):
1. | Kunkel, V., T. Wells, and G. R. Hancock, Soil temperature dynamics at the catchment scale, Geoderma, 273, 32–44, doi:10.1016/j.geoderma.2016.03.011, 2016. |
2. | Felicísimo Pérez, Á. M., and M.Á. Martín-Tardío, A method of downscaling temperature maps based on analytical hillshading for use in species distribution modelling, Cartography and Geographic Information Science, 45(4), 329-338, doi:10.1080/15230406.2017.1338620, 2018. |
3. | Frey, J., K. Kovach, S. Stemmler, and B. Koch, UAV photogrammetry of forests as a vulnerable process. A sensitivity analysis for a structure from motion RGB-image pipeline, Remote Sensing, 16(2), 912, doi:10.3390/rs10060912, 2018. |
4. | Aguilar, C., R. Pimentel, and M. J. Polo, Two decades of distributed global radiation time series across a mountainous semiarid area (Sierra Nevada, Spain), Earth System Science Data, 13, 1335-1359, doi:10.5194/essd-13-1335-2021, 2021. |
5. | Nepali, B. R., J. Skartveit, and C. B. Baniya, Impacts of slope aspects on altitudinal species richness and species composition of Narapani-Masina landscape, Arghakhanchi, West Nepal, Journal of Asia-Pacific Biodiversity, 14(3), 415-424, doi:10.1016/j.japb.2021.04.005, 2021. |
6. | Pisinaras V., F. Herrmann, A. Panagopoulos, E. Tziritis, I. McNamara, and F. Wendland, Fully distributed water balance modelling in large agricultural areas—The Pinios river basin (Greece) case study, Sustainability, 15(5), 4343, doi:10.3390/su15054343, 2023. |
7. | Masoodian, S. A., Estimation of surface solar energy budget over Iran, Journal of the Earth and Space Physics, 49(2), 503-516, doi:10.22059/jesphys.2023.348599.1007457, 2023. |
8. | Dani, R. S., and C. B. Baniya, Seedling potential of trees species along the elevational gradient in temperate hill forest of central Nepal, Journal of Forest Sciences, 21(4), 1329-1344, doi:10.1007/s11629-023-8323-z, 2024. |
9. | Akbar, G., P. Prajitno, Ariffudin, and N. Ananda, Multivariate imputation chained equation on solar radiation in automatic weather station, Jurnal Penelitian Pendidikan IPA, 10(7), 3633–3639, doi:10.29303/jppipa.v10i7.7679, 2024. |
A. Efstratiadis, and K. Hadjibiros, Can an environment-friendly management policy improve the overall performance of an artificial lake? Analysis of a multipurpose dam in Greece, Environmental Science and Policy, 14 (8), 1151–1162, doi:10.1016/j.envsci.2011.06.001, 2011.
Taking as example a multipurpose dam in Greece, we wish to show that by following a rational operation policy, where the improvement of the broader environmental system becomes a high-priority target, it is possible to achieve a much more efficient allocation of its “traditional” water uses. In this context, we review the 50-year history of the Plastiras reservoir in central Greece, to highlight the multiple negative impacts from a non-systematic, abstraction-oriented, operation policy. This kind of management is contrasted to a hypothetical one, obtained through a multidisciplinary methodological framework that has been developed ten years ago, which aimed to compromise a number of conflicting water uses. This required establishing a minimum allowable level for agricultural abstractions and stabilising the annual releases for irrigation and drinking water supply. The criteria under study are, directly or indirectly, related to the water storage in the lake. Therefore, the key idea is to investigate the performance of each criterion with regard to the variability of the level, by examining alternative level vs. abstraction control rules. Thus, the quantity of water that would be yearly available is a function of the minimum level allowed and the desirable reliability. In fact, objective analysis indicates that the maintenance of the reservoir level as high as possible is necessary for the conservation of the quality of the lake’s landscape, for the development of tourist activity and also for providing drinking water of good quality. The advantages of the proposed framework are then exhibited through a back-analysis that focuses to the recent period. The implementation of this management policy not only would improve the water and landscape quality as well as the tourist perspectives, but also allow for a much more efficient planning of the agricultural and, under some premises, hydroelectric energy needs. Thus, the adoption of a constant annual release, irrespective of the recent sequence of inflows, may be beneficial for the long-term interests of all social groups and, therefore, conflicts among drinking water supply, tourism, landscape quality, irrigation and hydroelectric production would become less intense. Yet, the practice showed that a consensus between scientists, authorities and stakeholders for establishing the suggested policy is a considerably difficult task.
See also: http://dx.doi.org/10.1016/j.envsci.2011.06.001
Other works that reference this work (this list might be obsolete):
1. | Tajziehchi, S., S. M. Monavari, and A. Karbassi, An effective participatory-based method for dam social impact assessment, Polish Journal of Environmental Studies, 21(6), 1841-1848, 2012. |
2. | #Makrogianni, S., and K. Hadjibiros, Interdisciplinarity in environmental research: an analysis based on scientific publications, Proceedings of the 13th International Conference on Environmental Science and Technology, CEST2013_0681, Athens, 2013. |
3. | #Shukla, P., Performance Evaluation of Conservation Programmes for Lakes of the Nainital Region, Research paper, 14 p., GRIN Verlag GmbH, 2014.#Shukla, P., Performance Evaluation of Conservation Programmes for Lakes of the Nainital Region, Research paper, 14 p., GRIN Verlag GmbH, 2014. |
4. | #Patsialis, T., I. Kougias, J. Ganoulis, and N. Theodossiou, Irrigation dams for renewable energy production, Economics of Water Management in Agriculture, Bournaris, T., J. Berbel, B. Manos, and D. Viaggi (editors), CRC Press, 2014. |
5. | Dias-Sardinha, I., and D. Ross, Perceived impact of the Alqueva dam on regional tourism development, Tourism Planning and Development, 12(3), 362-375, doi:10.1080/21568316.2014.988880, 2015. |
6. | Martin-Utrillas, M., F. Juan-Garcia, J. Canto-Perello, and Jorge Curiel-Esparza, Optimal infrastructure selection to boost regional sustainable economy, International Journal of Sustainable Development & World Ecology, 22(1), 30-38, doi:10.1080/13504509.2014.954023, 2015. |
7. | Khorasani, H., R. Kerachian, and S. Malakpour-Estalaki, Developing a comprehensive framework for eutrophication management in off-stream artificial lakes, Journal of Hydrology, 562, 103-124, doi:10.1016/j.jhydrol.2018.04.052, 2018. |
8. | Rodrigues, C., and T. Fidélis, The integration of land use in public water reservoirs plans – A critical analysis of the regulatory approaches used for the protection of banks, Land Use Policy, 81, 762-775, doi:10.1016/j.landusepol.2018.10.047, 2019. |
9. | Dash, S. S., D. R. Sena, U. Mandal, A. Kumar, G. Kumar, P. K. Mishra, and M. Rawat, A hydrological modelling-based approach for vulnerable area identification under changing climate scenarios, Journal of Water and Climate Change,12(2), 433-452, doi:10.2166/wcc.2020.202, 2021. |
10. | Tegos, A., A. Ziogas, V. Bellos, and A. Tzimas, Forensic hydrology: a complete reconstruction of an extreme flood event in data-scarce area, Hydrology, 9(5), 93, doi:10.3390/hydrology9050093, 2022. |
11. | Wang, M., Y. Wang, L. Duan, X. Liu, H. Jia, and B. Zheng, Estimating the pollutant loss rate based on the concentration process and landscape unit interactions: a case study of the Dianchi Lake Basin, Yunnan Province, China, Environmental Science and Pollution Research, 29, 77927-77944, doi:10.1007/s11356-022-19696-9, 2022. |
12. | Goufa, M., E. Makeroufas, M. Gerakari, E. Sarri, A. Ragkos, P. J. Bebeli, A. Balestrazzi, and E. Tani, Understanding the potential to increase adoption of orphan crops: The Case of Lathyrus spp. cultivation in Greece, Agronomy, 14(1), 108, doi:10.3390/agronomy14010108, 2024. |
D. Koutsoyiannis, A. Christofides, A. Efstratiadis, G. G. Anagnostopoulos, and N. Mamassis, Scientific dialogue on climate: is it giving black eyes or opening closed eyes? Reply to “A black eye for the Hydrological Sciences Journal” by D. Huard, Hydrological Sciences Journal, 56 (7), 1334–1339, doi:10.1080/02626667.2011.610759, 2011.
Remarks:
The full text is available at the journal's web site: http://dx.doi.org/10.1080/02626667.2011.610759
Huard's Discussion can be accessed again from the journal's web site: http://dx.doi.org/10.1080/02626667.2011.610758
Weblog discussions can be seen in Climate Science, ABC News Watch, Fabius Maximus, Itia.
Related works:
Full text: http://www.itia.ntua.gr/en/getfile/1140/1/documents/2011HSJ_OpeningClosedEyes.pdf (88 KB)
Additional material:
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | Jiang, P., M. R. Gautam, J. Zhu and Z. Yu, How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States?, Journal of Hydrology, 479, 75-85, 2013. |
2. | Chun, K. P., H. S. Wheater, and C. Onof, Comparison of drought projections using two UK weather generators, Hydrological Sciences Journal, 58(2), 1–15, 2013. |
3. | #Ranzi, R., Influence of climate and anthropogenic feedbacks on the hydrological cycle, water management and engineering, Proceedings of 2013 IAHR World Congress, 2013. |
4. | Kundzewicz, Z.W., S. Kanae, S. I. Seneviratne, J. Handmer, N. Nicholls, P. Peduzzi, R. Mechler, L. M. Bouweri, N. Arnell, K. Mach, R. Muir-Wood, G. R. Brakenridge, W. Kron, G. Benito, Y. Honda, K. Takahashi, and B. Sherstyukov, Flood risk and climate change: global and regional perspectives, Hydrological Sciences Journal, 59(1), 1-28, doi:10.1080/02626667.2013.857411, 2014. |
5. | #Jiménez Cisneros, B.E., T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, P. Döll, T. Jiang, and S.S. Mwakalila, Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269, 2014. |
6. | Hesse, C., V. Krysanova, A. Stefanova, M. Bielecka, and D. A. Domnin, Assessment of climate change impacts on water quantity and quality of the multi-river Vistula Lagoon catchment, Hydrological Sciences Journal, 60(5), 890-911, doi:10.1080/02626667.2014.967247, 2015. |
7. | Nayak, P. C., R. Wardlaw, and A. K. Kharya, Water balance approach to study the effect of climate change on groundwater storage for Sirhind command area in India, International Journal of River Basin Management, 13(2), 243-261, doi:10.1080/15715124.2015.1012206, 2015. |
8. | Frank, P., Negligence, non-science, and consensus climatology, Energy and Environment, 26(3), doi:10.1260/0958-305X.26.3.391, 2015. |
9. | Kara, F., I. Yucel, and Z. Akyurek, Climate change impacts on extreme precipitation of water supply area in Istanbul: Use of ensemble climate modelling and geo-statistical downscaling, Hydrological Sciences Journal, 61(14), 2481-2495, doi:10.1080/02626667.2015.1133911, 2016. |
10. | Refsgaard, J. C., T. O. Sonnenborg, M. B. Butts, J. H. Christensen, S. Christensen, M. Drews, K. H. Jensen, F. Jørgensen, L. F. Jørgensen, M. A. D. Larsen, S. H. Rasmussen, L. P. Seaby, D. Seifert, and T. N. Vilhelmsen, Climate change impacts on groundwater hydrology – where are the main uncertainties and can they be reduced?, Hydrological Sciences Journal, 61(13), 2312-2324, doi:10.1080/02626667.2015.1131899, 2016. |
11. | Kundzewicz, Z. W., V. Krysanova, R. Dankers, Y. Hirabayashi, S. Kanae, F. F. Hattermann, S. Huang, P. C. D. Milly, M. Stoffel, P. P. J. Driessen, P. Matczak, P. Quevauviller, and H.-J. Schellnhuber, Differences in flood hazard projections in Europe – their causes and consequences for decision making, Hydrological Sciences Journal, 62(1), 1-14, doi:10.1080/02626667.2016.1241398, 2017. |
12. | Connolly, R., M. Connolly, W. Soon, D. R. Legates, R. G. Cionco, and V. M. Velasco Herrera, Northern hemisphere snow-cover trends (1967–2018): A comparison between climate models and observations, Geosciences, 9(3), 135, doi:10.3390/geosciences9030135, 2019. |
13. | Kron, W., J. Eichner, and Z. W. Kundzewicz, Reduction of flood risk in Europe – Reflections from a reinsurance perspective, Journal of Hydrology, doi:10.1016/j.jhydrol.2019.06.050, 2019. |
I. Nalbantis, A. Efstratiadis, E. Rozos, M. Kopsiafti, and D. Koutsoyiannis, Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems, Hydrology and Earth System Sciences, 15, 743–758, doi:10.5194/hess-15-743-2011, 2011.
The modelling of human-modified basins that are inadequately measured constitutes a challenge for hydrological science. Often, models for such systems are detailed and hydraulics-based for only one part of the system while for other parts oversimplified models or rough assumptions are used. This is typically a bottom-up approach, which seeks to exploit knowledge of hydrological processes at the micro-scale at some components of the system. Also, it is a monomeric approach in two ways: first, essential interactions among system components may be poorly represented or even omitted; second, differences in the level of detail of process representation can lead to uncontrolled errors. Additionally, the calibration procedure merely accounts for the reproduction of the observed responses using typical fitting criteria. The paper aims to raise some critical issues, regarding the entire modelling approach for such hydrosystems. For this, two alternative modelling strategies are examined that reflect two modelling approaches or philosophies: a dominant bottom-up approach, which is also monomeric and, very often, based on output information, and a top-down and holistic approach based on generalized information. Critical options are examined, which codify the differences between the two strategies: the representation of surface, groundwater and water management processes, the schematization and parameterization concepts and the parameter estimation methodology. The first strategy is based on stand-alone models for surface and groundwater processes and for water management, which are employed sequentially. For each model, a different (detailed or coarse) parameterization is used, which is dictated by the hydrosystem schematization. The second strategy involves model integration for all processes, parsimonious parameterization and hybrid manual-automatic parameter optimization based on multiple objectives. A test case is examined in a hydrosystem in Greece with high complexities, such as extended surface-groundwater interactions, ill-defined boundaries, sinks to the sea and anthropogenic intervention with unmeasured abstractions both from surface water and aquifers. Criteria for comparison are the physical consistency of parameters, the reproduction of runoff hydrographs at multiple sites within the studied basin, the likelihood of uncontrolled model outputs, the required amount of computational effort and the performance within a stochastic simulation setting. Our work allows for investigating the deterioration of model performance in cases where no balanced attention is paid to all components of human-modified hydrosystems and the related information. Also, sources of errors are identified and their combined effect are evaluated.
Full text: http://www.itia.ntua.gr/en/getfile/1055/11/documents/hess-15-743-2011.pdf (1733 KB)
Additional material:
See also: http://dx.doi.org/10.5194/hess-15-743-2011
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | Gharari, S., M. Hrachowitz, F. Fenicia, and H. H. G. Savenije, Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment, Hydrology and Earth System Sciences, 15, 3275-3291, doi:10.5194/hess-15-3275-2011, doi:10.5194/hess-15-3275-2011, 2011. |
2. | #Gharari, S., M. Hrachowitz, F. Fenicia, and H. H. G Savenije, Moving beyond traditional model calibration or how to better identify realistic model parameters: sub-period calibration, Hydrology and Earth System Science Discussions,, 9, 1885-1918, doi:10.5194/hessd-9-1885-2012, 2012. |
3. | Flipo, N., C. Monteil, M. Poulin, C. de Fouquet, and M. Krimissa, Hybrid fitting of a hydrosystem model: Long term insight into the Beauce aquifer functioning (France), Water Recourses Research, 48, W05509, doi:10.1029/2011WR011092, 2012. |
4. | Wang, X., T. Liu and W. Yang, Development of a robust runoff-prediction model by fusing the rational equation and a modified SCS-CN method, Hydrological Sciences Journal, 57(6), 1118-1140, doi:10.1080/02626667.2012.701305, 2012. |
5. | Maneta, M. P., and W. W. Wallender, Pilot-point based multi-objective calibration in a surface–subsurface distributed hydrological model, Hydrological Sciences Journal, 58(2), 390-407, doi:10.1080/02626667.2012.754987, 2013. |
6. | Hrachowitz, M., H.H.G. Savenije, G. Blöschl, J.J. McDonnell, M. Sivapalan, J.W. Pomeroy, B. Arheimer, T. Blume, M.P. Clark, U. Ehret, F. Fenicia, J.E. Freer, A. Gelfan, H.V. Gupta, D.A. Hughes, R.W. Hut, A. Montanari, S. Pande, D. Tetzlaff, P.A. Troch, S. Uhlenbrook, T. Wagener, H.C. Winsemius, R.A. Woods, E. Zehe, and C. Cudennec, A decade of Predictions in Ungauged Basins (PUB) — a review, Hydrological Sciences Journal, 58(6), 1198-1255, 2013. |
7. | #Loukas, A., and L. Vasiliades, Review of applied methods for flood-frequency analysis in a changing environment in Greece, In: A review of applied methods in Europe for flood-frequency analysis in a changing environment, Floodfreq COST action ES0901: European procedures for flood frequency estimation (ed. by H. Madsen et al.), Centre for Ecology & Hydrology, Wallingford, UK, 2013. |
8. | Flipo, N., A. Mouhri, B. Labarthe, S. Biancamaria, A. Rivière and P. Weill, Continental hydrosystem modelling: the concept of nested stream–aquifer interfaces, Hydrology and Earth System Sciences, 18, 3121-3149, doi:10.5194/hess-18-3121-2014, 2014. |
9. | Ivkovic, K. M., B. F. W. Croke and R. A.Kelly, Overcoming the challenges of using a rainfall-runoff model to estimate the impacts of groundwater extraction on low flows in an ephemeral stream, Hydrology Research, 45(1), 58-72, doi:10.2166/nh.2013.204, 2014. |
10. | Mateo, C. M., N. Hanasaki, D. Komori, K. Tanaka, M. Kiguchi, A. Champathong, T. Sukhapunnaphan, D.Yamazaki, and T. Oki, Assessing the impacts of reservoir operation to floodplain inundation by combining hydrological, reservoir management, and hydrodynamic models, Water Resources Research, 50(9), 7245–7266, doi:10.1002/2013WR014845, 2014. |
11. | Gharari, S., M. Hrachowitz, F. Fenicia, H. Gao, and H. H. G. Savenije, Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration, Hydrology and Earth System Sciences, 18, 4839-4859, doi:10.5194/hess-18-4839-2014, 2015. |
12. | Thirel, G., V. Andréassian, C. Perrin, J.-N. Audouy, L. Berthet, P. Edwards, N. Folton, C. Furusho, A. Kuentz, J. Lerat, G. Lindström, E. Martin, T. Mathevet, R. Merz, J. Parajka, D. Ruelland, and J. Vaze, Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments, Hydrological Sciences Journal, 60(7-8), 1184-1199, doi:10.1080/02626667.2014.9672482014, 2015. |
13. | Pryet, A., B. Labarthe, F. Saleh, M. Akopian and N. Flipo, Reporting of stream-aquifer flow distribution at the regional scale with a distributed process-based model, Water Resources Management, 10.1007/s11269-014-0832-7, 29(1), 139-159, 2015. |
14. | Donnelly, C., J. C. M. Andersson, and B. Arheimer, Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe, Hydrological Sciences Journal, 61(2), 255-273, doi:10.1080/02626667.2015.1027710, 2016. |
15. | Bellin, A., B. Majone, O. Cainelli, D. Alberici, and F. Villa, A continuous coupled hydrological and water resources management model, Environmental Modelling and Software, 75, 176–192, doi:10.1016/j.envsoft.2015.10.013, 2016. |
16. | Ajmal, M., J.-H. Ahn, and , T.-W. Kim, Excess stormwater quantification in ungauged watersheds using an event-based modified NRCS model, Water Resources Management, 30(4), 1433-1448, doi:10.1007/s11269-016-1231-z, 2016. |
17. | Ma, L., C. He, H. Bian, and L. Sheng, MIKE SHE modeling of ecohydrological processes: Merits, applications, and challenges, Ecological Engineering, 96, 137–149, doi:10.1016/j.ecoleng.2016.01.008, 2016. |
18. | Tigkas, D., V. Christelis, and G. Tsakiris, Comparative study of evolutionary algorithms for the automatic calibration of the Medbasin-D conceptual hydrological model, Environmental Processes, 3(3), 629–644, doi:10.1007/s40710-016-0147-1, 2016. |
19. | Ercan, A., E. C. Dogrul, and T. N. Kadir, Investigation of the groundwater modelling component of the Integrated Water Flow Model (IWFM), Hydrological Sciences Journal, 61(16), 2834-2848, doi:10.1080/02626667.2016.1161765, 2016. |
20. | Balbarini, N., W. M. Boon, E. Nicolajsen, J. M. Nordbotten, P. L. Bjerg, and P. J. Binning, A 3-D numerical model of the influence of meanders on groundwater discharge to a gaining stream in an unconfined sandy aquifer, Journal of Hydrology, 552, 168-181, doi:10.1016/j.jhydrol.2017.06.042, 2017. |
21. | Antonetti, M., and M. Zappa, How can expert knowledge increase the realism of conceptual hydrological models? A case study in the Swiss Pre-Alps, Hydrology and Earth System Sciences, 22, 4425-4447, doi:10.5194/hess-2017-322, 2018. |
22. | Gunda, T., B. L. Turner, and V. C. Tidwell, The influential role of sociocultural feedbacks on community-managed irrigation system behaviors during times of water stress, Water Resources Research, 54(4), 2697-2714, doi:10.1002/2017WR021223, 2018. |
23. | van Tol, J.J., and S.A. Lorentz, Hydropedological interpretation of regional soil information to conceptualize groundwater-surface water interactions, Vadose Zone Journal, 17:170097, doi:10.2136/vzj2017.05.0097, 2018 |
24. | Christelis, V., and A. G. Hughes, Metamodel-assisted analysis of an integrated model composition: an example using linked surface water – groundwater models, Environmental Modelling and Software, 107, 298-306, doi:10.1016/j.envsoft.2018.05.004, 2018. |
25. | Stefanidis, S., and D. Stathis, Effect of climate change on soil erosion in a mountainous Mediterranean catchment (Central Pindus, Greece), Water, 10(10), 1469, doi:10.3390/w10101469, 2018. |
26. | Rotiroti, M., T. Bonomi, E. Sacchi, J. M. McArthur, G. A. Stefania, C. Zanotti, S. Taviani, M. Patelli, V. Nava, V. Solera, L. Fumagalli, and B. Leoni, The effects of irrigation on groundwater quality and quantity in a human-modified hydrosystem: The Oglio River basin, Po Plain, Northern Italy, Science of the Total Environment, 672, 342-356, doi:10.1016/j.scitotenv.2019.03.427, 2019. |
27. | Ocio, D., T. Beskeen, and K. Smart, Fully distributed hydrological modelling for catchment-wide hydrological data verification, Hydrology Research, 50(6), 1520-1534, doi:10.2166/nh.2019.006, 2019. |
28. | Rozos, E., A methodology for simple and fast streamflow modelling, Hydrological Sciences Journal, 65(7), 1084-1095, doi:10.1080/02626667.2020.1728475, 2020. |
29. | Waseem, M., F. Kachholz, W. Klehr, and J. Tränckner, Suitability of a coupled hydrologic and hydraulic model to simulate surface water and groundwater hydrology in a typical North-Eastern Germany lowland catchment, Applied Sciences, 10(4), 1281, doi:10.3390/app10041281, 2020. |
30. | Guse, B., J. Kiesel, M. Pfannerstill, and N. Fohrer, Assessing parameter identifiability for multiple performance criteria to constrain model parameters, Hydrological Sciences Journal, 65(7), 1158-1172, doi:10.1080/02626667.2020.1734204, 2020. |
31. | Madi, M., M. A. Hafnaoui, A. Hachemi, M. Ben Said, A. Noui, A. M. Chaa, N. Bouchahm, and Y. Farhi, Flood risk assessment in Saharan regions. A case study (Bechar region, Algeria), Journal of Biodiversity and Environmental Sciences, 16(1), 42-60, 2020. |
32. | Sidiropoulos, P., N. Mylopoulos, L. Vasiliades, and A. Loukas, Stochastic nitrate simulation under hydraulic conductivity uncertainty of an agricultural basin aquifer at Eastern Thessaly, Greece, Environmental Science and Pollution Research, 28, 65700-65715, doi:10.1007/s11356-021-15555-1, 2021. |
33. | Zegait, R., Z. Şen, A. Pulido-Bosch, H. Madi, and B. Hamadeha, Flash flood risk and climate analysis in the extreme south of Algeria (the case of In-Guezzam City), Geomatics and Environmental Engineering, 16(4), doi:10.7494/geom.2022.16.4.157, 2022. |
G. G. Anagnostopoulos, D. Koutsoyiannis, A. Christofides, A. Efstratiadis, and N. Mamassis, A comparison of local and aggregated climate model outputs with observed data, Hydrological Sciences Journal, 55 (7), 1094–1110, doi:10.1080/02626667.2010.513518, 2010.
We compare the output of various climate models to temperature and precipitation observations at 55 points around the globe. We spatially aggregate model output and observations over the contiguous USA using data from 70 stations, and we perform comparison at several temporal scales, including a climatic (30-year) scale. Besides confirming the findings of a previous assessment study that model projections at point scale are poor, results show that the spatially integrated projections do not correspond to reality any better.
Remarks:
The paper has been discussed in weblogs and forums.
Weblogs and forums that discussed this article during 2010:
- Very Important New Paper “A Comparison Of Local And Aggregated Climate Model Outputs With Observed Data” By Anagnostopoulos Et Al 2010 (Climate Science: Roger Pielke Sr.)
- New peer reviewed paper shows just how bad the climate models really are (Watts Up With That?)
- Missing News: No skill in climate modelling (ABC News Watch)
- Missing News: Climate models disputed (ABC News Watch)
- New peer reviewed paper shows just how bad the climate models really are (repost 1) (Countdown to critical mass)
- New peer reviewed paper shows just how bad the climate models really are (repost2 ) (Climate Observer)
- New Major Peer-Reviewed Study: Climate Models' Predictions Found To Be Shitty (C3)
- New peer reviewed paper shows just how bad the climate models really are - A response to the Climate Change Misinformation at wattsupwiththat.com (Wott's Up With That?)
- Climate model abuse (Niche Modeling)
- Very Important New Paper on models versus reality (Greenie Watch)
- New paper shows that there is no means of reliably predicting climate variables (Greenie Watch 2)
- A comparison of local and aggregated climate model outputs with observed data (Fire And Ice)
- Peer Reviewed Study States The Obvious (US Message Board)
- Climate models don’t work, in hindsight (Herald Sun Andrew Bolt Blog)
- Climate models don’t work, in hindsight (repost) (The Daily Telegraph)
- No abuse hides the fact: warmist models cannot even predict our past (Herald Sun Andrew Bolt Blog 2)
- No abuse hides the fact: the warmist models cannot even predict our past (PA Pundits – International)
- Aussie rains – IPCC models are bunkum, Energy tsunami, CCNet updates, Exit EU petition (clothcap)
- Aussie rains – IPCC models are bunkum, Energy tsunami, CCNet updates, Exit EU petition (repost) (My Telegraph)
- Science not politics (ecomyths)
- More evidence that Global Climate computer models are worthless (Tucano's Perch)
- Model skill? (Retread Resources Blog)
- Estudo sobre modelos climáticos (MeteoPT.com - Fórum de Meteorologia)
- Strategie di verifica delle prestazioni dei GCM, i risultati degli idrologi dell’università di Atene (Climate Monitor)
- Strategie di verifica delle prestazioni dei GCM, i risultati degli idrologi dell’università di Atene (repost) (Blog All Over The World)
- Klima - spådommer og målinger (ABC News)
- "Scam for the Ages" Makes Madoff Look Like Small Change (Al Fin)
- Teoria do AGA: um passado duvidoso, um presente mal contado e um futuro pior ainda. (Sou Engenheiro)
Other reactions in weblogs, forums and Internet resources during 2010:
Climate Etc. * Climate Etc. (2) * Climate Etc. (3) * YouTube * Science Forum * Google Groups * Google Groups 2 * Errors in IPCC climate science * Errors in IPCC climate science (2) * Just Grounds Community * A Few Things Ill Considered * Popular Technology.net * The Climate Scam * JunkScience * The Chronicle of Higher Education * The Little Skeptic * Jennifer Marohasy * Dot Earth Blog - NYTimes.com * ICECAP * Watching the Deniers * DVD Talk * Pure Poison * Peak Oil News and Message Boards * Bishop Hill * San Diego News * Sheffield Forum * Herald Sun Andrew Bolt Blog 3 * BBC - Richard Black's Earth Watch * Liberation * Pistonheads * ABC.net.au * Climate Conversation Group * Sydsvenskan - Nyheter dygnet runt * Telepolis * Keskisuomalainen * Keskisuomalainen 2
Related works:
Full text: http://www.itia.ntua.gr/en/getfile/978/1/documents/928051726__.pdf (1309 KB)
Additional material:
See also: http://dx.doi.org/10.1080/02626667.2010.513518
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | Kundzewicz, Z. W., and E. Z. Stakhiv, Are climate models “ready for prime time” in water resources management applications, or is more research needed? Hydrological Sciences Journal, 55(7), 1085–1089, 2010. |
2. | #Liebscher, H.-J., and H. G. Mendel, Vom empirischen Modellansatz zum komplexen hydrologischen Flussgebietsmodell – Rückblick und Perspektiven, 132 p., Koblenz, Bundesanstalt für Gewässerkunde, 2010. |
3. | Stockwell, D. R. B., Critique of drought models in the Australian Drought Exceptional Circumstances Report (DECR), Energy and Environment, 21(5), 425-436, 2010. |
4. | Di Baldassarre, G., M. Elshamy, A. van Griensven, E. Soliman, M. Kigobe, P. Ndomba, J. Mutemi, F. Mutua, S. Moges, J.-Q. Xuan, D. Solomatine, and S. Uhlenbrook, Future hydrology and climate in the River Nile basin: a review, Hydrological Sciences Journal, 56(2), 199-211, 2011. |
5. | Carlin, A., A multidisciplinary, science-based approach to the economics of climate change, International Journal of Environmental Research and Public Health, 8(4), 985-1031, 2011. |
6. | Fildes, R., and N. Kourentzes, Validation and forecasting accuracy in models of climate change, International Journal of Forecasting, 27(4), 968-995, 2011. |
7. | Kundzewicz, Z. W., Nonstationarity in water resources – Central European perspective, Journal of the American Water Resources Association, 47(3), 550-562, 2011. |
8. | Sivakumar, B., Water crisis: From conflict to cooperation – an overview, Hydrological Sciences Journal, 56(4), 531-552, 2011. |
9. | Loehle, C., Criteria for assessing climate change impacts on ecosystems, Ecology and Evolution, 1 (1), 63–72, 2011. |
10. | Ward, J. D., A. D. Werner, W. P. Nel, and S. Beecham, The influence of constrained fossil fuel emissions scenarios on climate and water resource projections, Hydrology and Earth System Sciences, 15, 1879-1893, 2011. |
11. | #Idso, C., R. M. Carter, and S. F. Singer, Climate models and their limitations, Climate Change Reconsidered: 2011 Interim Report of the Nongovernmental International Panel on Climate Change (NIPCC), Chapter 1, 32 pp., 2011. |
12. | #Huard, D., The challenges of climate change interpretation, Ouranos Newsletter, Montreal, Quebec, 3 pp., 21 September 2011. |
13. | Stakhiv, E. Z., Pragmatic approaches for water management under climate change uncertainty, JAWRA Journal of the American Water Resources Association, 47(6), 1183-1196, 2011. |
14. | Huard, D., A black eye for the Hydrological Sciences Journal, Discussion of “A comparison of local and aggregated climate model outputs with observed data”, by G. G. Anagnostopoulos et al. (2010, Hydrol. Sci. J. 55 (7), 1094–1110), Hydrological Sciences Journal, 56(7), 1330–1333, 2011. |
15. | #Martin, T. E., Mine waste management in wet, mountainous terrain: Some British Columbia perspectives, Part II – Creating, managing and judging our legacy, Proceedings Tailings and Mine Waste 2011, Vancouver, BC, Canada, 2011. |
16. | #Kundzewicz, Z. W., Comparative assessment: fact or fiction? Paper presented at the Workshop Including long-term climate change in hydrologic design, World Bank, Washington, D.C., USA, November 21, 2011. |
17. | Okruszko, T., H. Duel, M. Acreman, M. Grygoruk, M. Flörke, and C. Schneider, Broad-scale ecosystem services of European wetlands — overview of the current situation and future perspectives under different climate and water management scenarios, Hydrological Sciences Journal, 56(8), 1501–1517, 2011. |
18. | Stanislawska, K., K Krawiec, and Z. W. Kundzewicz, Modeling global temperature changes with genetic programming, Computers and Mathematics with Applications, 64(12), 3717-3728, 2012. |
19. | Petheram, C., P. Rustomji, T. R. McVicar, W. Cai, F. H. S. Chiew, J. Vleeshouwer, T. G. Van Niel, L.-T. Li, R. G. Cresswell, R. J. Donohue, J. Teng, and J.-M. Perraud, Estimating the impact of projected climate change on runoff across the tropical savannas and semi-arid rangelands of northern Australia, Journal of Hydrometeorology, 13 (2), 483-503, 2012. |
20. | #Fekete, B. M., and E. Stakhiv, Water management preparation strategies for adaptation to changing climate, Climatic Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies, C. R. Goldman, M. Kumagai, and R. D. Robarts (eds.), 413-427, 2012. |
21. | #Asian Development Bank, Guidelines for climate proofing investment in agriculture, rural development and food security, 101 pp., Mandaluyong City, Philippines, ISBN 978-92-9092-900-0, 2012. |
22. | Hromadka, T. V., M. Jaye, M. Phillips, T. Hromadka, and D. Phillips, A mathematical model of cryospheric response to climate changes, Journal of Cold Regions Engineering, 27 (2), 67-93, 2013. |
23. | Serrat-Capdevila, A., J. B. Valdes, F. Dominguez, and S. Rajagopal, Characterizing the water extremes of the new century in the US South-west: a comprehensive assessment from state-of-the-art climate model projections, International Journal of Water Resources Development, 29 (2), 152-171, 2013. |
24. | Nastos, P. T., N. Politi, and J. Kapsomenakis, Spatial and temporal variability of the aridity index in Greece, Atmospheric Research, 19, 140-152, 2013. |
25. | Jiang, P., M. R. Gautam, J. Zhu, and Z. Yu, How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States?, Journal of Hydrology, 479, 13-23, 2013. |
26. | Nazemi, A., H. S. Wheater, K. P. Chun, and A. Elshorbagy, A stochastic reconstruction framework for analysis of water resource system vulnerability to climate-induced changes in river flow regime, Water Resources Research, 49(1), 291-305, doi:10.1029/2012WR012755, 2013. |
27. | Chun, K. P., H. S. Wheater, and C. Onof, Comparison of drought projections using two UK weather generators, Hydrological Sciences Journal, 58(2), 1–15, 2013. |
28. | Pielke, Sr. R.A., Comment on “The North American Regional Climate Change Assessment Program: Overview of Phase I Results”, Bulletin of the American Meteorological Society, 94(7), 1075-1077, 2013. |
29. | Piniewski, M., F. Voss, I. Bärlund, T. Okruszko and Z. W. Kundzewicz, Effect of modelling scale on the assessment of climate change impact on river runoff, Hydrological Sciences Journal, 58 (4), 737-754, 2013. |
30. | #Pielke R. A. Sr., J. Adegoke, F. Hossain, G. Kallos, D. Niyogi, T. Seastedt, K. Suding, C. Y. Wright, and D. Staley, Preface, Climate Vulnerability: Understanding and Addressing Threats to Essential Resources, Pielke, R. (editor), xxi-xxix, Elsevier Science, 2013. |
31. | #Lang, M. A., Renewable energy and water resources, Climate Vulnerability: Understanding and Addressing Threats to Essential Resources, Pielke, R. (editor), Vol. 3, 149-166, Elsevier Science, 2013. |
32. | #He, Y., F. Pappenberger, D. Manful, H. Cloke, P. Bates, F. Wetterhall, and B. Parkes, Flood inundation dynamics and socioeconomic vulnerability under environmental change, Climate Vulnerability: Understanding and Addressing Threats to Essential Resources, Pielke, R. (editor), Vol. 5, 241-255, Elsevier Science, 2013. |
33. | Kumar, S., P. A. Dirmeyer, V. Merwade, T. DelSole, J. M. Adams, and D. Niyogi, Land use/cover change impacts in CMIP5 climate simulations – A new methodology and 21st century challenges, Journal of Geophysical Research: Atmospheres, 118(12), 6337-6353, 2013. |
34. | #Loukas, A., and L. Vasiliades, Review of applied methods for flood-frequency analysis in a changing environment in Greece, In: A review of applied methods in Europe for flood-frequency analysis in a changing environment, Floodfreq COST action ES0901: European procedures for flood frequency estimation (ed. by H. Madsen et al.), Centre for Ecology & Hydrology, Wallingford, UK, 2013. |
35. | Ruffault, J., N. K .Martin-StPaul, C. Duffet, F. Goge and F. Mouillot, Projecting future drought in Mediterranean forests: bias correction of climate models matters!, Theoretical and Applied Climatology, 117 (1-2), 113-122, 2014. |
36. | Nazemi, A., and H. S. Wheater, How can the uncertainty in the natural inflow regime propagate into the assessment of water resource systems? Advances in Water Resources, 63, 131-142, 2014. |
37. | Kundzewicz, Z. W., S. Kanae, S. I. Seneviratne, J. Handmer, N. Nicholls, P. Peduzzi, R. Mechler, L. M. Bouweri, N. Arnell, K. Mach, R. Muir-Wood, G. R. Brakenridge, W. Kron, G. Benito, Y. Honda, K. Takahashi, and B. Sherstyukov, Flood risk and climate change: global and regional perspectives, Hydrological Sciences Journal, 59(1), 1–28, 2014. |
38. | Grygoruk, M., U. Biereżnoj-Bazille, M. Mazgajski and J.Sienkiewicz, Climate-induced challenges for wetlands: revealing the background for the adaptive ecosystem management in the Biebrza Valley, Poland, Advances in Global Change Research, 58, 209-232, 2014. |
39. | Gilioli, G., S. Pasquali, S. Parisi and S. Winter, Modelling the potential distribution of Bemisia tabaci in Europe considering climate change scenario, Pest Management Science, 70(1), 1611–1623, 10.1002/ps.3734, 2014. |
40. | Krakauer, N. Y., and B. M. Fekete, Are climate model simulations useful for forecasting precipitation trends? Hindcast and synthetic-data experiments, Environmental Research Letters, 9(2), 024009, 2014. |
41. | Hughes, D. A., S. Mantel and T. Mohobane, An assessment of the skill of downscaled GCM outputs in simulating historical patterns of rainfall variability in South Africa, Hydrology Research, 45 (1), 134-147, 2014. |
42. | #Jiménez Cisneros, B.E., T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, P. Döll, T. Jiang, and S.S. Mwakalila, Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269, 2014. |
43. | Hromadka, T. V., H. D. McInvale, B. Gatzke, M. Phillips, and B. Espinosa, Cumulative departure model of the cryosphere during the Pleistocene, Journal of Cold Regions Engineering, 06014002, 2014. |
44. | Nova, J., Government monopoly in science and the role of independent scientists, Energy and Environment, 25(6-7), 1219–1224, 2014. |
45. | #McKitrick, R., Climate Policy Implications of the Hiatus in Global Warming, Fraser Institute, 2014. |
46. | Galbraith, H., D. W. DesRochers, S. Brown and J. M. Reed, Predicting vulnerabilities of North American shorebirds to climate change, PLoS ONE, 9(9), 10.1371/journal.pone.0108899, 2014. |
47. | Yao, Y., S. Zhao, Y. Zhang, K. Jia and M. Liu, Spatial and decadal variations in potential evapotranspiration of China based on reanalysis datasets during 1982–2010, Atmosphere, 5(4), 737-754, 2014. |
48. | Kundzewicz, Z., and D. Gerten, Grand challenges related to assessment of climate change impacts on freshwater resources, Journal of Hydrologic Engineering, 20 (1), 10.1061/(ASCE)HE.1943-5584.0001012, A4014011, 2015. |
49. | Hromadka II, T.V., H.D. McInvale, M. Phillips and B. Espinosa, Assessment of ice volume changes in the cryosphere via simplified heat transport model, American Journal of Climate Change, 3, 421-428, 2014. |
50. | Hesse, C., V. Krysanova, A. Stefanova, M. Bielecka and D. A. Domnin, Assessment of climate change impacts on water quantity and quality of the multi-river Vistula Lagoon catchment, Hydrological Sciences Journal, 60(5), 890-911, doi:10.1080/02626667.2014.967247, 2015. |
51. | Stefanova, A., V. Krysanova, C. Hesse, and A. I. Lillebø, Climate change impact assessment on water inflow to a coastal lagoon: the Ria de Aveiro watershed, Portugal, Hydrological Sciences Journal, 60(5), 929-948, 2015. |
52. | Hesse, C., A. Stefanova, and V. Krysanova, Comparison of water flows in four European lagoon catchments under a set of future climate scenarios, Water, 7(2), 716-746, doi:10.3390/w7020716, 2015. |
53. | Gelfan, A., V. A. Semenov, E. Gusev, Y. Motovilov, O. Nasonova, I. Krylenko, and E. Kovalev, Large-basin hydrological response to climate model outputs: uncertainty caused by the internal atmospheric variability, Hydrology and Earth System Sciences, 19, 2737-2754, doi:10.5194/hess-19-2737-2015, 2015. |
54. | Nayak, P. C., R. Wardlaw, and A. K. Kharya, Water balance approach to study the effect of climate change on groundwater storage for Sirhind command area in India, International Journal of River Basin Management, 13(2), 243-261, doi:10.1080/15715124.2015.1012206, 2015. |
55. | Yu, Z., P. Jiang, M. R. Gautam, Y. Zhang, and K. Acharya, Changes of seasonal storm properties in California and Nevada from an ensemble of climate projections, Journal of Geophysical Research: Atmospheres, 120(7), 2676-2688, doi:10.1002/2014JD022414, 2015. |
56. | Legates, D. R., W. Soon, W. M. Briggs and C. Monckton of Brenchley, Climate consensus and ‘misinformation’: a rejoinder to agnotology, scientific consensus, and the teaching and learning of climate change, Science and Education, 24, 299-318, doi:10.1007/s11191-013-9647-9, 2015. |
57. | Frank, P., Negligence, non-science, and consensus climatology, Energy and Environment, 26(3), doi:10.1260/0958-305X.26.3.391, 2015. |
58. | Kundzewicz, Z.W., Climate change track in river floods in Europe, Proc. IAHS, 369, 189–194, 10.5194/piahs-369-189-2015, 2015. |
59. | Kara, F., I. Yucel, and Z. Akyurek, Climate change impacts on extreme precipitation of water supply area in Istanbul: Use of ensemble climate modelling and geo-statistical downscaling, Hydrological Sciences Journal, 61(14), 2481-2495, doi:10.1080/02626667.2015.1133911, 2016. |
60. | Refsgaard, J. C., T. O. Sonnenborg, M. B. Butts, J. H. Christensen, S. Christensen, M. Drews, K. H. Jensen, F. Jørgensen, L. F. Jørgensen, M. A. D. Larsen, S. H. Rasmussen, L. P. Seaby, D. Seifert, and T. N. Vilhelmsen, Climate change impacts on groundwater hydrology – where are the main uncertainties and can they be reduced?, Hydrological Sciences Journal, 61(13), 2312-2324, doi:10.1080/02626667.2015.1131899, 2016. |
61. | #Kundzewicz, Z. W., Climate change impacts and adaptation in water and land context, Environmental Resource Management and the Nexus Approach – Managing Water, Soil, and Waste in the Context of Global Change, H. Hettiarachchi, and R. Ardakanian (editors), 11-39, Springer, doi:10.1007/978-3-319-28593-1_2, 2016. |
62. | #Serrat-Capdevila, A., D. A. García Ramírez, and N. Tayebi, Key global water challenges and the role of remote sensing, Earth Observation for Water Resources Management: Current Use and Future Opportunities for the Water Sector, 9-31, doi:10.1596/978-1-4648-0475-5_ch1, 2016. |
63. | Jiang, P., Z. Yu, M. R. Gautam, F. Yuan, and K. Acharya, Changes of storm properties in the United States: Observations and multimodel ensemble projections, Global and Planetary Change, 142, 41–52, doi:10.1016/j.gloplacha.2016.05.001, 2016. |
64. | #Fekete, B. M., G. Pisacane, and D. Wisser, Crystal balls into the future: are global circulation and water balance models ready?, Proc. IAHS, 374, 41-51, doi:10.5194/piahs-374-41-2016, 2016. |
65. | Kundzewicz, Z. W., V. Krysanova, R. Dankers, Y. Hirabayashi, S. Kanae, F. F. Hattermann, S. Huang, P. C. D. Milly, M. Stoffel, P. P. J. Driessen, P. Matczak, P. Quevauviller, and H.-J. Schellnhuber, Differences in flood hazard projections in Europe – their causes and consequences for decision making, Hydrological Sciences Journal, 62(1), 1-14, doi:10.1080/02626667.2016.1241398, 2017. |
66. | Grygoruk, M., and S. Rannowb, Mind the gap! Lessons from science-based stakeholder dialogue in climate-adapted management of wetlands, Journal of Environmental Management, 186, 108-119, doi:10.1016/j.jenvman.2016.10.066, 2017. |
67. | Hossain, F., E. Beighley, S. Burian, J. Chen, A. Mitra, D. Niyogi, R. Pielke Sr, and D. Wegner, Review of approaches and recommendations for improving resilience of water management infrastructure: the case for large dams, Journal of Infrastructure Systems, doi:10.1061/(ASCE)IS.1943-555X.0000370, 2017. |
68. | Gusev, Y. M., V. A. Semenov, O. N. Nasonova, and E E. Kovalev, Weather noise impact on the uncertainty of simulated water balance components of river basins, Hydrological Sciences Journal, 62(8), 1181-1199, doi:10.1080/02626667.2017.1319064, 2017. |
69. | #Shalby, A., M. Elshemy, and B. A. Zeidan, Selecting of regional climate model simulations for modeling climate change impacts on the water quality status of Lake Burullus, Egypt, Twentieth International Water Technology Conference, Hurghada, 2017. |
70. | Vogel, M., Stochastic watershed models for hydrologic risk management, Water Security, 1, 28-35, doi:10.1016/j.wasec.2017.06.001, 2017. |
71. | Loehle, C., The epistemological status of general circulation models, Climate Dynamics, 50(5-6), 1719-1731, doi:10.1007/s00382-017-3717-7, 2018. |
72. | Gupta, H. V., G. Sapriza-Azuri, J. Jódar, and J. Carrera, Circulation pattern-based assessment of projected climate change for a catchment in Spain, Journal of Hydrology, 556, 944-960, doi:10.1016/j.jhydrol.2016.06.032, 2018. |
73. | #Maraun, D., and M. Widmann, Statistical Downscaling and Bias Correction for Climate Research, Cambridge University Press, 2018. |
74. | Stefanidis, S., and D. Stathis, Effect of climate change on soil erosion in a mountainous Mediterranean catchment (Central Pindus, Greece), Water, 10(10), 1469, doi:10.3390/w10101469, 2018. |
75. | Connolly, R., M. Connolly, W. Soon, D. R. Legates, R. G. Cionco, and V. M. Velasco Herrera, Northern hemisphere snow-cover trends (1967–2018): A comparison between climate models and observations, Geosciences, 9(3), 135, doi:10.3390/geosciences9030135, 2019. |
76. | Kron, W., J. Eichner, and Z. W. Kundzewicz, Reduction of flood risk in Europe – Reflections from a reinsurance perspective, Journal of Hydrology, 576, 197-209, doi:10.1016/j.jhydrol.2019.06.050, 2019. |
77. | Shalby, A., M. Elshemy, and B. A. Zeidan, Assessment of climate change impacts on water quality parameters of Lake Burullus, Egypt, Environmental Science and Pollution Research, doi:10.1007/s11356-019-06105-x, 2019. |
78. | Wine, M. L., Toward strong science to support equitable water sharing in securitized transboundary watersheds, Biologia, doi:10.2478/s11756-019-00334-8, 2019. |
79. | Frank, P., Propagation of error and the reliability of global air temperature projections, Frontiers in Earth Science, 7, 223, doi:10.3389/feart.2019.00223, 2019. |
80. | #Hossain, F., D. Niyogi, R. A. Pielke, J. Chen, D. Wegner, A. Mitra, S. Burian, E. Beighley, C. Brown, and V. Tidwell, Current approaches for resilience assessment, Resilience of Large Water Management Infrastructure, Hossain, F. (editor), 35-43, Springer International Publishing, doi:10.1007/978-3-030-26432-1_3, 2020. |
81. | Wine, M. L., Climatization of environmental degradation: A widespread challenge to the integrity of earth science, Hydrological Sciences Journal, 65(6), 867-883, doi:10.1080/02626667.2020.1720024, 2020. |
82. | Verbist, K. M. J., H. Maureira, P. Rojas, and S.Vicuna, A stress test for climate change impacts on water security: a CRIDA case study, Climate Risk Management, 28, 100222, doi:10.1016/j.crm.2020.100222, 2020. |
83. | Hosseini-Moghari, S.-M., and Q. Tang, Validation of GPM IMERG-V05 and V06 precipitation products over Iran, Journal of Hydrometeorology, 21(5), 1011-1037, doi:10.1175/JHM-D-19-0269.1, 2020. |
84. | Stefanidis, S., S. Dafis, and D. Stathis, Evaluation of regional climate models (RCMs) performance in simulating seasonal precipitation over mountainous Central Pindus (Greece), Water, 12(10), 2750, doi:10.3390/w12102750, 2020. |
85. | Dong, Z., W. Jia, R. Sarukkalige, G. Fu, Q. Meng, and Q. Wang, Innovative trend analysis of air temperature and precipitation in the Jinsha river basin, China, Water, 12(11), 3293, doi:10.3390/w12113293, 2020. |
86. | Turner, S. W. D., and P. J. Jeffrey, A simple drought risk analysis procedure to supplement water resources management planning in England and Wales, Water and Environment Journal, 35(1), 417-424, doi:10.1111/wej.12639, 2021. |
87. | Sun, B., S. Chen, Q. Liu, Y. Lu, C. Zhang, and H. Fang, Review of sewage flow measuring instruments, Ain Shams Engineering Journal, 12(2), 2089-2098, doi:10.1016/j.asej.2020.08.031, 2021. |
88. | Baran-Zgłobicka, B., D. Godziszewska, and W. Zgłobicki, The flash floods risk in the local spatial planning (case study: Lublin Upland, E Poland), Resources, 10(2), 14, doi:10.3390/resources10020014, 2021. |
89. | Neupane, S., S. Shrestha, U. Ghimire, S. Mohanasundaram, and S. Ninsawat, Evaluation of the CORDEX regional climate models (RCMs) for simulating climate extremes in the Asian cities, Science of The Total Environment, 797, 149137, doi:10.1016/j.scitotenv.2021.149137, 2021. |
90. | Manous, J., and E. Z. Stakhiv, Climate risk-informed decision analysis (CRIDA): ‘top-down’ vs ‘bottom-up’ decision making for planning water resources infrastructure, Water Policy, 23(S1), 54-76, doi:10.2166/wp.2021.243, 2021. |
91. | Stakhiv, E. Z., The centrality of engineering codes and risk-based design standards in climate adaptation strategies, Water Policy, 23(S1), 106-127, doi:10.2166/wp.2021.345, 2021. |
92. | Ramadhan, R., H. Yusnaini, M. Marzuki, R. Muharsyah, W. Suryanto, S. Sholihun, M. Vonnisa, H. Harmadi, A. P. Ningsih, A. Battaglia, H. Hashiguchi, and A. Tokay, Evaluation of GPM IMERG performance using gauge data over Indonesian maritime continent at different time scales, Remote Sensing, 14(5), 1172, doi:10.3390/rs14051172, 2022. |
93. | Haji-Aghajany, S., Y. Amerian, and A. Amiri-Simkooei, Function-based troposphere tomography technique for optimal downscaling of precipitation, Remote Sensing, 14(11), 2548, doi:10.3390/rs14112548, 2022. |
94. | Mohebbi, A., K. R. Adams, S. Akbariyeh, M. Maruf, and A. H. Baghanam, Application of weather research and forecasting (WRF) model in evaluating depth–duration–frequency estimates under a future climate scenario, Hydrology Research, 53(9), 1186-1202, doi:10.2166/nh.2022.045, 2022. |
95. | Girma, R., C. Fürsta, and A. Moges, Performance evaluation of CORDEX-Africa regional climate models in simulating climate variables over Ethiopian main rift valley: Evidence from Gidabo river basin for impact modeling studies, Dynamics of Atmospheres and Oceans, 99, 101317, doi:10.1016/j.dynatmoce.2022.101317, 2022. |
96. | Ahamed, M. R. A., A. Sharma, J. M. Wani, and A. P. Dimri, The representation of summer monsoon rainfall over northeast India: assessing the performance of CORDEX-CORE model experiments, Theoretical and Applied Climatology, 51, 1949-1962, doi:10.1007/s00704-023-04369-5, 2023. |
97. | Frank, P., LiG metrology, correlated error, and the integrity of the global surface air-temperature record, Sensors, 23(13), 5976, doi:10.3390/s23135976, 2023. |
98. | #Bénard, G., M. Gehlen, and M. Vrac, A causality-based method for multi-model comparison: Application to relationships between atmospheric and marine biogeochemical variables, Earth System Dynamics Discussions, doi:10.5194/esd-2024-31, 2024. |
A. Efstratiadis, and D. Koutsoyiannis, One decade of multiobjective calibration approaches in hydrological modelling: a review, Hydrological Sciences Journal, 55 (1), 58–78, doi:10.1080/02626660903526292, 2010.
One decade after the first publications on multiobjective hydrological calibration, we summarize the experience gained so far, by underlining the key perspectives offered by such approaches to improve parameter identifiability. After reviewing the fundamentals of vector optimization theory and the algorithmic issues, we link the multicriteria calibration approach with the concepts of uncertainty and equifinality. Specifically, the multicriteria framework enables recognizing and handling errors and uncertainties, and detecting prominent behavioural solutions with acceptable trade-offs. Particularly in models of complex parameterization, a multiobjective approach becomes essential for improving the identifiability of parameters and augmenting the information contained in calibration, by means of both multiresponse measurements and empirical metrics (“soft” data), which account for the hydrological expertise. Based on the literature review, we also provide alternative techniques to treat with conflicting and non-commeasurable criteria, and hybrid strategies to utilize the information gained towards identifying promising compromise solutions that ensure consistent and reliable calibrations.
Full text: http://www.itia.ntua.gr/en/getfile/924/2/documents/919806565_.pdf (290 KB)
Additional material:
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | Booij, M. J., and M. S. Krol, Balance between calibration objectives in a conceptual hydrological model, Hydrological Sciences Journal, 55(6), 1017-1032, 2010. |
2. | Moussa, R., When monstrosity can be beautiful while normality can be ugly: assessing the performance of event-based flood models, Hydrological Sciences Journal, 55(6), 1074-1084, 2010. |
3. | Moussu, F., L. Oudin, V. Plagnes, A. Mangin, and H. Bendjoudi, A multi-objective calibration framework for rainfall-discharge models applied to karst systems, Journal of Hydrology, 400(3-4), 364-376, 2011. |
4. | Guinot, V., B. Cappelaere, C. Delenne, and D. Ruelland, Towards improved criteria for hydrological model calibration: Theoretical analysis of distance- and weak form-based functions, Journal of Hydrology, 401(1-2), 1-13, 2011. |
5. | Peel, M. C., and G. Blöschl, Hydrological modelling in a changing world, Progress in Physical Geography, 35 (2), 249-261, 2011. |
6. | Ford, D. E., and M. C. Kennedy, Assessment of uncertainty in functional–structural plant models, Annals of Botany, 108 (6), 1043-1053, 2011. |
7. | #Shinma, T. A., and L. F. R. Reis, Multiobjective automatic calibration of the storm water management model (SWMM) using non-dominated sorting genetic algorithm II (NSGA-II), Proceedings of the 2011 World Environmental and Water Resources Congress: Bearing Knowledge for Sustainability, 598-607, 2011. |
8. | Mediero, L., L. Garrote and F. J. Martín-Carrasco, Probabilistic calibration of a distributed hydrological model for flood forecasting, Hydrological Sciences Journal, 56(7), 1129–1149, 2011. |
9. | Kennedy, M. C., and E. D. Ford, Using multicriteria analysis of simulation models to understand complex biological systems, BioScience, 61(12), 994–1004, 2011. |
10. | #Van Hoey, S., P. Seuntjens, J. van der Kwast, J.-L. de Kok, G. Engelen, and I. Nopens, Flexible framework for diagnosing alternative model structures through sensitivity and uncertainty analysis, In: Chan, F., D. Marinova, and R. S. Anderssen (eds.), MODSIM2011, 19th International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand, December 2011, pp. 3924-3930, ISBN: 978-0-9872143-1-7, 2011. |
11. | Reed, P. M., and J. B. Kollat, Save now, pay later? Multi-period many-objective groundwater monitoring design given systematic model errors and uncertainty, Advances in Water Resources, 35, 55-68, 2012. |
12. | Pushpalatha, R., C. Perrin, N. Le Moine, and V. Andréassian, A review of efficiency criteria suitable for evaluating low–flow simulations, Journal of Hydrology, 420-421, 171-182, 2012. |
13. | Ruelland, D., S. Ardoin-Bardin, L. Collet, and P. Roucou, Simulating future trends in hydrological regime of a large Sudano-Sahelian catchment under climate change, Journal of Hydrology, 424-425, 207-216, 2012. |
14. | Andréassian, V., N. Le Moine, C. Perrin, M.-H. Ramos, L. Oudin, T. Mathevet, J. Lerat, and L. Berthet, All that glitters is not gold: the case of calibrating hydrological models, Hydrological Processes, 26(14), 2206-2210, 2012. |
15. | Kollat, J. B., P. M. Reed, and T. Wagener, When are multiobjective calibration trade-offs in hydrologic models meaningful?, Water Resources Research, 48, W03520, 2012. |
16. | Dumedah, G., A. A. Berg, and M. Wineberg, Evaluating autoselection methods used for choosing solutions from Pareto-optimal set: Does nondominance persist from calibration to validation phase? Journal of Hydrologic Engineering, 17(1), 150-159, 2012. |
17. | Hill, M. C., D. Kavetski, M. Clark, M. Ye, and D. Lu, Uncertainty quantification 2012: Uncertainty quantification for environmental models, Society for Industrial and Applied Mathematics News, 45(9), 2012. |
18. | Rye, C. J., I. Willis, N. S. Arnold, and J. Kohler, On the need for automated multi-objective optimization and uncertainty estimation of glacier mass balance models, Journal of Geophysical Research, 117, F02005, doi: 10.1029/2011JF002184, 2012. |
19. | Rothfuss, Y., I. Braud, N. Le Moine, P. Biron, J.-L. Durand, M. Vauclin, and T. Bariac, Factors controlling the isotopic partitioning between soil evaporation and plant transpiration: assessment using a multi-objective calibration of SiSPAT-Isotope under controlled conditions, Journal of Hydrology, 442-443, 161-179, 2012. |
20. | Peng, W., R. V. Mayorga, and S. Imran, A rapid fuzzy optimisation approach to multiple sources water blending problem in water distribution systems, Urban Water Journal, 9(3), 177-187, 2012. |
21. | Flipo, N., C. Monteil, M. Poulin, C. de Fouquet, and M. Krimissa, Hybrid fitting of a hydrosystem model: Long term insight into the Beauce aquifer functioning (France), Water Recourses Research, 48, W05509, DOI: 10.1029/2011WR011092, 2012. |
22. | Pollacco, J. A. P., and B. P. Mohanty, Uncertainties of water fluxes in SVAT models: inverting surface soil moisture and evapotranspiration retrieved from remote sensing, Vadose Zone Journal, 11(3), vzj2011.0167, 2012. |
23. | Muleta, M. K., Model performance sensitivity to objective function during automated calibrations, Journal of Hydrologic Engineering, 17(6), 756-767, 2012. |
24. | Dumedah, G., Formulation of the evolutionary-based data assimilation and its implementation in hydrological forecasting, Water Resources Management, 26(13), 3853-3870, 2012. |
25. | Reichert, P., and N. Schuwirth, Linking statistical bias description to multiobjective model calibration, Water Resources Research, 48, W09543, doi:10.1029/2011WR011391, 2012. |
26. | Price, K., S. T. Purucker, S. R. Kraemer, and J. Babendreier, Tradeoffs among watershed model calibration targets for parameter estimation, Water Resources Research, 48, W10542, doi:10.1029/2012WR012005, 2012. |
27. | Krauße, T., J. Cullmann, P. Saile, and G. H. Schmitz, Robust multi-objective calibration strategies – possibilities for improving flood forecasting, Hydrology and Earth System Sciences, 16, 3579-3606, 2012. |
28. | Koskela, J. J., B. Croke, H. Koivusalo, A. Jakeman, and T. Kokkonen, Bayesian inference of uncertainties in precipitation-streamflow modeling in a snow affected catchment, Water Resources Research, 48, W11513, doi: 10.1029/2011WR011773, 2012. |
29. | Jarvis, N., and M. Larsbo, MACRO (V5.2): Model use, calibration, and validation, Transactions of the ASABE, 55(4), 1413-1423, 2012. |
30. | Hallema, D. W., R. Moussa, P. Andrieux, and M. Voltz, Parameterisation and multi-criteria calibration of a distributed storm flow model applied to a Mediterranean agricultural catchment, Hydrological Processes, 27(10), 1379-1398, 2013. |
31. | Gharari, S., M. Hrachowitz, F. Fenicia and H. H. G. Savenije, An approach to identify time consistent model parameters: sub-period calibration, Hydrology and Earth System Sciences, 17, 149-161, 10.5194/hess-17-149-2013, 2013. |
32. | Kasprzyk, J. R, S. Nataraj, P. M. Reed, and R. J. Lempert, Many objective robust decision making for complex environmental systems undergoing change, Environmental Modelling & Software, 42, 55-71, 2013. |
33. | Reed, P. M., D. Hadka, J. D. Herman, J. R. Kasprzyk, and J. B. Kollat, Evolutionary multiobjective optimization in water resources: the past, present, and future, Advances in Water Resources, 51, 438-456, 2013. |
34. | Spaaks, J. H. and W. Bouten, Resolving structural errors in a spatially distributed hydrologic model using ensemble Kalman filter state updates, Hydrology and Earth System Sciences, 17, 3455–3472, 2013. |
35. | Wöhling, T., L. Samaniego, and R. Kumar, Evaluating multiple performance criteria to calibrate the distributed hydrological model of the upper Neckar catchment, Environmental Earth Sciences, 69(2), 453-468, 2013. |
36. | Ghimire, S. R., and J. M. Johnston, Impacts of domestic and agricultural rainwater harvesting systems on watershed hydrology: A case study in the Albemarle-Pamlico river basins (USA), Ecohydrology & Hydrobiology, 13(2), 159-171, 2013. |
37. | Hartmann, A., T. Wagener, A. Rimmer, J. Lange, H. Brielmann, and M. Weiler, Testing the realism of model structures to identify karst system processes using water quality and quantity signatures, Water Resources Research, 49(6), 3345-3358, 2013. |
38. | Hill, M. C., C. C. Faunt, W. R. Belcher, D. S. Sweetkind, C. R. Tiedeman and D. Kavetski, Knowledge, transparency, and refutability in groundwater models, an example from the Death Valley regional groundwater flow system, Physics and Chemistry of the Earth, 64, 105-116, 2013. |
39. | Muñoz, E., J. L. Arumí and D. Rivera, Watersheds are not static: Implications of climate variability and hydrologic dynamics in modeling [Las cuencas no son estacionarias: implicancias de la variabilidad climática y dinámicas hidrológicas en la modelación, Bosque, 34 (1), 7-11, 2013. |
40. | Hrachowitz, M., H.H.G. Savenije, G. Blöschl, J.J. McDonnell, M. Sivapalan, J.W. Pomeroy, B. Arheimer, T. Blume, M.P. Clark, U. Ehret, F. Fenicia, J.E. Freer, A. Gelfan, H.V. Gupta, D.A. Hughes, R.W. Hut, A. Montanari, S. Pande, D. Tetzlaff, P.A. Troch, S. Uhlenbrook, T. Wagener, H.C. Winsemius, R.A. Woods, E. Zehe, and C. Cudennec, A decade of Predictions in Ungauged Basins (PUB) — a review, Hydrological Sciences Journal, 58(6), 1198-1255, 2013. |
41. | Xu, C., H. Chen, and S. Guo, Hydrological modeling in a changing environment: issues and challenges, Journal of Water Resources Research, 2, 85-95, 2013. |
42. | Ramin, M., and G. B. Arhonditsis, Bayesian calibration of mathematical models: Optimization of model structure and examination of the role of process error covariance, Ecological Informatics, 18, 107-116, 2013. |
43. | Dumedah, G., and P. Coulibaly, Evaluating forecasting performance for data assimilation methods: the Ensemble Kalman Filter, the Particle Filter, and the Evolutionary-based assimilation Advances in Water Resources, 60, 47-63, 2013. |
44. | Wöhling, T., S. Gayler, E. Priesack, J. Ingwersen, H.-D. Wizemann, P. Högy, M. Cuntz, S. Attinger, V. Wulfmeyer, and T. Streck, Multiresponse, multiobjective calibration as a diagnostic tool to compare accuracy and structural limitations of five coupled soil-plant models and CLM3.5, Water Resources Research, 49(12), 8200–8221, 2013. |
45. | Romanowicz, R., M. Osuch and M. Grabowiecka, On the choice of calibration periods and objective functions: A practical guide to model parameter identification, Acta Geophysica, 61(6), 1477-1503, 10.2478/s11600-013-0157-6, 2013. |
46. | Rientjes, T.H.M., L.P. Muthuwatta, M.G. Bos, M.J. Booij, and H.A. Bhatti, Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration, Journal of Hydrology, 505, 276-290, 2013. |
47. | Guerrero, J. L., I. K. Westerberg, S. Halldin, L.-C. Lundin, and C.-Y. Xu, Exploring the hydrological robustness of model-parameter values with alpha shapes, Water Resources Research, 49 (10), 6700-6715, 2013. |
48. | Hsie, M., S. W. Yan and N. F. Pan, Improvement of rainfall-runoff simulations using the Runoff-Scale Weighting Method, Journal of Hydrologic Engineering, 19(7), 1330-1339, 10.1061/(ASCE)HE.1943-5584.0000921, 2014. |
49. | Gharari, S., M. Shafiei, M. Hrachowitz, F. Fenicia, H. V. Gupta, and H. H. G. Savenije, A constraint-based search algorithm for parameter identification of environmental models, Hydrology and Earth System Sciences, 18, 4861-4870, doi:10.5194/hess-18-4861-2014, 2014. |
50. | Shinma, T. A., and L. F. A. Reis, Incorporating multi-event and multi-site data in the calibration of SWMM, Procedia Engineering, 70, 75-84, 2014. |
51. | Coron, L., V. Andréassian, C. Perrin, M. Bourqui, and F. Hendrickx, On the lack of robustness of hydrologic models regarding water balance simulation – a diagnostic approach on 20 mountainous catchments using three models of increasing complexity, Hydrology and Earth System Sciences, 18, 727-746, 2014. |
52. | Dumedah, G., and J. P. Walker, Evaluation of model parameter convergence when using data assimilation for soil moisture estimation, Journal of Hydrometeorology, 15(1), 359-375, 2014. |
53. | Black, D. C., P. J. Wallbrink, and P. W. Jordan, Towards best practice implementation and application of models for analysis of water resources management scenarios, Environmental Modelling and Software, 52, 136-148, 2014. |
54. | Loukas, A., and L. Vasiliades, Streamflow simulation methods for ungauged and poorly gauged watersheds, Natural Hazards and Earth System Sciences, 14, 1641-1661, doi:10.5194/nhess-14-1641-2014, 2014. |
55. | Brauer, C. C., P. J. J. F. Torfs, A. J. Teuling, and R. Uijlenhoet, The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrology and Earth System Sciences , 18, 4007-4028, 10.5194/hess-18-4007-2014, 2014. |
56. | Kloss, S., N. Schütze, and U. Schmidhalter, Evaluation of very high soil-water tension threshold values in sensor-based deficit irrigation systems, Journal of Irrigation and Drainage Engineering, 140 (9), 10.1061/(ASCE)IR.1943-4774.0000722, 2014. |
57. | Brauer, C. C., A. J. Teuling, P. J. J. F. Torfs, and R. Uijlenhoet, The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall–runoff model for catchments with shallow groundwater, Geoscientific Model Development, 7, 2313-2332, doi:10.5194/gmd-7-2313-2014, 2014. |
58. | #Hörmann, G., N. Fohrer, and W. Kluge, Modelle zum Wasserhaushalt, Handbuch der Umweltwissenschaften, 2014. |
59. | Zeff, H. B., J. R. Kasprzyk, J. D. Herman, P. M. Reed, and G. W. Characklis, Navigating financial and supply reliability tradeoffs in regional drought management portfolios, Water Resources Research, 50(6), 4906–4923, 2014. |
60. | Minville, M., D. Cartier, C. Guay, L.-A. Leclaire, C. Audet, S. Le Digabel, and J. Merleau, Improving process representation in conceptual hydrological model calibration using climate simulations, Water Resources Research, 50(6), 5044–5073, 2014. |
61. | Gao, W., F. Zhou, Y.-J. Dong, H.-C. Guo, J.-T. Peng, P. Xu, and , L. Zhao, PEST-based multi-objective automatic calibration of hydrologic parameters for HSPF model, Journal of Natural Resources, 29(5), 855-867, 2014. |
62. | #Houle, E., and J. Kasprzyk, Investigating parameter sensitivity for management in snow-driven watersheds, Proceedings of 7th International Congress on Environmental Modelling and Software, Daniel P. Ames, Nigel W.T. Quinn and Andrea E. Rizzoli (eds.), San Diego, CA, USA, 2014. |
63. | #Kasprzyk, J., J. Kollat, and C. Danilo, Balancing conflicting management objectives using interactive, three-dimensional visual analytics, Proceedings of 7th International Congress on Environmental Modelling and Software, Daniel P. Ames, Nigel W.T. Quinn and Andrea E. Rizzoli (eds.), San Diego, CA, USA, 2014. |
64. | Reynoso-Meza, G., J. Sanchis, X. Blasco, and S. García-Nieto, Physical programming for preference driven evolutionary multi-objective optimisation, Applied Soft Computing, 24, 341-362, 2014 |
65. | Zhang, Y. Y., Q. X. Shao, A. Z. Ye and H. T. Xing, An integrated water system model considering hydrological and biogeochemical processes at basin scale: model construction and application, Hydrol. Earth Syst. Sci. Discuss., 11, 9219-9279, 10.5194/hessd-11-9219-2014, 2014. |
66. | Mayr, E., M. Juen, C. Mayer, R. Usubaliev and W. Hagg, Modeling runoff from the Inylchek glaciers and filling of ice‐dammed Lake Merzbacher, Central Tian Shan, Geografiska Annaler: Series A, Physical Geography, 96(4), 609–625, 10.1111/geoa.12061, 2014. |
67. | Matos, J. P., M. M. Portela, and D. Juízo, Uma forma alternativa de enfrentar a escassez de dados na bacia do rio Zambeze com vista à calibração de modelos hidrológicos (An alternative approach to face the scarcity of data in the Zambezi River basin aiming at calibrating hydrological models), Revista Recursos Hídricos, 35(1), 37-52, 2014. |
68. | Asadzadeh, M., B. Tolson, and D. H. Burn, A new selection metric for multiobjective hydrologic model calibration, Water Resources Research, 50(9), 7082–7099, doi:10.1002/2013WR014970, 2014. |
69. | Haghnegahdar, A., B. A. Tolson, B. Davison, F. R. Seglenieks, E. Klyszejko, E. D. Soulis, V. Fortin, and L. S. Matott, Calibrating environment Canada's MESH modelling system over the Great Lakes Basin, Atmosphere-Ocean, 52(4), 281-293, 2014. |
70. | Hrachowitz, M., O. Fovet, L. Ruiz, T. Euser, S. Gharari, R. Nijzink, J. Freer, H.H.G. Savenije, and C. Gascuel-Odoux, Process consistency in models: The importance of system signatures, expert knowledge, and process complexity, Water Resources Research, 50(9), 7445–7469, doi: 10.1002/2014WR015484, 2014. |
71. | Doppler, T., M. Honti, U. Zihlmann, P. Weisskopf, and C. Stamm, Validating a spatially distributed hydrological model with soil morphology data, Hydrology and Earth System Sciences, 18, 3481-3498, doi:10.5194/hess-18-3481-2014, 2014. |
72. | Newman, J. P., G. C. Dandy, and H. R. Maier, Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization, Water Resources Research, 50(10), 7915–7938, doi:10.1002/2013WR015233, 2014. |
73. | Werisch, S., J. Grundmann, H. Al-Dhuhli, E. Algharibi, and F. Lennartz, Multiobjective parameter estimation of hydraulic properties for a sandy soil in Oman, Environmental Earth Sciences, 72(12), 4935-4956, 2014. |
74. | Piscopo, A. N., J. R. Kasprzyk, and R. M. Neupauer, An iterative approach to multi-objective engineering design: Optimization of engineered injection and extraction for enhanced groundwater remediation, Environmental Modelling & Software, 69, 253-261, 2015. |
75. | Andréassian, V., F. Bourgin, L. Oudin, T. Mathevet, C. Perrin, J. Lerat, L. Coron, and L. Berthet, Seeking genericity in the selection of parameter sets: Impact on hydrological model efficiency, Water Resources Research, 50(10), 8356–8366, 2014. |
76. | Ficklin, D. L., and B. L. Barnhart, SWAT hydrologic model parameter uncertainty and its implications for hydroclimatic projections in snowmelt-dependent watersheds, Journal of Hydrology, 519(B), 2081–2090, 2014. |
77. | Yang, J., F. Castelli and Y. Chen, Multiobjective sensitivity analysis and optimization of distributed hydrologic model MOBIDIC, Hydrology and Earth System Sciences, 18, 4101-4112, 10.5194/hess-18-4101-2014, 2014. |
78. | #Matos, J.P., Hydraulic-hydrologic model for the Zambezi River using satellite data and artificial intelligence techniques, Communications du Laboratoire de Constructions Hydrauliques ISSN 1661-1179, Ecole Polytechnique Fédérale de Lausanne, 2014. |
79. | Dumedah, G., Toward essential union between evolutionary strategy and data assimilation for model diagnostics: An application for reducing the search space of optimization problems using hydrologic genome map, Environmental Modelling & Software, 69, 342-352, 2015. |
80. | Gao, W., H. C. Guo, and Y. Liu, Impact of calibration objective on hydrological model performance in ungauged watersheds, Journal of Hydrologic Engineering, 20(8), 04014086, doi:10.1061/(ASCE)HE.1943-5584.0001116, 2015. |
81. | Koch, J., K. Høgh Jensen, and S. Stisen, Toward a true spatial model evaluation in distributed hydrological modeling: Kappa statistics, Fuzzy theory, and EOF analysis benchmarked by the human perception and evaluated against a modeling case study, Water Resources Research, 51(2), 1225–1246, doi:10.1002/2014WR016607, 2015. |
82. | #Perrin , C ., M.-H . Ramos , V. Andréassian , P. Nicolle , L. Crochemore , and R. Pushpalatha, Improved rainfall-runoff modelling tools for low-flow forecasting: Application to French catchments, Drought: Research and Science-Policy Interfacing, J. Andreu Alvarez, A. Solera, J. Paredes-Arquiola, D. Haro-Monteagudo, and H. van Lanen (editors), Chapter 38, 259–265, CRC Press, doi:10.1201/b18077-45, 2015. |
83. | Seong, C., Y. Her, and B. L. Benham, Automatic calibration tool for hydrologic simulation program-FORTRAN using a shuffled complex evolution algorithm, Water, 7, 503-527, doi:10.3390/w7020503, 2015. |
84. | Wi, S., Y.C.E. Yang, S. Steinschneider, A. Khalil, and C.M. Brown, Calibration approaches for distributed hydrologic models in poorly gaged basins: implication for streamflow projections under climate change, Hydrology and Earth System Sciences, 19, 857-876, doi:10.5194/hess-19-857-2015, 2015. |
85. | Chang, C.-H., Development of ocean color algorithms for estimating chlorophyll-a concentrations and inherent optical properties using gene expression programming (GEP), Optics Express, 23(5), 5417-5437, doi:10.1364/OE.23.005417, 2015. |
86. | Hauduc, H., M.B. Neumann, D. Muschalla, V. Gamerith, S. Gillot, and P.A. Vanrolleghem, Efficiency criteria for environmental model quality assessment: A review and its application to wastewater treatment, Environmental Modelling and Software, 68, 196-204, doi:10.1016/j.envsoft.2015.02.004, 2015. |
87. | Peel, M. C., R. Srikanthan, T. A. McMahon, and D. J. Karoly, Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data, Hydrology and Earth System Sciences, 19, 1615-1639, doi:10.5194/hess-19-1615-2015, 2015. |
88. | Silvestro, F., S. Gabellani, R. Rudari, F. Delogu, P. Laiolo, P., and G. Boni, Uncertainty reduction and parameter estimation of a distributed hydrological model with ground and remote sensing data, Hydrology and Earth System Sciences, 19, 1727-1751, doi:10.5194/hess-19-1727-2015, 2015. |
89. | Thirel, G., V. Andréassian, and C. Perrin, On the need to test hydrological models under changing conditions, Hydrological Sciences Journal, 60(7-8), 1165-1173, doi:10.1080/02626667.2015.1050027, 2015. |
90. | #Simmons, J. A., L. A. Marshall, I. L. Turner, K. D. Splinter, R. J. Cox, M. D. Harley, D. J. Hanslow, and M. A. Kinsela, A more rigorous approach to calibrating and assessing the uncertainty of coastal numerical models, Australasian Coasts & Ports Conference 2015, Auckland, New Zealand, 2015. |
91. | Hublart, P., D. Ruelland, A. Dezetter, and H. Jourde, Reducing structural uncertainty in conceptual hydrological modeling in the semi-arid Andes, Hydrology and Earth System Sciences, 19, 2295–2314, doi:10.5194/hess-19-2295-2015, 2015. |
92. | Chiew, F. H. S., and J. Vaze, Hydrologic nonstationarity and extrapolating models to predict the future: overview of session and proceeding, Proc. IAHS, 371, 17–21, doi:10.5194/piahs-371-17-2015, 2015. |
93. | Lazzaro, G., and G. Botter, Run-of-river power plants in Alpine regions: Whither optimal capacity?, Water Resources Research, 51(7), 5658–5676, doi:10.1002/2014WR016642, 2015. |
94. | Bardsley, W.E., V. Vetrova, and S. Liu, Toward creating simpler hydrological models: A LASSO subset selection approach, Environmental Modelling and Software, 72, 33-43, doi:10.1016/j.envsoft.2015.06.008, 2015. |
95. | Zhang, Y., G. Fu, B. Sun, S. Zhang, and B. Men, Simulation and classification of the impacts of projected climate change on flow regimes in the arid Hexi Corridor of Northwest China, Journal of Geophysical Research: Atmospheres, 120(15), 7429–7453, doi:10.1002/2015JD023294, 2015. |
96. | Piccolroaz, S., B. Majone, F. Palmieri, G. Cassiani, and A. Bellin, On the use of spatially distributed, time-lapse microgravity surveys to inform hydrological modeling, Water Resources Research, 51(9), 7270–7288, doi:10.1002/2015WR016994, 2015. |
97. | Gelleszun, M., P. Kreye and G. Meon, Lexicographic calibration strategy for efficient parameter estimation in highly resolved rainfall-runoff models, Hydrologie Und Wasserbewirtschaftung, 59 (3), 84-95, 10.5675/HyWa_2015,3_1, 2015. |
98. | Doncieux, S., J. Liénard, B. Girard, M. Hamdaoui and J. Chaskalovic, Multi-objective analysis of computational models, arXiv:1507.06877, 2015. |
99. | Serpa, D., J. P. Nunes, J. Santos, E. Sampaio, R. Jacinto, S. Veiga, J. C. Lima, M. Moreira, J. Corte-Real, J. J. Keizer, and N. Abrantes, Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments, Science of the Total Environment, 538, 64-77, doi:10.1016/j.scitotenv.2015.08.033, 2015. |
100. | #Sun, N.-Z., and A. Sun, Multiobjective inversion and regularization, Model Calibration and Parameter Estimation for Environmental and Water Resource Systems, 69-105, 2015. |
101. | #Cho, H.-J., M. C. Hwang, and C. C. Hsu, A calibration framework of a mixed-traffic signal optimization model by multi-objective evolutionary approach, MSV'15 - The 12th International Conference on Modeling, Simulation and Visualization Methods, 44-47, Las Vegas, 2015. |
102. | Inzoli, S., and M. Giudici, A comparison between single- and multi-objective optimization to fit spectral induced polarization data from laboratory measurements on alluvial sediments, Journal of Applied Geophysics, 122, 149-158, doi:10.1016/j.jappgeo.2015.09.017, 2015. |
103. | Sikorska, A.E., D. Del Giudice, K. Banasik, and J. Rieckermann, The value of streamflow data in improving TSS predictions - Bayesian multi-objective calibration, Journal of Hydrology, 530, 241–254, doi:10.1016/j.jhydrol.2015.09.051, 2015. |
104. | Zhang, Y. Y., Q. X. Shao, A. Z. Ye, H. T. Xing, and J. Xia, Integrated water system simulation by considering hydrological and biogeochemical processes: model development, parameter sensitivity and autocalibration, Hydrology and Earth System Sciences, 20, 529-553, doi:10.5194/hess-20-529-2016, 2016. |
105. | #Ward, A. D., S. W. Trimble, S. R. Burckhard, and J. G. Lyon, Environmental Hydrology, 3rd edition, CRC Press, 2016. |
106. | Hughes, J. D., S. S. H. Kim, D. Dutta, and J. Vaze, Optimisation of a multiple gauge, regulated river–system model. A system approach, Hydrological Processes, 30(12), 1955-1967, doi:10.1002/hyp.10752, 2016. |
107. | Fernández-Rodríguez, S., P. Durán-Barroso, I. Silva-Palacios, R. Tormo-Molina, J. M. Maya-Manzano, and Á. Gonzalo-Garijo, Quercus long-term pollen season trends in the southwest of the Iberian Peninsula, Process Safety and Environmental Protection, 101, 152–159, doi:10.1016/j.psep.2015.11.008, 2016. |
108. | Chang, C.-H., J. F. Harrison, and Y.‐C. Huang, Modeling typhoon‐induced alterations on river sediment transport and turbidity based on dynamic landslide inventories: Gaoping river basin, Taiwan, Water, 7, 6910–6930, doi:10.3390/w7126666, 2015. |
109. | Houska, T., P. Kraft, A. Chamorro-Chavez, and L. Breuer, SPOTting model parameters using a ready-made Python package, PLoS ONE 10(12), e0145180, doi:10.1371/journal.pone.0145180, 2015. |
110. | Guo, S., C. Xu, H. Chen, and D. Liu, Review and assessment of interaction between watershed hydrology and society system, Journal of Water Resources Research, 5(1), 1-15, doi:10.12677/jwrr.2016.51001, 2016. |
111. | Oni, S. K., M. N. Futter, J. L. J. Ledesma, C. Teutschbein, J. Buttle, and H. Laudon, Using dry and wet hydroclimatic extremes to guide future hydrologic predictions, Hydrology and Earth System Sciences, 20, 2811-2825, doi:10.5194/hess-2016-7, 2016. |
112. | Le Bourgeois, O., C. Bouvier, P. Brunet, and P.-A. Ayral, Inverse modeling of soil water content to estimate the hydraulic properties of a shallow soil and the associated weathered bedrock, Journal of Hydrology, 541, 116-126, doi:10.1016/j.jhydrol.2016.01.067, 2016. |
113. | Silva-Palacios, I., S. Fernández-Rodríguez, P. Durán-Barroso, R. Tormo-Molina, J. M. Maya-Manzano, and Á. Gonzalo-Garijo, Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula, International Journal of Biometeorology, 60(2), 297-306, doi:10.1007/s00484-015-1026-6, 2016. |
114. | Fowler, K. J. A., M. C. Peel, A. W. Western, L. Zhang, and T. J. Peterson, Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall-runoff models, Water Resources Research, 52(3), 1820–1846, doi:10.1002/2015WR018068, 2016. |
115. | Dariane , A. B., and M. M. Javadianzadeh, Towards an efficient rainfall–runoff model through partitioning scheme, Water, 8, 63; doi:10.3390/w8020063, 2016. |
116. | Fernández-Rodríguez , S., P. Durán-Barroso, I. Silva-Palacios, R. Tormo-Molina, J. M. Maya-Manzano, and Á. Gonzalo-Garijo, Regional forecast model for the Olea pollen season in Extremadura (SW Spain), International Journal of Biometeorology, 60(10), 1509-1517, doi:10.1007/s00484-016-1141-z, 2016. |
117. | #Tian, F., Y. Sun, H. Hu, and H. Li, Searching for an optimized single-objective function matching multiple objectives with automatic calibration of hydrological models, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-88, 2016. |
118. | Smith, A., C. Welch, and T. Stadnyk, Assessment of a lumped coupled flow-isotope model in data scarce Boreal catchments, Hydrological Processes, doi:10.1002/hyp.10835, 2016. |
119. | Rogelis, M. C., M. Werner, N. Obregón, and N. Wright, Hydrological model assessment for flood early warning in a tropical high mountain basin, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-30, 2016. |
120. | Senapati, N., P.-E. Jansson, P. Smith, and A. Chabbi, Modelling heat, water and carbon fluxes in mown grassland under multi-objective and multi-criteria constraints, Environmental Modelling & Software, 80, 201-224, doi:10.1016/j.envsoft.2016.02.025, 2016. |
121. | Pathiraja, S., L. Marshall, A. Sharma, and H. Moradkhani, Hydrologic modeling in dynamic catchments: A data assimilation approach, Water Resources Research, 52(5), 3350–3372, doi:10.1002/2015WR017192, 2016. |
122. | Seibert, S. P., U. Ehret, and E. Zehe, Disentangling timing and amplitude errors in streamflow simulations, Hydrology and Earth System Sciences, 20, 3745–3763, doi:10.5194/hess-2016-145, 2016. |
123. | #Echevarría , Y., L. Sánchez, and C. Blanco, Assessment of multi-objective optimization algorithms for parametric identification of a Li-Ion Battery model, Hybrid Artificial Intelligent Systems, Vol. 9648, Lecture Notes in Computer Science, 250-260, doi: 10.1007/978-3-319-32034-2_21, 2016. |
124. | Charizopoulos, N., and A. Psilovikos, Hydrologic processes simulation using the conceptual model Zygos: the example of Xynias drained Lake catchment (central Greece), Environmental Earth Sciences, 75:777, doi:10.1007/s12665-016-5565-x, 2016. |
125. | Zhang, Y., Q. Shao, and J. A. Taylor, A balanced calibration of water quantity and quality by multi-objective optimization for integrated water system model, Journal of Hydrology, 538, 802-816, doi:10.1016/j.jhydrol.2016.05.001, 2016. |
126. | Zhang, Y., Q. Shao, S. Zhang, X. Zhai, and D. She, Multi-metric calibration of hydrological model to capture overall flow regimes, Journal of Hydrology, 539, 525–538, doi:10.1016/j.jhydrol.2016.05.053, 2016. |
127. | Hitsov, I., L. Eykens, K. De Sitter, C. Dotremont, L. Pinoy, B. Van der Bruggen, and I. Nopens, Calibration and analysis of a direct contact membrane distillation model using Monte Carlo filtering, Journal of Membrane Science, 515, 63–78, doi:10.1016/j.memsci.2016.05.041, 2016. |
128. | Fernández-Rodríguez, S., P. Durán-Barroso, I. Silva-Palacios, R. Tormo-Molina, J. M. Maya-Manzano, and Á. Gonzalo-Garijo, Forecast model of allergenic hazard using trends of Poaceae airborne pollen over an urban area in SW Iberian Peninsula (Europe), Natural Hazards, 84(1), 121-137, doi:10.1007/s11069-016-2411-0, 2016. |
129. | Yen, H., M. J. White, J. G. Arnold, S. C. Keitzer, M.-V. V. Johnson, J. D. Atwood, P. Daggupati, M. E. Herbert, S. P. Sowa, S. A. Ludsin, D. M. Robertson, R. Srinivasan, and C. A. Rewa, Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios, Science of the Total Environment, 569-570, 1265–1281, doi:10.1016/j.scitotenv.2016.06.202, 2016. |
130. | Yu, X., C. Duffy, Y. Zhang, G. Bhatt, and Y. Shi, Virtual experiments guide calibration strategies for a real-world watershed application of coupled surface-subsurface modeling, Journal of Hydrologic Engineering, 04016043, doi:10.1061/(ASCE)HE.1943-5584.0001431, 2016. |
131. | Davison, B., A. Pietroniro, V. Fortin, R. Leconte, M. Mamo, and M. K. Yau, What is missing from the prescription of hydrology for land surface schemes?, Journal of Hydrometeorology, 17(7), 2013-2039, doi:10.1175/JHM-D-15-0172.1, 2016. |
132. | Mendez, M., and L. Calvo-Valverde, Development of the HBV-TEC hydrological model, Procedia Engineering, 154, 1116-1123, doi:10.1016/j.proeng.2016.07.521, 2016. |
133. | Huo, J., L. Liu, and Y. Zhang, Comparative research of optimization algorithms for parameters calibration of watershed hydrological model, Journal of Computational Methods in Sciences and Engineering, 16(3), 653-669, doi:10.3233/JCM-160647, 2016. |
134. | #Hernández, F. and X., Liang, X., Hybridizing sequential and variational data assimilation for robust high-resolution hydrologic forecasting, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016-454, 2016. |
135. | Pagel, H., C. Poll, J. Ingwersen, E. Kandeler, and T. Streck, Modeling coupled pesticide degradation and organic matter turnover: From gene abundance to process rates, Soil Biology and Biochemistry, 103, 349-364, doi:10.1016/j.soilbio.2016.09.014, 2016. |
136. | Bisselink, B., M. Zambrano-Bigiarini, P. Burek, and A. de Roo, Assessing the role of uncertain precipitation estimates on the robustness of hydrological model parameters under highly variable climate conditions, Journal of Hydrology: Regional Studies, 8, 112-129, doi:10.1016/j.ejrh.2016.09.003, 2016. |
137. | Vernier, F., O. Leccia-Phelpin, J.-M. Lescot, S. Minette, A. Miralles, D. Barberis, C. Scordia, V. Kuentz-Simonet, and J.-P. Tonneau, Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France), Environmental Science and Pollution Research, 24(8), 6923–6950, doi:10.1007/s11356-016-7657-2, 2017. |
138. | Piotrowski, A. P., M. J. Napiorkowski, J. J. Napiorkowski, M. Osuch, and Z. W. Kundzewicz, Are modern metaheuristics successful in calibrating simple conceptual rainfall–runoff models?, Hydrological Sciences Journal, 62(4), 606-625, doi:10.1080/02626667.2016.1234712, 2017. |
139. | #De Paola, F., M. Giugni, and F. Pugliese, A harmony-based calibration tool for urban drainage systems, Proceedings of the Institution of Civil Engineers - Water Management, doi:10.1680/jwama.16.00057, 2016. |
140. | #Meza, G. R., X. B. Ferragud, J. S. Saez, and J. M. H. Durá, Background on multiobjective optimization for controller tuning, Controller Tuning with Evolutionary Multiobjective Optimization - A Holistic Multiobjective Optimization Design Procedure, Intelligent Systems, Control and Automation: Science and Engineering, Vol. 85, 23-58, doi:10.1007/978-3-319-41301-3_2, 2017. |
141. | Seiller, G., R. Roy, and F. Anctil, Influence of three common calibration metrics on the diagnosis of climate change impacts on water resources, Journal of Hydrology, 547, 280–295, doi:10.1016/j.jhydrol.2017.02.004, 2017. |
142. | Chang, Y., J. Wu, G. Jiang, and Z. Kang, Identification of the dominant hydrological process and appropriate model structure of a karst catchment through stepwise simplification of a complex conceptual model, Journal of Hydrology, 548, 75-87, doi:10.1016/j.jhydrol.2017.02.050, 2017. |
143. | #Zavala, G. R., and A. N. Urbaneja, QOM, Modelo hidrológico simple para abstraer volúmenes de Iluvia, XXVI Congreso Nacional del Agua, Córdoba, Argentina, 2017. |
144. | Jung, D., Y. H. Choi, and J. H. Kim, Multiobjective automatic parameter calibration of a hydrological model, Water, 9(3), 187, doi:10.3390/w9030187, 2017. |
145. | Pouget, D. P., A. Vera, M. Villacís, T. Condom, M. Escobar, P. Le Goulven, and R. Calvez, Glacio-hydrological modelling and water resources management in the Ecuadorian Andes: the example of Quito, Hydrological Sciences Journal, 62(3), 431-446, doi:10.1080/02626667.2015.1131988, 2017. |
146. | Chen, J., R. Arsenault, and F. P. Brissette, An experimental approach to reduce the parametric dimensionality for rainfall–runoff models, Hydrology Research, 48(1), 48-65, doi:10.2166/nh.2016.145, 2017. |
147. | Aphale, O., and D. J. Tonjes, Multimodel validity assessment of groundwater flow simulation models using area metric approach, Groundwater, 55(2), 219–226, doi:10.1111/gwat.12470, 2017. |
148. | Simmons, J. A., M. D. Harley, L. A. Marshall, I. L. Turner, K. D. Splinter, and R. J. Cox, Calibrating and assessing uncertainty in coastal numerical models, Coastal Engineering, 125, 28-41, doi:10.1016/j.coastaleng.2017.04.005, 2017. |
149. | Stahn, P., S. Busch, T. Salzmann, B. Eichler-Löbermann, and K. Miegel, Combining global sensitivity analysis and multiobjective optimisation to estimate soil hydraulic properties and representations of various sole and mixed crops for the agro-hydrological SWAP model, Environmental Earth Sciences, 76, 367, doi:10.1007/s12665-017-6701-y, 2017. |
150. | Kiesel, J., B. Guse, M. Pfannerstill, K. Kakouei, S. C. Jähnig, and N. Fohrer, Improving hydrological model optimization for riverine species, Ecological Indicators, 80, 376–385, doi:10.1016/j.ecolind.2017.04.032, 2017. |
151. | Poncelet, C., R. Merz, B. Merz, J. Parajka, L. Oudin, V. Andréassian, and C. Perrin, Process-based interpretation of conceptual hydrological model performance using a multinational catchment set, Water Resources Research, 53(8), 7247–7268, doi:10.1002/2016WR019991, 2017. |
152. | Charizopoulos, N., A. Psilovikos, and E. Zagana, A lumped conceptual approach for modeling hydrological processes: the case of Scopia catchment area, Central Greece, Environmental Earth Sciences, 76:18, doi:10.1007/s12665-017-6967-0, 2017. |
153. | Gelleszun, M., P. Kreye, and G. Meon, Representative parameter estimation for hydrological models using a lexicographic calibration strategy, Journal of Hydrology, 553, 722-734, doi:10.1016/j.jhydrol.2017.08.015, 2017. |
154. | #Li, H. X., Y. Q. Zhang, G. H. Qin, and L.R. Cao, Multi-objective calibration of Xinanjiang model by using streamflow and evapotranspiration data, Proceedings of 22nd International Congress on Modelling and Simulation, 1843-1849, Hobart, Tasmania, Australia, 2017. |
155. | Tang, Y., L. Marshall, A. Sharma, and H. Ajami, A Bayesian alternative for multi-objective ecohydrological model specification, Journal of Hydrology, 556, 25-38, doi:10.1016/j.jhydrol.2017.07.040, 2018. |
156. | Fernández-Rodríguez, S., P. Durán-Barroso, I. Silva-Palacios, R. Tormo-Molina, J. M. Maya-Manzano, Á. Gonzalo-Garijo, and A. Monroy-Colin, Environmental assessment of allergenic risk provoked by airborne grass pollen through forecast model in a Mediterranean region, Journal of Cleaner Production, 176, 1304-1315, doi:10.1016/j.jclepro.2017.11.226, 2018. |
157. | Alipour, M. H., and K. M. Kibler, A framework for streamflow prediction in the world’s most severely data-limited regions: test of applicability and performance in a poorly-gauged region of China, Journal of Hydrology, 557, 41-54, doi:10.1016/j.jhydrol.2017.12.019, 2018. |
158. | #Kumarasamy, K., and P. Belmont, Multiple domain evaluation of watershed hydrology models, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2017-121, 2017. |
159. | Kuppel, S., D. Tetzlaff, M. Maneta, and C. Soulsby, What can we learn from multi-data calibration of a process-based ecohydrological model? Environmental Modelling and Software, 101, 301–316, doi:10.1016/j.envsoft.2018.01.001, 2018. |
160. | De Paola, F., M. Giugni, and F. Pugliese, A harmony-based calibration tool for urban drainage systems, Proceedings of the Institution of Civil Engineers – Water Management, 171(1), 30-41, doi:10.1680/jwama.16.00057, 2018. |
161. | Zhang, R., J. Liu, H. Gao, and G. Mao, Can multi-objective calibration of streamflow guarantee better hydrological model accuracy?, Journal of Hydroinformatics, 20(3), 687-698, doi:10.2166/hydro.2018.131, 2018. |
162. | De Lavenne, A., and V. Andréassian, Impact of climate seasonality on catchment yield: A parameterization for commonly-used water balance formulas, Journal of Hydrology, 558, 266–274, doi:10.1016/j.jhydrol.2018.01.009, 2018. |
163. | Shokri, A., J. P. Walker, A. van Dijk, A. J. Wright, and V. R.N. Pauwels, Application of the patient rule induction method to detect hydrologic model behavioural parameters and quantify uncertainty, Hydrological Processes, 32(8), 1005-1025, doi:10.1002/hyp.11464, 2018. |
164. | Mostafaie, A., E. Forootan, A. Safari, and M. Schumacher, Comparing multi-objective optimization techniques to calibrate a conceptual hydrological model using in situ runoff and daily GRACE data, Computational Geosciences, 22(3), 789–814, doi:10.1007/s10596-018-9726-8, 2018. |
165. | Jehn, F. U., L. Breuer, T. Houska, K. Bestian, and P. Kraft, Incremental model breakdown to assess the multi-hypotheses problem, Hydrology and Earth System Sciences, 22, 4565-4581, doi:10.5194/hess-2017-691, 2018. |
166. | He, Z., S. Vorogushyn, K. Unger-Shayesteh, A. Gafurov, O. Kalashnikova, E. Omorova, and B. Merz, The value of hydrograph partitioning curves for calibrating hydrological models in glacierized basins, Water Resources Research, 54(3), 2336-2361, doi:10.1002/2017WR021966, 2018. |
167. | Huang, X., C. Wang, and Z. Li, A near real-time flood-mapping approach by integrating social media and post-event satellite imagery, Annals of GIS, 24(3), 113-123, doi:10.1080/19475683.2018.1450787, 2018. |
168. | Her, Y., and C. Seong, Responses of hydrological model equifinality, uncertainty, and performance to multi-objective parameter calibration, Journal of Hydroinformatics, 20(4), 864-885, doi:10.2166/hydro.2018.108, 2018. |
169. | Tweldebrahn, A. T., J. F. Burkhart, and T. V. Schuler, Parameter uncertainty analysis for an operational hydrological model using residual based and limits of acceptability approaches, Hydrology and Earth System Sciences, 22, 5021-5039, doi:10.5194/hess-2018-158, 2018. |
170. | Fowler, K., M. Peel, A. Western, and L. Zhang, Improved rainfall‐runoff calibration for drying climate: choice of objective function, Water Resources Research, 54(5), 3392-3408, doi:10.1029/2017WR022466, 2018. |
171. | Rajib, A., V. Merwade, and Z. Yu, Rationale and efficacy of assimilating remotely sensed potential evapotranspiration for reduced uncertainty of hydrologic models, Water Resources Research, 54(7), 4615-4637, doi:10.1029/2017WR021147, 2018. |
172. | Yang, B., Y. Chen, X. Chen, M. Liu, and L. Gao, HSPF runoff simulation and optimization based on PEST automatic calibration, Science of Soil and Water Conservation, 16(2), 9-16, doi:10.16843/j.sswc.2018.02.002, 2018. |
173. | Kumarasamy, K., and P. Belmont, Calibration parameter selection and watershed hydrology model evaluation in time and frequency domains, Water, 10(6), 710, doi:10.3390/w10060710, 2018. |
174. | Safari , A. R., and A. R. Mostafaie, Using satellite gravimetric data for optimizing the performance of a simple hydrological model via multi-objective evolutionary algorithms, Journal of Geomatics Science and Technology, 8(1), 1-18, 2018. |
175. | #Kavetski, D., Parameter estimation and predictive uncertainty quantification in hydrological modelling, Handbook of Hydrometeorological Ensemble Forecasting, Duan Q., Pappenberger F., Thielen J., Wood A., Cloke H., Schaake J. (eds.), Springer, Berlin, Heidelberg, doi:10.1007/978-3-642-40457-3_25-1, 2018. |
176. | Schattan, P., G. Baroni, S. Oswald, C. Fey, J. Schöber, & S. Achleitner, Vom punkt zur fläche in der messung des wasseräquivalents der schneedecke – Mehrwert von cosmic-ray neutron sensoren in der regionalen schneemodellierung, Österreichische Wasser- und Abfallwirtschaft, 70(9-10), 497-506, doi:10.1007/s00506-018-0500-x, 2018. |
177. | Hernandez-Suarez, J. S., A. P. Nejadhashemi, I. M. Kropp, M. Abouali, Z. Zhang, and K. Deb, Evaluation of the impacts of hydrologic model calibration methods on predictability of ecologically-relevant hydrologic indices, Journal of Hydrology, 564, 758-772, doi:10.1016/j.jhydrol.2018.07.056, 2018. |
178. | Gan, Y., X-Z. Liang, Q. Duan, A. Ye, Z. Di, Y. Hong, and J. Li, A systematic assessment and reduction of parametric uncertainties for a distributed hydrological model, Journal of Hydrology, 564, 697-711, doi:10.1016/j.jhydrol.2018.07.055, 2018 |
179. | Qi, W., C. Zhang, G. Fu, C. Sweetapple, and Y. Liu, Impact of robustness of hydrological model parameters on flood prediction uncertainty, Journal of Flood Risk Management, doi:10.1111/jfr3.12488, 2018. |
180. | Wang, Q., Q. Zhou, X. Lei, and D. A. Savić, Comparison of multiobjective optimization methods applied to urban drainage adaptation problems, Journal of Water Resources Planning and Management, 144(11), 04018070, doi:10.1061/(ASCE)WR.1943-5452.0000996, 2018. |
181. | #Xie, H., M. Matranga, and J. Mateo-Sagasta, The role of models, More people, more food, worse water? A global review of water pollution from agriculture, J. Mateo-Sagasta, S. M. Zadeh, and H. Turral (editors), Food and Agriculture Organization of the United Nations, Rome, 2018. |
182. | Read, M. N., K. Alden, J. Timmis, and P. S. Andrews, Strategies for calibrating models of biology, Briefings in Bioinformatics, bby092, doi:10.1093/bib/bby092, 2018. |
183. | Chilkoti, V., T. Bolisetti, and R. Balachandar, Multi-objective autocalibration of SWAT model for improved low flow performance for a small snowfed catchment, Hydrological Sciences Journal, 63(10), 1482-1501, doi:10.1080/02626667.2018.1505047, 2018. |
184. | Rajib, A., G. R. Evenson, H. E. Golden, and C. R. Lane, Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters, Journal of Hydrology, 567, 668-683, doi: 10.1016/j.jhydrol.2018.10.024, 2018. |
185. | Cheng, Q.-B., X. Chen, J. Wang, Z.-C. Zhang, R.-R. Zhang, Y.-Y. Xie, C. Reinhardt-Imjela, and A. Schulte, The use of river flow discharge and sediment load for multi-objective calibration of SWAT based on the Bayesian inference, Water, 10(11), 1662, doi:10.3390/w10111662, 2018. |
186. | Thornton, J. M., G. Mariethoz, and P. Brunner, A 3D geological model of a structurally complex Alpine region as a basis for interdisciplinary research, Scientific Data, 5, 180238, doi:10.1038/sdata.2018.238, 2018. |
187. | Hernández, F., and X. Liang, Hybridizing Bayesian and variational data assimilation for high-resolution hydrologic forecasting, Hydrology and Earth System Sciences, 22, 5759-5779, doi:10.5194/hess-22-5759-2018, 2018. |
188. | Pool, S., M. Vis., and J. Seibert, Evaluating model performance: towards a non-parametric variant of the Kling-Gupta efficiency, Hydrological Sciences Journal, 63(13-14), 1941-1953, doi:10.1080/02626667.2018.1552002, 2018. |
189. | Huo, J., and L. Liu, Application research of multi-objective Artificial Bee Colony optimization algorithm for parameters calibration of hydrological model, Neural Computing and Applications, 31(9), 4715-4732, doi:10.1007/s00521-018-3483-4, 2019. |
190. | Visser-Quinn, A., L. Beevers, and S. Patidar, Replication of ecologically relevant hydrological indicators following a covariance approach to hydrological model parameterisation, Hydrology and Earth System Sciences, 23, 3279–3303, doi:10.5194/hess-2018-536, 2019. |
191. | Menegazzo, T.A.S., A.M. Soares Junior., B.T. Mota, Né. Henderson, and A.P. Pires, Application of an equation of state incorporating association to alcohols up to decanol, Fluid Phase Equilibria, 482, 24-37, doi:10.1016/j.fluid.2018.10.015, 2019. |
192. | Smith, K. A., L. J. Barker, M. Tanguy, S. Parry, S. Harrigan, T. P. Legg, C. Prudhomme, and J. Hannaford, A multi-objective ensemble approach to hydrological modelling in the UK: An application to historic drought reconstruction, Hydrology and Earth System Sciences, 23, 3279–3303, doi:10.5194/hess-23-3279-2019, 2019. |
193. | Knoben, W. J. M., J. E. Freer, K. J. A. Fowler, M. C. Peel, and R. A. Woods, Modular Assessment of Rainfall-Runoff Models Toolbox (MARRMoT) v1.0: an open- source, extendable framework providing implementations of 46 conceptual hydrologic models as continuous space-state formulations, Geoscientific Model Development, 12, 2463-2480, doi:10.5194/gmd-2018-332, 2019. |
194. | #Singh, R., and B. Biswal, Assessing the impact of climate change on water resources: The challenge posed by a multitude of options, Hydrology in a Changing World: Challenges in Modeling, Singh S., Dhanya C. (eds), 185-204, Springer Water, doi:10.1007/978-3-030-02197-9_9, 2019. |
195. | Obergfell, C., M. Bakker, and K. Maas, Estimation of average diffuse aquifer recharge using time series modeling of groundwater heads, Water Resources Research, 55(3), 2194-2210, doi:10.1029/2018WR024235, 2019. |
196. | Abbaszadeh, P., H. Moradkhani, and D. N. Daescu, The quest for model uncertainty quantification: A hybrid ensemble and variational data assimilation framework, Water Resources Research, 55(3), 2407-2431, doi:10.1029/2018WR023629, 2019. |
197. | Chilkoti, V., T. Bolisetti, and R. Balachandar, Diagnostic evaluation of hydrologic models employing flow duration curve, Journal of Hydrologic Engineering, 24(6), 05019009, doi:10.1061/(ASCE)HE.1943-5584.0001778, 2019. |
198. | Kreye, P., M. Gelleszun, and G. Meon, Parameter identification in hydrological models using groundwater-level measurements and satellite-based soil moisture, Hydrological Sciences Journal, 64(6), 633-652, doi:10.1080/02626667.2019.1599120, 2019. |
199. | Sauerland, V., I. Kriest, A. Oschlies, and A. Srivastav, Multi-objective calibration of a global biogeochemical ocean model against nutrients, oxygen, and oxygen minimum zones, Journal of Advances in Modeling Earth Systems, 11(5), 1285-1308, doi:10.1029/2018MS001510, 2019. |
200. | Birhanu, D., H. Kim, and C. Jang, Effectiveness of introducing crop coefficient and leaf area index to enhance evapotranspiration simulations in hydrologic models, Hydrological Processes, 33(16), 2206-2226, doi:10.1002/hyp.13464, 2019. |
201. | #Hernández, F., and X. Liang, Efficient data assimilation in high-dimensional hydrologic modeling through optimal spatial clustering, World Environmental and Water Resources Congress 2019, doi:10.1061/9780784482339.034, 2019. |
202. | Koppa, A., M. Gebremichael, W. W.-G. Yeh, Multivariate calibration of large scale hydrologic models: The necessity and value of a Pareto optimal approach, Advances in Water Resources, 130, 129-146, doi:10.1016/j.advwatres.2019.06.005, 2019. |
203. | Bomhof, J., B. A. Tolson, and N. Kouwen, Comparing single and multi-objective hydrologic model calibration considering reservoir inflow and streamflow observations, Canadian Water Resources Journal, doi:10.1080/07011784.2019.1623077, 2019. |
204. | Khatami, S., M. C. Peel, T. J. Peterson, and A. W. Western, Flux mapping: a new approach to evaluating model process representation under uncertainty, Water Resources Research, doi:10.1029/2018WR023750, 2019. |
205. | Abdullah, J., N. S. Muhammad, S. A. Muhammad, N. F. M. Amin, and W. Tahir, Research trends in hydrological modelling, Jurnal Teknologi (Sciences & Engineering), 81(4), 1–11, doi:10.11113/jt.v81.13080, 2019. |
206. | Tian, F., H. Hu, Y. Sun, H. Li, and H. Lu, Searching for an optimized single-objective function matching multiple objectives with automatic calibration of hydrological models, Chinese Geographical Science, 29, doi:10.1007/s11769-019-1068-5, 2019. |
207. | Monteil, C., F. Zaoui, N. Le Moine, N., and F. Hendrickx, Technical note: the caRamel R package for Automatic Calibration by Evolutionary Multi Objective Algorithm, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2019-259, 2019. |
208. | Guillaume, J. H. A., J. D. Jakeman, S. Marsili-Libelli, M. Asher, P. Brunner, B. Croke, M. C. Hill, A. J. Jakeman, K. J. Keesman, S. Razavi, and J. D. Stigter, Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose, Environmental Modelling and Software, 119, 418-432, doi:10.1016/j.envsoft.2019.07.007, 2019. |
209. | Gobeyn, S., and P. L. M. Goethals, Multi-objective optimisation of species distribution models for river management, Water Research, 163, 114863, doi:10.1016/j.watres.2019.114863, 2019. |
210. | Dumedah, G., Hydro genome mapping: An approach for the diagnosis, evaluation and improving prediction capability of hydro-meteorological models, Water Resources Management, 33(11), 3851-3872, doi:10.1007/s11269-019-02336-2, 2019. |
211. | Qi, W., C. Zhang, G. Fu, C. Sweetapple, and Y. Liu, Impact of robustness of hydrological model parameters on flood prediction uncertainty, Journal of Flood Risk Management, 12(S1), e12488, doi:10.1111/jfr3.12488, 2019. |
212. | Soares Jr., A. M., N. Henderson, B. T. Mota, A. P. Pires, and V. D. Ramos, A new pot still distillation model approach with parameter estimation by multi-objective optimization, Computers & Chemical Engineering, 130, 106570, doi:10.1016/j.compchemeng.2019.106570, 2019. |
213. | Sahraei, S., M. Asadzadeh, and M. Shafii, Toward effective many-objective optimization: Rounded-archiving, Environmental Modelling and Software, 122, 104535, doi:10.1016/j.envsoft.2019.104535, 2019. |
214. | #Ghahramani, A., R. Anderson, and A. Doherty, Developing HowLeaky Platform for Improved Governance, Facilitation of Development, and Open Reproducible Science, USQ Centre for Sustainable Agricultural Systems, Final technical report for the Department of Environment and Science, Queensland Government, 2019. |
215. | Song, J.-H., Y. Her, K. Suh, M.-S. Kang, and H. Kim, Regionalization of a rainfall-runoff model: Limitations and potentials, Water, 11(11), 2257, doi:10.3390/w11112257, 2019. |
216. | Tababaee, M. R., A. Salehpourjam, and S. A. Hosseini, Presenting a new approach to increase the efficiency of the sediment rating curve model in estimating suspended sediment load in watersheds (case study: Mahabad-Chai River, Lake Urmia Basin, West Azarbayejan Province, Iran), Journal of Watershed Management Research, 10(19), 193, 2019. |
217. | Mahévas, S., V. Picheny, P. Lambert, N. Dumoulin, L. Rouan, J. Soulié, D. Brockhoff, S. Lehuta, R. Le Riche, R. Faivre, and H. Drouineau, A practical guide for conducting calibration and decision-making optimisation with complex ecological models, Preprints 2019, 2019120249, doi:10.20944/preprints201912.0249.v1, 2019. |
218. | Birkel, C., and A. C. Barahona, Rainfall-runoff modeling: a brief overview, Reference Module in Earth Systems and Environmental Sciences, doi:10.1016/B978-0-12-409548-9.11595-7, 2019. |
219. | #Brès, A., F. Amblard, J. Page, S. Hauer, and A. Shadrina, Now it looks more real – A study of metrics and resolution for the calibration of dynamic simulation, Building Simulation 2019, 16th IBPSA International Conference and Exhibition, Rome, 2019. |
220. | Nemri, S., and C. Kinnard, Comparing calibration strategies of a conceptual snow hydrology model and their impact on model performance and parameter identifiability, Journal of Hydrology, 582, 124474, doi:10.1016/j.jhydrol.2019.124474, 2020. |
221. | Behrouz, M. S., Z. Zhu, L. S. Matott, and A. J. Rabideau, A new tool for automatic calibration of the Storm Water Management Model (SWMM), Journal of Hydrology, 581, 124436, doi:10.1016/j.jhydrol.2019.124436, 2020. |
222. | Zavala, G. R., J. García-Nieto, and A. J. Nebro, Qom—A new hydrologic prediction model enhanced with multi-objective optimization, Applied Sciences, 10(1), 251, doi:10.3390/app10010251, 2020. |
223. | Budhathoki, S., P. Rokaya, K.-E. Lindenschmidt, and B. Davison, A multi-objective calibration approach using in-situ soil moisture data for improved hydrological simulation of the Prairies, Hydrological Sciences Journal, 65(4), 638-649, doi:10.1080/02626667.2020.1715982, 2020. |
224. | Adeyeri, O. E., P. Laux, J. Arnault, A. E. Lawin, and H. Kunstmann, Conceptual hydrological model calibration using multi-objective optimization techniques over the transboundary Komadugu-Yobe basin, Lake Chad Area, West Africa, Journal of Hydrology: Regional Studies, 27, 100655, doi:10.1016/j.ejrh.2019.100655, 2020. |
225. | Dembélé, M., M. Hrachowitz, H.G. Savenije, G. Mariéthoz, and B. Schaefli, Improving the predictive skill of a distributed hydrological model by calibration on spatial patterns with multiple satellite datasets, Water Resources Research, 56(1), e2019WR026085, doi:10.1029/2019WR026085, 2020. |
226. | Read, M. N., K. Alden, J. Timmis, and P. S. Andrews, Strategies for calibrating models of biology, Briefings in Bioinformatics, 21(1), 24–35, doi:10.1093/bib/bby092, 2020. |
227. | Guse, B., J. Kiesel, M. Pfannerstill, and N. Fohrer, Assessing parameter identifiability for multiple performance criteria to constrain model parameters, Hydrological Sciences Journal, 65(7), 1158-1172 , doi:10.1080/02626667.2020.1734204, 2020. |
228. | Kwakye, S. O., and A. Bárdossy, Hydrological modelling in data-scarce catchments: Black Volta basin in West Africa, SN Applied Sciences, 2, 628, doi:10.1007/s42452-020-2454-4, 2020. |
229. | #Gelleszun, M., P. Kreye, and G. Meon, Robuste Parameterschätzung und eine effiziente Unsicherheitsanalyse in großskaligen hydrologischen Modellanwendungen, Einsatz von Künstlicher Intelligenz (KI) für die Optimierung von Planungsprozessen im Wasserbau, 383-392, Dresden, Germany, 2020. |
230. | Sun, R., F. Hernández, X. Liang, and H. Yuan, A calibration framework for high-resolution hydrological models using a multiresolution and heterogeneous strategy, 2020. |
231. | Song, J.-H., Y. Her, S. Hwang, and M.-S. Kang, Uncertainty in irrigation return flow estimation: Comparing conceptual and physically-based parameterization approaches, Water, 12(4), 1125, doi:10.3390/w12041125, 2020. |
232. | Ghahramani, A., D. M. Freebairn, D. R. Sena, J. L. Cutajar, and D. M. Silburn, A pragmatic parameterisation and calibration approach to model hydrology and water quality of agricultural landscapes and catchments, Environmental Modelling and Software, 104733, doi:10.1016/j.envsoft.2020.104733, 2020. |
233. | #Rogelis, M. C., Operational Flood Forecasting, Warning and Response for Multi-Scale Flood Risks in Developing Cities, CRC Press, London, doi:10.1201/9780138745011, 2020. |
234. | Ögmundarson, O., S. Sukumara, M. J. Herrgård, and P. Fantke, Combining environmental and economic performance for bioprocess optimization, Trends in Biotechnology, doi:10.1016/j.tibtech.2020.04.011, 2020. |
235. | Monteil, C., F. Zaoui, N. Le Moine, and F. Hendrickx, Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules – the caRamel algorithm, Hydrology and Earth System Sciences, 24, 3189-3209, 10.5194/hess-24-3189-2020, 2020. |
236. | Dembélé, M., N. Ceperley, S. J. Zwart, E. Salvadore, G. Mariethoz, and B. Schaefli, Potential of satellite and reanalysis evaporation datasets for hydrological modelling under various model calibration strategies, Advances in Water Resources, 143, 103667, doi:10.1016/j.advwatres.2020.103667, 2020. |
237. | Rajib, A., I. L. Kim, H. E. Golden, C. R. Lane, S. V. Kumar, Z. Yu, and S. Jeyalakshmi, Watershed modeling with remotely sensed big data: MODIS Leaf Area Index improves hydrology and water quality predictions, Remote Sensing, 12(3), 2148, doi:10.3390/rs12132148, 2020. |
238. | Chen, W., D. Nover, H. Yen, Y. Xia, B. He, W. Sun, and J. Viers, Exploring the multiscale hydrologic regulation of multipond systems in a humid agricultural catchment, Water Research, 184, 115987, doi:10.1016/j.watres.2020.115987, 2020. |
239. | Watson, A., S. Kralisch, A. Künne, M. Fink, and J. Miller, Impact of precipitation data density and duration on simulated flow dynamics and implications for ecohydrological modelling in semi-arid catchments in Southern Africa, Journal of Hydrology, 590, 125280, doi:10.1016/j.jhydrol.2020.125280, 2020. |
240. | Naha, S., M. A. Rico-Ramirez, R. and Rosolem, Quantifying the impact of land cover changes on hydrological extremes in India, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2020-220, 2020. |
241. | Chilkoti, V., T. Bolisetti, and R. Balachandar, Investigating the role of hydrological model parameter uncertainties in future streamflow projections, Journal of Hydrologic Engineering, 25(10), doi:10.1061/(ASCE)HE.1943-5584.0001994, 2020. |
242. | Petroselli, A., A generalization of the EBA4SUB rainfall–runoff model considering surface and subsurface flow, Hydrological Sciences Journal, 65(14), 2390-2401, doi:10.1080/02626667.2020.1810856, 2020. |
243. | Williams, T. G., S. D. Guikema, D. G.Brown, and A. Agrawal, Assessing model equifinality for robust policy analysis in complex socio-environmental systems, Environmental Modelling & Software, 134, 104831, doi:10.1016/j.envsoft.2020.104831, 2020. |
244. | Khanarmuei, M., K. Suara, J. Sumihar, and R. J. Brown, Hydrodynamic modelling and model sensitivities to bed roughness and bathymetry offset in a micro-tidal estuary, Journal of Hydroinformatics, 22(6), 1536-1553, doi:10.2166/hydro.2020.102, 2020. |
245. | Lamontagne, J. R., C. A. Barber, and R. M. Vogel, Improved estimators of model performance efficiency for skewed hydrologic data, Water Resources Research, 56(9), e2020WR027101, doi:10.1029/2020WR027101, 2020. |
246. | de Lima Ferreira, P. M., A. R. da Paz, and J. M. Bravo, Objective functions used as performance metrics for hydrological models: state-of-the-art and critical analysis, Brazilian Journal of Water Resources, 25, e42, doi:10.1590/2318-0331.252020190155, 2020. |
247. | Tong, R., J. Parajka, A. Salentinig, I. Pfeil, J. Komma, B. Széles, M. Kubáň, P. Valent, M. Vreugdenhil, W. Wagner, and G. Blöschl, The value of ASCAT soil moisture and MODIS snow cover data for calibrating a conceptual hydrologic model, Hydrology and Earth System Sciences, 25, 1389–1410, doi:10.5194/hess-25-1389-2021, 2021. |
248. | Roche, D., B. J. Lence, and E. H. Vaags, Using multiple objective calibrations to explore uncertainty in extreme event modeling, Canadian Journal of Civil Engineering, doi:10.1139/cjce-2020-0275, 2020. |
249. | Smith, A., D. Tetzlaff, L. Kleine, M. Maneta, and C. Soulsby, Quantifying the effects of land use and model scale on water partitioning and water ages using tracer-aided ecohydrological models, Hydrology and Earth System Sciences, 25, 2239-2259, doi:10.5194/hess-25-2239-2021, 2021. |
250. | Ogden, F. L, Geohydrology: Hydrological Modeling, Encyclopedia of Geology (Second Edition), 457-476, doi:10.1016/B978-0-08-102908-4.00115-6, 2021. |
251. | Moges, E., Y. Demissie, L. Larsen, and F. Yassin, Review: Sources of hydrological model uncertainties and advances in their analysis, Water, 13(1), 28, doi:10.3390/w13010028, 2021. |
252. | Yang, F., J. Wu, Y. Zhang, S. Zhu, G. Liu, G. Chen, S. Wu, and Z. Fan, Improved method for identifying Manning’s roughness coefficients in plain looped river network area, Engineering Applications of Computational Fluid Mechanics, 15(1), 94-110, doi:10.1080/19942060.2020.1858967, 2021. |
253. | Brunner, M. I., L. A., Melsen, A. W. Wood, O. Rakovec, N. Mizukami, W. J. M. Knoben, and M. P. Clark, Flood spatial coherence, triggers, and performance in hydrological simulations: large-sample evaluation of four streamflow-calibrated models, Hydrology and Earth System Sciences, 25, 105-119, doi:10.5194/hess-25-105-2021, 2021. |
254. | Jurisch, T., S. Cantré, and F. Saathoff, Inverse infiltration modeling of dike covers made of dredged material using PEST and AMALGAM, Geosciences, 11(2), 41, doi:10.3390/geosciences11020041, 2021. |
255. | Pokorny, S., T. A. Stadnyk, G. Ali, R. Lilhare, S. J. Déry, and K. Koenig, Cumulative effects of uncertainty on simulated streamflow in a hydrologic modeling environment, Elementa: Science of the Anthropocene, 9(1), 431, doi:10.1525/elementa.431, 2021. |
256. | Althoff, D., L. N. Rodrigues, and H. C. Bazame, Uncertainty quantification for hydrological models based on neural networks: the dropout ensemble, Stochastic Environmental Research and Risk Assessment, 35, 1051-1067, doi:10.1007/s00477-021-01980-8, 2021. |
257. | Hanus, S., M. Hrachowitz, H. Zekollari, G. Schoups, M. Vizcaino, and R. Kaitna, Future changes in annual, seasonal and monthly runoff signatures in contrasting Alpine catchments in Austria, Hydrology and Earth System Sciences, 25, 3429–3453, doi:10.5194/hess-25-3429-2021, 2021. |
258. | Wu, W., L. Lu, X. Huang, H. Shangguan, and Z. Wei, An automatic calibration framework based on the InfoWorks ICM model: the effect of multiple objectives during multiple water pollutant modeling, Environmental Science and Pollution Research, 28, 318140-31830, doi:10.1007/s11356-021-12596-4, 2021. |
259. | Houska, T., P. Kraft, F. U. Jehn, K. Bestian, D. Kraus, and L. Breuer, Detection of hidden model errors by combining single and multi-criteria calibration, Science of The Total Environment, 777, 146218, doi:10.1016/j.scitotenv.2021.146218, 2021. |
260. | Mohammed, S. A., D. P. Solomatine, M. Hrachowitz, and M. A. Hamouda, Impact of dataset size on the signature-based calibration of a hydrological model, Water, 13(7), 970, doi:10.3390/w13070970, 2021. |
261. | Tong, R., J. Parajka, B. Széles, I. Pfeil, M. Vreugdenhil, J. Komma, P. Valent, and G. Blöschl, The value of satellite soil moisture and snow cover data for the transfer of hydrological model parameters to ungauged sites, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2021-189, 2021. |
262. | Sylvain, J.-D., F. Anctil, and E. Thiffault, Using bias correction and ensemble modelling for predictive mapping and related uncertainty: A case study in digital soil mapping, Geoderma, 403, 115153, doi:10.1016/j.geoderma.2021.115153, 2021. |
263. | Di Marco, N., D. Avesani, M. Righetti, M. Zaramella, B. Majone, and M. Borga, Reducing hydrological modelling uncertainty by using MODIS snow cover data and a topography-based distribution function snowmelt model, Journal of Hydrology, 599, 126020, doi:10.1016/j.jhydrol.2021.126020, 2021. |
264. | #Labouflie, C., M. Balesdent, L. Brevault, S. Da Veiga, F.-X. Irisarri, R. Le Riche, and J.-F. Maire, Calibration of material model parameters using mixed-effects models, Proceedings of 4th ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2021), M. Papadrakakis, V. Papadopoulos, and G. Stefanou (eds.), Athens, 2021. |
265. | Athira, P., Calibration of hydrological models considering process interdependence: a case study of SWAT model, Environmental Modelling and Software, 114, 105131, doi:10.1016/j.envsoft.2021.105131, 2021. |
266. | Staudinger, M., J. Seibert, and H. J. van Meerveld, Representation of bi-directional fluxes between groundwater and surface water in a bucket type hydrological model, Water Resources Research, 57(9), e2020WR028835, doi:10.1029/2020WR028835, 2021. |
267. | Althoff, D., and L. N. Rodrigues, Goodness-of-fit criteria for hydrological models: Model calibration and performance assessment, Journal of Hydrology, 600, 126674, doi:10.1016/j.jhydrol.2021.126674, 2021. |
268. | Marshall, A. M., T. E. Link, G. N. Flerchinger, and M. S. Lucash, Importance of parameter and climate data uncertainty for future changes in boreal hydrology, Water Resources Research, 57(8), e2021WR029911, doi:10.1029/2021WR029911, 2021. |
269. | #Stefnisdóttir, S., A. E. Sikorska-Senoner, E. I. Ásgeirsson, and D. C. Finger, Improving the Pareto Frontier in multi-dataset calibration of hydrological models using metaheuristics, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2021-325, 2021. |
270. | Pool, S., F. Francés, A. Garcia-Prats, C. Puertes, M. Pulido-Velazquez, C. Sanchis-Ibor, M. Schirmer, H. Yang, and J. Jiménez-Martínez, Hydrological modeling of the effect of the transition from flood to drip irrigation on groundwater recharge using multi-objective calibration, Water Resources Research, 57(8), e2021WR029677, doi:10.1029/2021WR029677, 2021. |
271. | Sikorska-Senoner, A.E., Delineating modelling uncertainty in river flow indicators with representative parameter sets, Advances in Water Resources, 156, 104024, doi:10.1016/j.advwatres.2021.104024, 2021. |
272. | Pool, S. M. Vis, and J. Seibert, Regionalization for ungauged catchments – Lessons learned from a comparative large‐sample study, Water Resources Research, 57(10), e2021WR030437, doi:10.1029/2021WR030437, 2021. |
273. | Wallach, D., T. Palosuo, P. Thorburn, Z. Hochman, E. Gourdain, F. Andrianasolo, S. Asseng, B. Basso, S. Buis, N. Crout, C. Dibari, B. Dumont, R. Ferrise, T. Gaiser, C. Garcia, S. Gayler, A. Ghahramani, S. Hiremath, S. Hoek, H. Horan, G. Hoogenboom, M. Huang, M. Jabloun, P.-E. Jansson, Q. Jing, E. Justes, K. C. Kersebaum, A. Klosterhalfen, M. Launay, E. Lewan, Q. Luo, B. Maestrini, H. Mielenz, M. Moriondo, H. N. Zadeh, G. Padovan, J. E. Olesen, A. Poyda, E. Priesack, J. W. M. Pullens, B. Qian, N. Schütze, V. Shelia, A. Souissi, X. Specka, A. K. Srivastava, T. Stella, T. Streck, G. Trombi, E. Wallor, J. Wang, T. K. D. Weber, L. Weihermüller, A. de Wit, T. Wöhling, L. Xiao, C. Zhao, Y. Zhu, and S. J. Seidel, The chaos in calibrating crop models: lessons learned from a multi-model calibration exercise, Environmental Modelling and Software,145, 105206, doi:10.1016/j.envsoft.2021.105206, 2021. |
274. | Bittner, D., M. Engel, B. Wohlmuth, D. Labat, and G. Chiogna, Temporal scale-dependent sensitivity analysis for hydrological model parameters using the discrete wavelet transform and active subspaces, Water Resources Research, 57(10), e2020WR028511, doi:10.1029/2020WR028511, 2021. |
275. | Hodson, T. O., T. M. Over, and S. S. Foks, Mean squared error, deconstructed, Journal of Advances in Modeling Earth Systems, 13(12), e2021MS002681, doi:10.1029/2021MS002681, 2021. |
276. | Freitas, H. R. A., C. L. Mendes, and A. Illic, Performance optimization of the MGB hydrological model for multi-core and GPU architectures, Environmental Modelling and Software, 148, 105271, doi:10.1016/j.envsoft.2021.105271, 2022. |
277. | Rafiei, V., A. P. Nejadhashemi, S. Mushtaq, R. T. Bailey, and D.-A. An-Vo, An improved calibration technique to address high dimensionality and non-linearity in integrated groundwater and surface water models, Environmental Modelling and Software, 149, 105312, doi:10.1016/j.envsoft.2022.105312, 2022. |
278. | Kamali, B., T. Stella, M. Berg-Mohnicke, J. Pickert, J. Groh, and C. Nendel, Improving the simulation of permanent grasslands across Germany by using multi-objective uncertainty-based calibration of plant-water dynamics, European Journal of Agronomy, 134, 126464, doi:10.1016/j.eja.2022.126464, 2022. |
279. | Yu, S. H. Ding, and Y. Zeng, Evaluating water-yield property of karst aquifer based on the AHP and CV, Scientific Reports, 12(1), 3308, doi:10.1038/s41598-022-07244-x, 2022. |
280. | Abdalla, E. M. H., K. Alfredsen, and T. M. Muthanna, Towards improving the calibration practice of conceptual hydrological models of extensive green roofs, Journal of Hydrology, 607(11), 127548, doi:10.1016/j.jhydrol.2022.127548, 2022. |
281. | Asgari, M., W. Yang, J. Lindsay, B. Tolson, and M. M. Dehnavi, A review of parallel computing applications in calibrating watershed hydrologic models, Environmental Modelling & Software, 151, 105370, doi:10.1016/j.envsoft.2022.105370, 2022. |
282. | Moges, E., B. L. Ruddell, L. Zhang, J. M. Driscoll, and L. G. Larsen, Strength and memory of precipitation's control over streamflow across the conterminous United States, Water Resources Research, 58(3), e2021WR030186, doi:10.1029/2021WR030186, 2022. |
283. | #Azarnivand, A., W. Sharples, U. Bende-Michl, A. Shokri, S. Srikanthan, A. Frost, and S. Baron-Hay, Analysing the uncertainty of modelling hydrologic states of AWRA-L – Understanding impacts from parameter uncertainty for the National Hydrological Projections, Bureau Research Report No. 060, Bureau of Meteorology, February 2022. |
284. | Shankar Ram, N. R., V. M. Chowdary, V. Rao Vala, and C. S. Jha, Spatio-temporal evaluation of event detection and measurement coherence among satellite rainfall products for ensembled dataset generation, Theoretical and Applied Climatology, 148, 1477-1497, doi:10.1007/s00704-022-04002-x, 2022. |
285. | Sadler, J. M., A. P. Appling, J. S. Read, S. K. Oliver, X. Jia, J. A. Zwart, and V. Kumar, Multi-task deep learning of daily streamflow and water temperature, Water Resources Research, 58, e2021WR030138, doi:10.1029/2021WR030138, 2022. |
286. | Smith, J. D., Lin, L., Quinn, J. D., and Band, L. E.: Guidance on evaluating parametric model uncertainty at decision-relevant scales, Hydrology and Earth System Sciences, 26, 2519-2539, doi:10.5194/hess-26-2519-2022, 2022. |
287. | Manikanta, V., and V. K. Verma, Formulation of wavelet based multi‐scale multi‐objective performance evaluation (WMMPE) metric for improved calibration of hydrological models, Water Resources Research, 58(7), e2020WR029355, doi:10.1029/2020WR029355, 2022. |
288. | Kim, S. W., S. H. Kwon, and D. Jung, Development of a multiobjective automatic parameter-calibration framework for urban drainage systems, Sustainability, 14(14), 8350, doi:10.3390/su14148350, 2022. |
289. | Wei, L., H. Zhou, A. T. Hudak, T. E. Link, A. Marshall, K. L. Kavanagh, J. T. Abatzoglou, T. B. Jain, J. C. Byrne, R. Denner, P. A. Fekety, J. Sandquist, X. Yu, and J. D. Marshall, White pine blister rust, logging, and species replacement increased streamflow in a montane watershed in the northern Rockies, USA, Journal of Hydrology, 612, Part B, 128230, doi:10.1016/j.jhydrol.2022.128230, 2022. |
290. | Kuban, M., J. Parajka, R. Tong, I. Greimeister-Pfeil, M. Vreugdenhil, J. Szolgay, S. Kohnova, K. Hlavcova, P. Sleziak, and A. Brziak, The effects of satellite soil moisture data on the parametrization of topsoil and root zone soil moisture in a conceptual hydrological model, Journal of Hydrology and Hydromechanics, 70(3), 295-307, doi:10.2478/johh-2022-0021, 2022. |
291. | Feldbauer, J., R. Ladwig, J. P. Mesman, T. N. Moore, H. Zündorf, T. U. Berendonk, and T. Petzoldt, Ensemble of models shows coherent response of a reservoir’s stratification and ice cover to climate warming, Aquatic Sciences, 84, 50, doi:10.1007/s00027-022-00883-2, 2022. |
292. | Hernandez-Suarez, J. S., and A. P. Nejadhashemi, Probabilistic predictions of ecologically relevant hydrologic indices using a hydrological model, Water Resources Research, 58(9), e2021WR031104, doi:10.1029/2021WR031104, 2022. |
293. | Zheng, H., F. H. S. Chiew, and L. Zhang, Can model parameterization accounting for hydrological non-stationarity improve robustness in future runoff projection? Journal of Hydrometeorology, 23(11), 1831-1844 , doi:10.1175/JHM-D-21-0102.1, 2022. |
294. | Bai, Z., Y.-P. Xu, S. Pan, L. Liu, and X. Wang, Evaluating the performance of hydrological models with joint multifractal spectra, Hydrological Sciences Journal, 67(12), 1771-1789, doi:10.1080/02626667.2022.2114834, 2022. |
295. | Yang, X., C. Yu, X. Li, J. Luo, J. Xie, and B. Zhou, Comparison of the calibrated objective functions for low flow simulation in a semi-arid catchment, Water, 14(17), 2591, doi:10.3390/w14172591, 2022. |
296. | Ekka, A., E. Keshav, S. Pande, P. van der Zaag, and Y. Jiang, Dam-induced hydrological alterations in the upper Cauvery river basin, India, Journal of Hydrology: Regional Studies, 44, 101231, doi:10.1016/j.ejrh.2022.101231, 2022. |
297. | Feng, D. J. Liu, K. Lawson, and C. Shen, Differentiable, learnable, regionalized process-based models with multiphysical outputs can approach state-of-the-art hydrologic prediction accuracy, Water Resources Research, 58(10), e2022WR032404, doi:10.1029/2022WR032404, 2022. |
298. | Vinhal, A. P. C., A. M. Soares, A. P. Pires, and W. Queiroz Barros, Improving water-hydrocarbon equilibrium calculations using multi objective optimization, Fluid Phase Equilibria, 566, 113670, doi:10.1016/j.fluid.2022.113670, 2023. |
299. | Chaudhary, S., L. H.C. Chua, and A. Kansal, The uncertainty in stormwater quality modelling for temperate and tropical catchments, Journal of Hydrology, 617(A), 617, 128941, doi:10.1016/j.jhydrol.2022.128941, 2023. |
300. | Taia, S., L. Erraioui, Y. Arjdal, J. Chao, B. E. Mansouri, and A. Scozzari, The application of SWAT model and remotely sensed products to characterize the dynamic of streamflow and snow in a mountainous watershed in the High Atlas, Sensors, 23(3), 1246, doi:10.3390/s23031246, 2023. |
301. | Vu, D. T., T. D., Dang, F. Pianosi, and S. Galelli, Calibrating macro-scale hydrological models in poorly gauged and heavily regulated basins, Hydrology and Earth System Sciences, 27, 3485–3504, doi:10.5194/hess-27-3485-2023, 2023. |
302. | Zheng, Y., J. Li, T. Zhang, Y. Rong, and P. Feng, Considering flood scaling property in multi-objective calibration of the SWAT model: a case study in Zijinguan watershed, Northern China, Natural Hazards, 117, 267-292, doi:10.1007/s11069-023-05859-5, 2023. |
303. | Mai, J., Ten strategies towards successful calibration of environmental models, Journal of Hydrology, 620(A), 129414, doi:10.1016/j.jhydrol.2023.129414, 2023. |
304. | Wu, Y., J. Sun, B. Hu, G. Zhang, and A. N. Rousseau, Wetland-based solutions against extreme flood and severe drought: Efficiency evaluation of risk mitigation, Climate Risk Management, 40, 100505, doi:10.1016/j.crm.2023.100505, 2023. |
305. | Brookfield, A. E., H. Ajami, R. W. H. Carroll, C. Tague, P. L. Sullivan, and L. E. Condon, Recent advances in integrated hydrologic models: Integration of new domains, Journal of Hydrology, 620(B), 129515, doi:10.1016/j.jhydrol.2023.129515, 2023. |
306. | Bajracharya, A. R., M. I. Ahmed, T. Stadnyk, and M. Asadzadeh, Process based calibration of a continental-scale hydrological model using soil moisture and streamflow data, Journal of Hydrology: Regional Studies, 47, 101391, doi:10.1016/j.ejrh.2023.101391, 2023. |
307. | Yang, Z., and P. Bai, Evaporation from snow surface: A multi-model evaluation with the FLUXNET2015 dataset, Journal of Hydrology, 621, 129587, doi:10.1016/j.jhydrol.2023.129587, 2023. |
308. | Harvey, N., L. Marshall, and R. W. Vervoort, Verifying model performance using validation of Pareto solutions, Journal of Hydrology, 621, 129594, doi:10.1016/j.jhydrol.2023.129594, 2023. |
309. | Holmes, T. L., T. A. Stadnyk, M. Asadzadeh, and J. J. Gibson, Guidance on large scale hydrologic model calibration with isotope tracers, Journal of Hydrology, 621, 129604, doi:10.1016/j.jhydrol.2023.129604, 2023. |
310. | Yeste, P., L. A. Melsen, M. García-Valdecasas Ojeda, S. R. Gámiz-Fortis, Y. Castro-Díez, and M. J. Esteban-Parra, A Pareto-based sensitivity analysis and multi-objective calibration approach for integrating streamflow and evaporation data, Water Resources Research, 59(6), e2022WR033235, doi:10.1029/2022WR033235, 2023. |
311. | Ji, H. K., M. Mirzaei, S. H. Lai, A. Dehghani, and A. Dehghani, The robustness of conceptual rainfall-runoff modelling under climate variability – A review, Journal of Hydrology, 621, 129666, doi:10.1016/j.jhydrol.2023.129666, 2023. |
312. | Singh, V., S. K. Jain, and D. S. Nagale, A comparative analysis of glacier and glacier-melt runoff changes in western and eastern Himalayan river basins, Cold Regions Science and Technology, 214, 103965, doi:10.1016/j.coldregions.2023.103965, 2023. |
313. | Doğan, O. Υ., A. A. Şorman, and A. Şensoy, Multi-criteria evaluation for parameter uncertainty assessment and ensemble runoff forecasting in a snow-dominated basin, Journal of Hydrology and Hydromechanics, 71(3), 231-247, doi:10.2478/johh-2023-0003, 2023. |
314. | Rusjan, S., K. Lebar, and N. Bezak, Insight into heterogeneous karst catchment by the dynamical system approach, Advances in Water Resources, 180, 104524, doi:10.1016/j.advwatres.2023.104524, 2023. |
315. | Acuña, P., and A. Pizarro, Can continuous simulation be used as an alternative for flood regionalisation? A large sample example from Chile, Journal of Hydrology, 626(A), 130118, doi:10.1016/j.jhydrol.2023.130118, 2023. |
316. | Vu, D. T., T. D. Dang, F. Pianosi, and S. Galelli, Calibrating macroscale hydrological models in poorly gauged and heavily regulated basins, Hydrology and Earth System Sciences, 27, 3485-3504, doi:10.5194/hess-27-3485-2023, 2023. |
317. | Costabile, P., C. Costanzo, J. Kalogiros, and V. Bellos, Toward street‐level nowcasting of flash floods impacts based on HPC hydrodynamic modeling at the watershed scale and high‐resolution weather radar data, Water Resources Research, 59(10), e2023WR034599, doi:10.1029/2023WR034599, 2023. |
318. | Taia, S., A. Scozzari, L. Erraioui, M. Kili, A. Mridekh, S. Haida, J. Chao, and B. El Mansouri, Comparing the ability of different remotely sensed evapotranspiration products in enhancing hydrological model performance and reducing prediction uncertainty, Ecological Informatics, 78, 102352, doi:10.1016/j.ecoinf.2023.102352, 2023. |
319. | Wu, S., D. Tetzlaff, X. Yang, A. Smith, and C. Soulsby, Integrating tracers and soft data into multi-criteria calibration: Implications from distributed modeling in a riparian wetland, Water Resources Research, 59, e2023WR035509, doi:10.1029/2023WR035509, 2023. |
320. | Zhang, X., Y. Li, and G. Chu, Comparison of parallel genetic algorithm and particle swarm optimization for parameter calibration in hydrological simulation, Data Intelligence, 5(4), 904-922, doi:10.1162/dint_a_00221, 2023. |
321. | Hasan, H. M. M., P. Döll, S.-M. Hosseini-Moghari, F. Papa, and A. Güntner, The benefits and trade-offs of multi-variable calibration of WGHM in the Ganges and Brahmaputra basins, EGUsphere, doi:10.5194/egusphere-2023-2324, 2023. |
322. | Brighenti, T. M., P. W. Gassman, J. Arnold, and J. Thompson, Comparison of two tile-drain methods in SWAT via temporal and spatial testing for an Iowa watershed, Journal of the ASABE, 66(6), 1555-1569, doi:10.13031/ja.15534, 2023. |
323. | Hinegk, L., L. Adami, S. Piccolroaz, M. Amadori, M. Moretti, M. Tubino, and M. Toffolon, Multidecadal analysis of Lake Garda water balance, Journal of Limnology, 82, 2144, doi:10.4081/jlimnol.2023.2144, 2023. |
324. | #Salmon-Monviola, J., O. Fovet, O., and M. Hrachowitz, Improving the internal hydrological consistency of a process-based solute-transport model by simultaneous calibration of streamflow and stream concentrations, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2023-292, 2024. |
325. | Wang, S., P. Zhong, F. Zhu, B. Xu, C. Xu, L. Yang, and m. Ben, Multi-objective optimization operation of multiple water sources under inflow-water demand forecast dual uncertainties, Journal of Hydrology, 130679, doi:10.1016/j.jhydrol.2024.130679, 2024. |
326. | Gegenleithner, S., G. Krebs, C. Dorfmann, and J. Schneider, Enhancing flood event predictions: Multi-objective calibration using gauge and satellite data, Journal of Hydrology, 632, 130879, doi:10.1016/j.jhydrol.2024.130879, 2024. |
327. | Onyutha, C., Randomized block quasi-Monte Carlo sampling for generalized likelihood uncertainty estimation, Hydrology Research, 55(3), 319–335, doi:10.2166/nh.2024.136, 2024. |
328. | Huang, F., and X. Zhang, A new interpretable streamflow prediction approach based on SWAT-BiLSTM and SHAP, Environmental Science and Pollution Research, 31, 23896-23908, doi:10.1007/s11356-024-32725-z, 2024. |
329. | Usman, M. N., J. Leandro, K. Broich, and M. Disse, Multi-objective calibration and uncertainty analysis for the event-based modelling of flash floods, Hydrological Sciences Journal, doi:10.1080/02626667.2024.2322599, 2024. |
330. | Tiwari, D., M. Trudel, and R. Leconte, On optimization of calibrations of a distributed hydrological model with spatially distributed information on snow, Hydrology and Earth System Sciences, 28, 1127–1146, doi:10.5194/hess-28-1127-2024, 2024. |
331. | Nan, Y., and F. Tian, Isotope data-constrained hydrological model improves soil moisture simulation and runoff source apportionment, Journal of Hydrology, 633, 131006, doi:10.1016/j.jhydrol.2024.131006, 2024. |
332. | Sharples, W., U. Bende-Michl, L. Wilson, A. Shokri, A. Frost, and S. Baron-Hay, Improving continental hydrological models for future climate conditions via multi-objective optimisation, Environmental Modelling & Software, 176, 106018, doi:10.1016/j.envsoft.2024.106018, 2024. |
333. | Pizarro, A., and J. Jorquera, Advancing objective functions in hydrological modelling: Integrating knowable moments for improved simulation accuracy, Journal of Hydrology, 634, 131071, doi:10.1016/j.jhydrol.2024.131071, 2024. |
334. | Pool, S., K. Fowler, and M. Peel, Benefit of multivariate model calibration for different climatic regions, Water Resources Research, 60(4), e2023WR036364, doi:10.1029/2023WR036364, 2024. |
335. | Sánchez-Gómez, A., K. Bieger, C. Schürz, S. Martínez-Pérez, H. Rathjens, and E. Molina-Navarro, Hydrovars: an R tool to collect hydrological variables, Journal of Hydroinformatics, 26(5), 1150-1166, doi:10.2166/hydro.2024.293, 2024. |
336. | Döll, P., H. M. M. Hasan, K. Schulze, H. Gerdener, L. Börger, S. Shadkam, S. Ackermann, S.-M. Hosseini-Moghari, H. Müller Schmied, A. Güntner, and J. Kusche, Leveraging multi-variable observations to reduce and quantify the output uncertainty of a global hydrological model: evaluation of three ensemble-based approaches for the Mississippi River basin, Hydrology and Earth System Sciences, 28, 2259–2295, doi:10.5194/hess-28-2259-2024, 2024. |
337. | Li, H., C. Zhang, W. Chu, D. Shen, and R. Li, A process-driven deep learning hydrological model for daily rainfall-runoff simulation, Journal of Hydrology, 637, 131434, doi:10.1016/j.jhydrol.2024.131434, 2024. |
338. | Lerat, J., F. Chiew, D. Robertson, V. Andréassian, and H. Zheng, Data assimilation informed model structure improvement (DAISI) for robust prediction under climate change: Application to 201 catchments in Southeastern Australia, Water Resources Research, 60(6), e2023WR036595, doi:10.1029/2023WR036595, 2024. |
339. | Tokarev, I., E. Yakovlev, S. Erokhin, T. Tuzova, S. Druzhinin, and A. Puchkov, Reflection of daily, seasonal and interannual variations in run-off of a small river in the water isotopic composition (δ2H, δ18O): A case of the Ala-Archa mountain river basin with glaciation (Kyrgyzstan, Central Asia), Water, 16(11),1632, doi:10.3390/w16111632, 2024. |
340. | Urycki, D. R., A. A. Kirtane, R. Aronoff, C. C. Avila, R. C. Blackman, L. Carraro, O. Evrard, S. P. Good, D. C. Hoyos J., N. López-Rodríguez, D. Mora, Y. Schadewell, O. S. Schilling, and N. C. Ceperley, A new flow path: eDNA connecting hydrology and biology, Wiley Interdisciplinary Reviews Water, doi:10.1002/wat2.1749, 2024. |
341. | Beylich, M., U. Haberlandt, and F. Reinstorf, A new scenario free procedure to determine flood peak changes in the Harz Mountains in response to climate change projections, Journal of Hydrology: Regional Studies, 54, 101864, doi:10.1016/j.ejrh.2024.101864, 2024. |
342. | Pabasara, K., L. Gunawardhana, J. Bamunawala, J. Sirisena, and L. Rajapakse, Significance of multi-variable model calibration in hydrological simulations within data-scarce river basins: A case study in the dry-zone of Sri Lanka, Hydrology, 11(8), 116, doi:10.3390/hydrology11080116, 2024. |
343. | Gupta, A., M. M. Hantush, R. S. Govindaraju, and K. Beven, Evaluation of hydrological models at gauged and ungauged basins using machine learning-based limits-of-acceptability and hydrological signatures, Journal of Hydrology, 641, 131774, doi:10.1016/j.jhydrol.2024.131774, 2024. |
344. | #Bellos, V., C. Costanzo, P. Costabile, and J. Kalogiros, Calibrating 2D flood models in the era of high performance computing, In: Gourbesville, P., Caignaert, G. (eds.) Advances in Hydroinformatics—SimHydro 2023, Volume 1, Springer Water, Springer, Singapore, doi:10.1007/978-981-97-4072-7_23, 2024. |
345. | Ghaffar, S., X. Zhou, S. Jomaa, X. Yang, G. Meon, and M. Rode, Toward a data-effective calibration of a fully distributed catchment water quality model, Water Resources Research, 60(9), e2023WR036527, doi:10.1029/2023WR036527, 2024. |
346. | #Ponds, M., S. Hanus, H. Zekollari, H., M.-C. ten Veldhuis, G. Schoups, R. Kaitna, and M. Hrachowitz, Adaptation of root zone storage capacity to climate change and its effects on future streamflow in Alpine catchments: towards non-stationary model parameters, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2024-260, 2024. |
347. | Guo, X., Z. Wu, G. Fu, and H. He, A multi-variable calibration framework at the grid scale for integrating streamflow with evapotranspiration data to improve the simulation of distributed hydrological model, Journal of Hydrology: Regional Studies, 55, 101944, doi:10.1016/j.ejrh.2024.101944, 2024. |
348. | Astagneau, P. C., F. Bourgin, V. Andréassian, and C. Perrin, Lead-time-dependent calibration of a flood forecasting model, Journal of Hydrology, 644, 132119, doi:10.1016/j.jhydrol.2024.132119, 2024. |
349. | #Jafarov, E. E., H. Genet, V. V. Vesselinov, V. Briones, A. Kabeer, A. L. Mullen, B. Maglio, T. Carman, R. Rutter, J. Clein, C.-C. Chang, D. Teber, T. Smith, J. M. Rady, C. Schädel, J. D. Watts, B. M. Rogers, and S. M. Natali, Estimation of above- and below-ground ecosystem parameters for the DVM-DOS-TEM v0.7.0 model using MADS v1.7.3: a synthetic case study, Geoscientific Model Development Discussions, doi:10.5194/gmd-2024-158, 2024. |
350. | Beven, K. J., A short history of philosophies of hydrological model evaluation and hypothesis testing, Wiley Interdisciplinary Reviews Water, doi:10.1002/wat2.1761, 2024. |
351. | Saccardi, B., C. B. Brinkerhoff, C. J. Gleason, and M. J. Winnick, Toward modeling continental‐scale inland water carbon dioxide emissions, AGU Advances, 5, e2024AV001294, 2024. |
D. Koutsoyiannis, C. Makropoulos, A. Langousis, S. Baki, A. Efstratiadis, A. Christofides, G. Karavokiros, and N. Mamassis, Climate, hydrology, energy, water: recognizing uncertainty and seeking sustainability, Hydrology and Earth System Sciences, 13, 247–257, doi:10.5194/hess-13-247-2009, 2009.
Since 1990 extensive funds have been spent on research in climate change. Although Earth Sciences, including climatology and hydrology, have benefited significantly, progress has proved incommensurate with the effort and funds, perhaps because these disciplines were perceived as “tools” subservient to the needs of the climate change enterprise rather than autonomous sciences. At the same time, research was misleadingly focused more on the “symptom”, i.e. the emission of greenhouse gases, than on the “illness”, i.e. the unsustainability of fossil fuel-based energy production. Unless energy saving and use of renewable resources become the norm, there is a real risk of severe socioeconomic crisis in the not-too-distant future. A framework for drastic paradigm change is needed, in which water plays a central role, due to its unique link to all forms of renewable energy, from production (hydro and wave power) to storage (for time-varying wind and solar sources), to biofuel production (irrigation). The extended role of water should be considered in parallel to its other uses, domestic, agricultural and industrial. Hydrology, the science of water on Earth, must move towards this new paradigm by radically rethinking its fundamentals, which are unjustifiably trapped in the 19th-century myths of deterministic theories and the zeal to eliminate uncertainty. Guidance is offered by modern statistical and quantum physics, which reveal the intrinsic character of uncertainty/entropy in nature, thus advancing towards a new understanding and modelling of physical processes, which is central to the effective use of renewable energy and water resources.
Remarks:
Blogs and forums that have discussed this article: Climate science; Vertical news; Outside the cube.
Update 2011-09-26: The removed video of the panel discussion of Nobelists entitled “Climate Changes and Energy Challenges” (held in the framework of the 2008 Meeting of Nobel Laureates at Lindau on Physics) which is referenced in footnote 1 of the paper, still cannot be located online. However, Larry Gould has an audio file of the discussion here.
Full text: http://www.itia.ntua.gr/en/getfile/878/17/documents/hess-13-247-2009.pdf (1476 KB)
Additional material:
See also: http://dx.doi.org/10.5194/hess-13-247-2009
Works that cite this document: View on Google Scholar or ResearchGate
Other works that reference this work (this list might be obsolete):
1. | Andréassian, V., C. Perrin, L. Berthet, N. Le Moine, J. Lerat, C. Loumagne, L. Oudin, T. Mathevet, M.-H. Ramos, and A. Valéry, HESS Opinions "Crash tests for a standardized evaluation of hydrological models", Hydrology and Earth System Sciences, 13, 1757-1764, 2009. |
2. | Hunt, D. V. L., I. Jefferson, M. R. Gaterell, and C. D. F. Rogers, Planning for sustainable utility infrastructure, Proceedings of the Institution of Civil Engineers – Urban Design and Planning, 162(DP4), 187-201, 2009. |
3. | Makropoulos, C. K., and D. Butler, Distributed water infrastructure for sustainable communities, Water Resources Management, 24(11), 2795-2816, 2010. |
4. | Jódar, J., J. Carrera, and A. Cruz, Irrigation enhances precipitation at the mountains downwind, Hydrology and Earth System Sciences, 14, 2003-2010, 2010. |
5. | #Ladanai, S., and J. Vinterbäck, Biomass for Energy versus Food and Feed, Land Use Analyses and Water Supply, Report 022, Swedish University of Agricultural Sciences, ISSN 1654-9406, Uppsala, 2010. |
6. | Ward, J. D., A. D. Werner, W. P. Nel, and S. Beecham, The influence of constrained fossil fuel emissions scenarios on climate and water resource projections, Hydrology and Earth System Sciences, 15, 1879-1893, 2011. |
7. | #Montanari, A, Uncertainty of hydrological predictions, In: P. Wilderer (ed.) Treatise on Water Science, Vol. 2, 459–478, Oxford Academic Press, 2011. |
8. | #Willems, P., J. Olsson, K. Arnbjerg-Nielsen, S. Beecham, A. Pathirana, I. Bulow Gregersen, H. Madsen, V.-T.-V. Nguyen, Practices and Impacts of Climate Change on Rainfall Extremes and Urban Drainage, IWA Publishing, London, 2012. |
9. | Andrés-Doménech, I., A. Montanari and J. B. Marco, Efficiency of storm detention tanks for urban drainage systems under climate variability, Journal of Water Resources Planning and Management, 138 (1), 36-46, 2012. |
10. | Montanari, A., Hydrology of the Po River: looking for changing patterns in river discharge, Hydrology and Earth System Sciences, 16, 3739-3747, doi:10.5194/hess-16-3739-2012, 2012. |
11. | Voulvoulis, N., Water and sanitation provision in a low carbon society: The need for a systems approach, Journal of Renewable and Sustainable Energy, 4(4), 041403, doi:10.1063/1.3665797, 2012. |
12. | #Skaggs, R., K. A. Hibbard, T. C. Janetos, and J. S. Rice, Climate and energy-water-land system interactions, Technical report to the U.S. Department of Energy in Support of the National Climate Assessment, Report No. PNNL-21185, Pacific Northwest National Laboratory, Richland, WA, 152 pp., 2012. |
13. | Gunasekara, N. K., S. Kazama, D. Yamazaki and T. Oki, The effects of country-level population policy for enhancing adaptation to climate change, Hydrol. Earth Syst. Sci., 17, 4429-4440, 2013. |
14. | Nastos, P. T., N. Politi, and J. Kapsomenakis, Spatial and temporal variability of the aridity index in Greece, Atmospheric Research, 19, 140-152, 2013. |
15. | Hrachowitz, M., H.H.G. Savenije, G. Blöschl, J.J. McDonnell, M. Sivapalan, J.W. Pomeroy, B. Arheimer, T. Blume, M.P. Clark, U. Ehret, F. Fenicia, J.E. Freer, A. Gelfan, H.V. Gupta, D.A. Hughes, R.W. Hut, A. Montanari, S. Pande, D. Tetzlaff, P.A. Troch, S. Uhlenbrook, T. Wagener, H.C. Winsemius, R.A. Woods, E. Zehe, and C. Cudennec, A decade of Predictions in Ungauged Basins (PUB) — a review, Hydrological Sciences Journal, 58(6), 1198-1255, 2013. |
16. | Thompson, S. E., M. Sivapalan, C. J. Harman, V. Srinivasan, M. R. Hipsey, P. Reed, A. Montanari and G. and Blöschl, Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene, Hydrology and Earth System Sciences, 17, 5013-5039, 2013. |
17. | #Voulvoulis, N., The potential of water reuse as a management option for water security under the ecosystem services approach, Win4Life Conference, Tinos Island, Greece, 2013. |
18. | Dette, H., and K. Sen, Goodness-of-fit tests in long-range dependent processes under fixed alternatives, ESAIM: Probability and Statistics, 17, 432-443, 2013. |
19. | Ilich, N., An effective three-step algorithm for multi-site generation of stochastic weekly hydrological time series, Hydrological Sciences Journal, 59 (1), 85-98, 2014. |
20. | Jain, S., Reference climate and water data networks for India, Journal of Hydrologic Engineering, 20(4), 02515001, doi:10.1061/(ASCE)HE.1943-5584.0001170, 2015. |
21. | Voulvoulis, N., The potential of water reuse as a management option for water security under the ecosystem services approach, Desalination and Water Treatment, 53 (12), 3263-3271, doi:10.1080/19443994.2014.934106, 2015. |
22. | #Rohli, R. V., Overview of applied climatology and water/energy resources, Selected Readings in Applied Climatology, R. V. Rohli and T. A. Joyner (editors), 144-155, Cambridge Scholars Publishing, 2015. |
23. | #Kim, S.S.H., J.D. Hughes, D. Dutta, and J. Vaze, Why do sub-period consistency calibrations outperform traditional optimisations in streamflow prediction? Proceedings of 21st International Congress on Modelling and Simulation, 2061-2067, Gold Coast, Australia, 2015. |
24. | Kim, S. S. H., J. D. Hughes, J. Chen, D. Dutta, and J. Vaze, Determining probability distributions of parameter performances for time-series model calibration: A river system trial, Journal of Hydrology, 530, 361–371, doi:10.1016/j.jhydrol.2015.09.073, 2015. |
25. | Clark, C., Two rural temperature records in Somerset, UK, Weather, 70(10), 280-284, doi:10.1002/wea.2512, 2015. |
26. | Tsonis, A. A., Randomness: a property of the mathematical and physical systems, Hydrological Sciences Journal, 61(9), 1591-1610, doi:10.1080/02626667.2014.992434, 2016. |
27. | Di Baldassarre, G., L. Brandimarte, and K. Beven, The seventh facet of uncertainty: wrong assumptions, unknowns and surprises in the dynamics of human-water systems, Hydrological Sciences Journal, 61(9), 1748-1758, doi:10.1080/02626667.2015.1091460, 2016. |
28. | Chrs, C. C., Models, the establishment, and the real world: Why do so many flood problems remain in the UK?, Journal of Geoscience and Environment Protection, 5, 44-59, doi:10.4236/gep.2017.52004, 2017. |
29. | Vogel, M., Stochastic watershed models for hydrologic risk management, Water Security, 1, 28-35, doi:10.1016/j.wasec.2017.06.001, 2017. |
30. | Madani, E. M., P. E. Jansson, and I. Babelon, Differences in water balance between grassland and forest watersheds using long-term data, derived using the CoupModel, Hydrology Research, 49(1), 72-89, doi:10.2166/nh.2017.154, 2018. |
31. | #Oliveira da Silva Araújo, R. C., L. Gomes Lourenço, O. Siena, and C. A. da Silva Müller, Inovação e sustentabilidade na produção e uso de energia: uma meta-análise, Sustentabilidade e Responsabilidade Social em Foco – Volume 4, Capítulo 3, Organização Editora Poisson, doi:10.5935/978-85-93729-64-5.2018B001, 2018. |
32. | Biondi, D., and E. Todini, Comparing hydrological post‐processors including ensembles predictions into full predictive probability distribution of streamflow, Water Resources Research, 54(12), 9860-9882, doi:10.1029/2017WR022432, 2018. |
33. | Dahlke, H. E., G. T. LaHue, M. R. L. Mautner, N. P. Murphy, N. K. Patterson, H. Waterhouse, F. Yang, and L. Foglia, Managed aquifer recharge as a tool to enhance sustainable groundwater management in California: Examples from field and modeling studies, Advances in Chemical Pollution, Environmental Management and Protection, 3, 215-275, doi:10.1016/bs.apmp.2018.07.003, 2018. |
34. | Giudici, F., A. Castelletti, E. Garofalo, M. Giuliani, and H. R. Maier, Dynamic, multi-objective optimal design and operation of water-energy systems for small, off-grid islands, Applied Energy, 250, 605-616, doi:10.1016/j.apenergy.2019.05.084, 2019. |
35. | Tzanakakis, V. A., A. N. Angelakis, N. V. Paranychianakis, Y. G. Dialynas, and G. Tchobanoglous, Challenges and opportunities for sustainable management of water resources in the island of Crete, Greece, Water, 12(6), 1538, doi:10.3390/w12061538, 2020. |
36. | Ayzel, G., L. Kurochkina, and S. Zhuravlev, The influence of regional hydrometric data incorporation on the accuracy of gridded reconstruction of monthly runoff, Hydrological Sciences Journal, doi:10.1080/02626667.2020.1762886, 2020. |
37. | Yang, W., F. Jin, Y. Si, and Z. Li, Runoff change controlled by combined effects of multiple environmental factors in a headwater catchment with cold and arid climate in northwest China, Science of The Total Environment, 756, 143995, doi:10.1016/j.scitotenv.2020.143995, 2021. |
38. | Kourgialas, N. N., A critical review of water resources in Greece: The key role of agricultural adaptation to climate-water effects, Science of the Total Environment, 775, 145857, doi:10.1016/j.scitotenv.2021.145857, 2021. |
39. | #Eslamian S., and S. Parvizi, Engineering Hydrology: Impact on Sustainable Development, Climate Action, Encyclopedia of the UN Sustainable Development Goals, Leal Filho W., Azul A.M., Brandli L., Özuyar P.G., Wall T. (eds), Springer, Cham, doi:10.1007/978-3-319-71063-1_134-1, 2021. |
40. | Lemonis, A. S. Skroufouta, and E. Baltas, An economic evaluation towards sustainability: The case of a hybrid renewable energy system in Greece, American Journal of Environmental and Resource Economics, 7(1), 37-47, doi:10.11648/j.ajere.20220701.15, 2022. |
41. | Cui, Y., J. Jin, X. Bai, S. Ning, L. Zhang, C. Wu, and Y. Zhang, Quantitative evaluation and obstacle factor diagnosis of agricultural drought disaster risk using connection number and information entropy, Entropy, 24(7), 872, doi:10.3390/e24070872, 2022. |
42. | Antwi, K., G. Adu, S. Adu, and J. Appiah-Yeboah, Physical and fuel properties of Bambusa Vulgaris of different age groups and their effect on producing biofuel, South-East European Forestry, 13(1), 53-64, doi:10.15177/seefor.22-05, 2022. |
43. | Caixeta F., A. M. Carvalho, P. Saraiva, and F. Freire, Sustainability-focused excellence: A novel model integrating the water-energy-food nexus for agro-industrial companies, Sustainability, 14(15), 9678, doi:10.3390/su14159678, 2022. |
44. | Angelakis, A. N., J. Krasilnikoff, and V. A. Tzanakakis, Evolution of water technologies and corresponding philosophy and sciences focusing on the Hellenic world through the millennia, Water, 14, 3149, doi:10.3390/w14193149, 2022. |
45. | Li, C., J. Hao, G. Zhang, H. Fang, Y. Wang, and H. Lu, Runoff variations affected by climate change and human activities in Yarlung Zangbo River, southeastern Tibetan Plateau, Catena, doi:10.1016/j.catena.2023.107184, 2023. |
46. | Jorquera, J., and A. Pizarro, Unlocking the potential of stochastic simulation through Bluecat: Enhancing runoff predictions in arid and high‐altitude regions, Hydrological Processes, 37(12), e15046, doi:10.1002/hyp.15046, 2023. |
47. | De León Pérez, D., R. Acosta Vega, S. Salazar Galán, J. Á. Aranda, and F. Francés García, Toward systematic literature reviews in hydrological sciences, Water, 16(3), 436, doi:10.3390/w16030436, 2024. |
48. | Xue, Z., X. Xu, L. Hu, J. Liu, Z. Yan, and M. Han, A study on long-term forecasting of water quality data using self-attention with correlation, Journal of Hydrology, 132390, doi:10.1016/j.jhydrol.2024.132390, 2024. |
D. Koutsoyiannis, A. Efstratiadis, N. Mamassis, and A. Christofides, On the credibility of climate predictions, Hydrological Sciences Journal, 53 (4), 671–684, doi:10.1623/hysj.53.4.671, 2008.
Geographically distributed predictions of future climate, obtained through climate models, are widely used in hydrology and many other disciplines, typically without assessing their reliability. Here we compare the output of various models to temperature and precipitation observations from eight stations with long (over 100 years) records from around the globe. The results show that models perform poorly, even at a climatic (30-year) scale. Thus local model projections cannot be credible, whereas a common argument that models can perform better at larger spatial scales is unsupported.
Remarks:
The paper has been widely discussed in weblogs and forums.
Weblogs and forums that discussed this article during 2008:
- Koutsoyiannis et al 2008: On the credibility of climate predictions (Climate Audit by Steve McIntyre) Reaction by first author * * * Additional reactions: 2 * 3 * 4 * 5 * 6 * more
- On the credibility of climate predictions by Koutsoyiannis et al. 2008 (Climate Science by Roger Pielke Sr. 1)
- Comments on a New Report on Climate Change in Colorado… (Climate Science by Roger Pielke Sr. 2)
- New Paper On Dynamic Downscaling Of Climate Models By Rockel Et. Al. Published (Climate Science by Roger Pielke Sr. 3)
- Hypothesis testing and long range memory (Real Climate by Gavin A. Schmidt) Reaction by 1st author; * * * Additional reaction
- Koutsoyiannis vs RealClimate.ORG (The Reference Frame by Luboš Motl) Reaction by 1rst author
- Modellen en vroegere werkelijkheid: een test (Klimaat by Marcel Severijnen 1)
- Nog eens: Modellen en vroegere werkelijkheid (Klimaat by Marcel Severijnen 2)
- Far from model predictions. As for the CSIRO’s… (Andrew Bolt Blog 1)
- Dud studies behind Rudd’s freakish claims (Andrew Bolt Blog 2)
- Rudd’s dud study (Andrew Bolt Blog 3)
- November snows all over the CSIRO (Andrew Bolt Blog 4)
- New paper demonstrates lack of credibility for climate model predictions (Jennifer Marohasy Blog 1)
- Ten of the Best Climate Research Papers (Nine Peer-Reviewed): A Note from Cohenite (Jennifer Marohasy Blog 2)
- Ten Worst Man-Made Disasters (Jennifer Marohasy Blog 3)
- Climate models struggling for credibility (Al Fin)
- Climate models fuzz (European Tribune)
- If it wasn't so serious then it'd be funny (Kerplunk - Common sense from Down Under)
- Laying the boot into climate models (The Tizona Group)
- More model mania (Planet Gore)
- New research on the credibility of climate predictions (SciForums)
- New paper demonstrates lack of credibility for climate model predictions 2 (Blogotariat)
- New study: climate models fail again (MSNBC Boards 1)
- Global Climate Models Fail (Again) (MSNBC Boards 2)
- On the credibility of climate predictions (Chronos)
- Sane skepticism, part 2 (Helicity)
- Science. On the credibility of climate predictions (Greenhouse Bullcrap)
- Testing global warming models (Assorted Meanderings)
- Climate cuttings 21 (Bishop Hill blog)
- Models, Climate Change and Credibility... (21st Century Schizoid Man)
- Two valuable perspectives on global warming (Fabius Maximus)
- Unreliability of climate models? (Climate Change)
- Crumbling Consensus: Global Climate Models Fail (Stubborn Facts)
- The Australian government's climate castle is built on sand (Greenie Watch)
- Koutsoyiannis et al 2008 (Detached Ideas)
- Credibility of Climate Predictions Paper (TWO community)
- "Climate consensus" continues to unravel (Solomonia)
- Climate models have no predictive value (Acadie 1755)
- Global Warming Summary series, Part 5: The Earth’s Greenhouse Gas – CO2 and IPCC Climate Modeling (Global Warming Science)
- Reducing Vulnerability to Climate-Sensitive Risks is the Best Insurance Policy (Cato Unbound)
- Global Warming News of the Week (No Oil for Pacifists)
- A few more cooling blasts at hot air balloons (Clothcap2 : My Telegraph)
- IPCC-Klimamodell unbrauchbar (jetzt Sueddeutsche)
- Uups II: IPCC-Klimamodelle fantasieren (Die Achse des Guten)
- Griechische Unsicherheiten (Climate Review)
- El fracaso de los modelos (Valdeperrillos)
- Klimamodeller er usikre (Debattcentralen - Aftenposten.no)
- Studie: Klimatmodellernas trovärdighet låg (Klimatsvammel)
- Credibilidad de las predicciones climáticas (FAEC Mitos y Fraudes)
Other reactions in weblogs, forums and Internet resources during 2008:
Climate Audit 2 * Climate Audit 3 * Real Climate 2 * Junk Science * Wikipedia * Wikipedia Talk 1 * Wikipedia Talk 2 * Wikipedia Talk 3 * Global Warming Clearinghouse 1 * Global Warming Clearinghouse 2 * Global Warming Clearinghouse 3 * ICECAP * Climate Feedback (Nature) * Google Groups - alt.global-warming 1 * Google Groups - alt.global-warming 2 * Google Groups - alt.politics.usa * Google Groups - sci.environment * Google Groups - sci.physics * Yahoo Tech Groups * Yahoo Message Boards * Andrew Bolt Blog 5 * Andrew Bolt Blog 6 * Andrew Bolt Blog 7 * Andrew Bolt Blog 8 * Andrew Bolt Blog 9 * Andrew Bolt Blog 10 * Andrew Bolt Blog 11 * Andrew Bolt Blog 12 * Andrew Bolt Blog 13 * Jennifer Marohasy Blog 4 * Jennifer Marohasy Blog 5 * Jennifer Marohasy Blog 6 * Jennifer Marohasy Blog 7 * Jennifer Marohasy Blog 8 * Jennifer Marohasy Blog 9 * Jennifer Marohasy Blog 10 * Jennifer Marohasy Blog 11 * Jennifer Marohasy Blog 12 * Jennifer Marohasy Blog 13 * Jennifer Marohasy Blog 14 * The Blackboard 1 * The Blackboard 2 * The Motley Fool Discussion Boards 1 * The Motley Fool Discussion Boards 2 * The Daily Bayonet * FinanMart * JREF Forum 1 * JREF Forum 2 * JREF Forum 3 * AccuWeather * Climate Change Fraud 1 * Climate Change Fraud 2 * Climate Change Fraud 4 * Climate Change Fraud 5 * Watts Up With That? 1 * Watts Up With That? 2 * Watts Up With That? 3 * Watts Up With That? 4 * Watts Up With That? 5 * City-Data Forum * Climate Brains * Dvorak Uncensored * Newspoll * The Australian 1 * The Australian 2 * ABC Unleashed 1 * ABC Unleashed 2 * ABC Unleashed 3 * ABC Unleashed 4 * ABC Science Online Forum * Global Warming Skeptics * Niche Modeling * Dot Earth - The New York Times 1 * Dot Earth - The New York Times 2 * Dot Earth - The New York Times 3 * Dot Earth - The New York Times 4 * Dot Earth - The New York Times 5 * Dot Earth - The New York Times 6 * Bart Verheggen * WE Blog * Globe and Mail 1 * Globe and Mail 2 * Small Dead Animals * forums.ski.com.au * ABC Message Board * Sydney Morning Herald 1 (also published in the print version of the newspaper) * Sydney Morning Herald 2 * Sydney Morning Herald 3 * PistonHeads * Clipmarks * British Blogs * The Devil's Kitchen * Peak Oil Journal * The Volokh Conspiracy * Weather Underground * Capitol Grilling * Science & Environmental Policy Project * SookNET Technology * Climate Review 2 * Social Science News Central * Urban75 Forums * Wolf Howling * Launch Magazine Online * Popular Technology * The Environment Site Forums * CNC zone * Solar Cycle 24 Forums * Wired Science * Climate 411 * Daimnation * The Forum * Global Warming Information * Christian Forums 1 * Christian Forums 2 * CommonDreams.org 1 * CommonDreams.org 2 * Greenhouse Bullcrap 2 * Derkeiler Newsgroup * YouTube * Fresh Video * Topix * WeerOnline * The Air Vent * Greenfyre’s * Crikey * ChangeBringer * Scotsman.com News * Climate Change Controversies - David Pratt * Skeptical Science * Block’s Indicator of Sustainable Growth * Digg * Millard Fillmore’s Bathtub * News Busters * AgoraVox * Notre Planete * France 5 * Wissen - Sueddeutsche * Telepolis-Blogforen 1 * Telepolis-Blogforen 2 * Telepolis-Blogforen 3 * WirtschaftsWoche * Antizyklisches Forum * Oekologismus.de * Público.es * Uppsalainitiativet * Tiede.fi 1 * Tiede.fi 2 * Tiede.fi 3 * kolumbus.fi/ * De Rerum Natura * Ilmastonmuutos - totta vai tarua *